首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new set of contour maps of the seismic structure of South America and the surrounding ocean basins. These maps include new data, helping to constrain crustal thickness, whole-crustal average P-wave and S-wave velocity, and the seismic velocity of the uppermost mantle (Pn and Sn). We find that: (1) The weighted average thickness of the crust under South America is 38.17 km (standard deviation, s.d. ±8.7 km), which is ∼1 km thinner than the global average of 39.2 km (s.d. ±8.5 km) for continental crust. (2) Histograms of whole-crustal P-wave velocities for the South American crust are bi-modal, with the lower peak occurring for crust that appears to be missing a high-velocity (6.9–7.3 km/s) lower crustal layer. (3) The average P-wave velocity of the crystalline crust (Pcc) is 6.47 km/s (s.d. ±0.25 km/s). This is essentially identical to the global average of 6.45 km/s. (4) The average Pn velocity beneath South America is 8.00 km/s (s.d. ±0.23 km/s), slightly lower than the global average of 8.07 km/s. (5) A region across northern Chile and northeast Argentina has anomalously low P- and S-wave velocities in the crust. Geographically, this corresponds to the shallowly-subducted portion of the Nazca plate (the Pampean flat slab first described by Isacks et al., 1968), which is also a region of crustal extension. (6) The thick crust of the Brazilian craton appears to extend into Venezuela and Colombia. (7) The crust in the Amazon basin and along the western edge of the Brazilian craton may be thinned by extension. (8) The average crustal P-wave velocity under the eastern Pacific seafloor is higher than under the western Atlantic seafloor, most likely due to the thicker sediment layer on the older Atlantic seafloor.  相似文献   

2.
We here present the results of the inverse modeling of crustal S-phases recorded from a 400-km-long seismic profile, with azimuth nearly N30W, from Lianxian, near Hunan Province, to Gangkou Island, near Guangzhou City, Guangdong Province, in the southern margin of South China continent. The finding in this case is that many shot gathers provided by this wide-angle seismic experiment show relatively strong reflected and refracted S-phases, in particular some crustal refractions (Sg waves) and Moho reflections (SmS waves or simply Sm waves). The P-wave velocity structure of the crust and uppermost mantle was already obtained through the interpretation of vertical-component shot gathers. Now, with constraints introduced by the P-wave velocity architecture and after picking up S-wave traveltime data on the seismograms, we have obtained the S-velocity model of the crust by adjusting these traveltimes but keeping the geometry of the crustal reflectors. Our results demonstrate: (1) the average crustal S-velocity is about 3.64 km/s to the northwest of the Wuchuan-Sihui fault, and 3.62 km/s to the southeast of this fault; (2) relatively constant S-velocity of about 3.42 km/s for the upper crust, 3.55 km/s for the middle crust and laterally varying shear velocity around 3.82 km/s for the lower crust; (3) correspondingly, Vp/Vs ratio is 1.73 for the upper crust, 1.71 for the middle crust and 1.74 for the lower crust. Both shear velocities and Vp/Vs ratio correlate well with the major active faults that break the study area, and show significant changes especially in the upper crust. High Poisson’s ratio (1.8) is observed at shallow depth beneath the Minzhong depression to the southeast of the Wuchuan-Sihui fault and the Huiyuan depression in the southern margin of South China continent. In contrast, a very low Vp/Vs ratio (1.68) is observed between 8 and 14 km depth beneath Huiyuan. At deeper depth, a high Vp/Vs ratio (1.76) is observed in the lower crust beneath the Minzhong depression.  相似文献   

3.
To study the crustal structure beneath the onshore–offshore transitional zone, a wide-angle onshore–offshore seismic experiment was carried out in northern South China Sea near Hong Kong, using large volume airgun sources at sea and seismic stations on land. The crustal velocity model constructed from traveltime fitting shows that the sedimentary thickness abruptly increases seaward of the Dangan Islands based on the characteristics of Pg and Multiple Pg, and the crustal structure beneath the sedimentary layer is relatively simple. The Moho depth is about 25–28 km along the profile and the P-wave velocity increases gradually with depth. The velocities in the upper crust range from 5.5 to 6.4 km/s, while that in the lower crust is 6.4–6.9 km/s. It also reveals a low velocity zone with a width of more than 10 km crossing the crust at about 75–90 km distance, which suggests that the Littoral Fault Zone (LFZ) exists beneath the onshore–offshore transitional zone. The magnetism anomalies, bouguer gravity anomalies and active seismic zone along the coastline imply the LFZ is a main tectonic fault in the onshore–offshore area. Combined with two previously published profiles in the continental South China (L–G profile) and in the northern margin of South China Sea (OBS1993) respectively, we constructed a land-sea super cross-section about 1000 km long. The results show the onshore–offshore transitional zone is a border separating the unstretched and the stretched continental crust. The low velocity layer (LVL) in the middle crust was imaged along L–G profile. However, the high velocity layer (HVL) in the lower crust was detected along OBS1993. By analyzing the mechanisms of the LVL in the middle crust and HVL in the base of crust, we believe the crustal structures had distinctly different attributes in the continental South China and in the northern SCS, which indicates that the LFZ could be the boundary fault between them.  相似文献   

4.
We constructed the S-wave velocity structure of the crust and uppermost mantle (10–100 km) beneath the North China based on the teleseismic data recorded by 187 portable broadband stations deployed in this region. The traditional two-step inversion scheme was adopted. Firstly, we measured the interstation fundamental Rayleigh wave phase velocity of 10–60 s and imaged the phase velocity distributions using the Tarantola inversion method. Secondly, we inverted the 1-D S-wave velocity structure with a grid spacing of 0.25° × 0.25° and constructed the 3-D S-wave velocity structure of the North China. The 3-D S-wave velocity model provides valuable information about the destruction mechanism and geodynamics of the North China Craton (NCC). The S-wave velocity structures in the northwestern and southwestern sides of the North–South Gravity Lineament (NSGL) are obviously different. The southeastern side is high velocity (high-V) while the northeastern side is low velocity (low-V) at the depth of 60–80 km. The upwelling asthenosphere above the stagnated Pacific plate may cause the destruction of the Eastern Block and form the NSGL. A prominent low-V anomaly exists around Datong from 50 to 100 km, which may due to the upwelling asthenosphere originating from the mantle transition zone beneath the Western Block. The upwelling asthenosphere beneath the Datong may also contribute to the destruction of the Eastern Block. The Zhangjiakou-Penglai fault zone (ZPFZ) may cut through the lithosphere and act as a channel of the upwelling asthenosphere. A noticeable low-V zone also exists in the lower crust and upper mantle lid (30–50 km) beneath the Beijing–Tianjin–Tangshan (BTT) region, which may be caused by the upwelling asthenosphere through the ZPFZ.  相似文献   

5.
《Gondwana Research》2013,24(4):1455-1483
The crust and upper mantle in mainland China were relatively densely probed with wide-angle seismic profiling since 1958, and the data have provided constraints on the amalgamation and lithosphere deformation of the continent. Based on the collection and digitization of crustal P-wave velocity models along related wide-angle seismic profiles, we construct several crustal transects across major tectonic units in mainland China. In our study, we analyzed the seismic activity, and seismic energy releases during 1970 and 2010 along them. We present seismogenic layer distribution and calculate the yield stress envelopes of the lithosphere along the transects, yielding a better understanding of the lithosphere rheology strength beneath mainland China. Our results demonstrate that the crustal thicknesses of different tectonic provinces are distinctively different in mainland China. The average crustal thickness is greater than 65 km beneath the Tibetan Plateau, about 35 km beneath South China, and about 36–38 km beneath North China and Northeastern China. For the basins, the thickness is ~ 55 km beneath Qaidam, ~ 50 km beneath Tarim, ~ 40 km beneath Sichuan and ~ 35 km beneath Songliao. Our study also shows that the average seismic P-wave velocity is usually slower than the global average, equivalent with a more felsic composition of crust beneath the four tectonic blocks of mainland China resulting from the complex process of lithospheric evolution during Triassic and Cenozoic continent–continent and Mesozoic ocean–continent collisions. We identify characteristically different patterns of seismic activity distribution in different tectonic blocks, with bi-, or even tri-peak distribution of seismic concentration in South Tibet, which may suggest that crustal architecture and composition exert important control role in lithosphere deformation. The calculated yield stress envelopes of lithosphere in mainland China can be divided into three groups. The results indicate that the lithosphere rheology structure can be described by jelly sandwich model in eastern China, and crème brulee models with weak and strong lower crust corresponding to lithosphere beneath the western China and Kunlun orogenic belts, respectively. The spatial distribution of lithospheric rheology structure may provide important constraints on understanding of intra- or inter-plate deformation mechanism, and more studies are needed to further understand the tectonic process(es) accompanying different lithosphere rheology structures.  相似文献   

6.
The shear velocity structure beneath the Virunga volcanic area was estimated by using an average solution in the time domain inversion of stacked teleseismic receiver functions provided by two seismic broadband stations KUNENE (KNN) and KIBUMBA (KBB). These two stations are 29 km apart and located at the eastern and western escarpment of the Western Rift Valley of Africa in the Virunga area, respectively. The velocity model was presented as P-wave velocity models. From these models, the crust mantle transition zone beneath the area sampled by KNN and KBB in the Virunga area was determined at depth from about 36 to 39 km and 30 to 41 km, respectively. A low velocity zone was observed below stations KNN and KBB at depths between 20–30 km and 18–28 km, respectively, and with average velocity 5.9 km/s and 6.0 km/s. This low velocity zone may probably related to a magma chamber or a melt-rich sill. The models show also high velocity material (6.8–7.4 km/s) lying beneath stations KNN and KBB at depths 3–20 km and 3–10 km, respectively, which is indicative of magma cumulates within the volcanic edifice. The result obtained in this study was applied to the determination of epicentres during the period prior to the 27 November 2006 Nyamuragira eruption. This eruption was preceded by a swarm of hybrid volcanic earthquakes with clear P-waves onset. Using the receiver function model was found to improve the location of events. The located events correlate well with the location of the eruptive site and data provided by the INSAR observations of surface deformation associated with eruption.  相似文献   

7.
A nearly 500-km-long seismic profile with reflective and refractive wide-angle Ocean Bottom Seismometer (OBS) data and Multi-Channel Seismic (MCS) data was acquired across the northeastern continental margin of the South China Sea (SCS). The S-wave crustal structure and Vp/Vs ratios have been obtained based on a previously published P-wave model using the software RayInvr. Modeling of vertical- and horizontal-component OBS data yields information on the seismic crustal velocities, lithology, and geophysical properties along the OBS-2001 seismic profile. S-wave velocities in the model increase generally with depth but exhibit high spatial variability, particularly from the shelf to the upper slope of the northeastern SCS margin. Vp/Vs ratios also reveal significant lithological heterogeneity. Dongsha–Penghu Uplift (DPU) is a tectonic zone with a thicker crust than adjacent areas and a high magnetic anomaly. With a Vp/Vs of 1.74 and a P-wave velocity of 5.0–5.5 km/s, the DPU primarily consists of felsic volcanic rocks in the upper crust and is similar to the petrology of Zhejiang–Fujian volcanic provinces, which perhaps is associated with a Mesozoic volcanic arc. The ocean–continent transition (OCT) in the northeastern SCS is characterized by a thinning continental crust, volcanoes in the upper crust, and a high velocity layer (HVL) in the lower crust. The S-wave velocity and Vp/Vs ratio suggest that the HVL has a mafic composition that may originate from underplating of the igneous rocks beneath the passive rifted crust after the cessation of seafloor spreading.  相似文献   

8.
Although orogeny tapers off in western Taiwan large and small earthquakes do occur in the Taiwan Strait, a region largely untouched in previous studies owing mostly to logistical reasons. But the overall crustal structure of this region is of particular interest as it may provide a hint of the proto-Taiwan before the orogeny.By combining time domain empirical Green’s function (TDEGF) from ambient seismic noise using station-pairs and traditional surface wave two-station method (TS) we are able to construct Rayleigh wave phase velocity dispersion curves between 5 and 120 s. Using Broadband Array in Taiwan for Seismology (BATS) stations in Taiwan and in and across the Strait we are able to derive average 1-D Vs structures in different parts of this region. The results show significant shear velocity differences in the upper 15 km crust as expected. In general, the highest Vs in the upper crust observed in the coastal area of Mainland China and the lowest Vs appears along the southwest offshore of the Taiwan Island; they differ by about 0.6–1.1 km/s. For different parts of the Strait, the upper crust Vs structures are lower in the middle by about 0.1–0.2 km/s relative to those in the northern and southern parts. The upper mantle Vs structure (Moho – 150 km) beneath the Taiwan Strait is about 0.1–0.3 km/s lower than the AK135 model. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island. The inversion of seismic velocity structures using shorter period band dispersion data in the sea areas with water depth deeper than 1000 m should take water layer into consideration except for the continental shelves.  相似文献   

9.
The ∼500,000 km2 Saharan Metacraton in northern Africa (metacraton refers to a craton that has been mobilized during an orogenic event but that is still recognisable through its rheological, geochronological and isotopic characteristics) is an Archean–Paleoproterozoic cratonic lithosphere that has been destabilized during the Neoproterozoic. It extends from the Arabian–Nubian Shield in the east to the Trans-Saharan Belt in the west, and from the Oubanguides Orogenic Belt in the south to the Phanerozoic cover of North Africa. Here, we show that there are high S-wave velocity anomalies in the upper 100 km of the mantle beneath the metacraton typical of cratonic lithosphere, but that the S-wave velocity anomalies in the 175–250 km depth are much lower than those typical of other cratons. Cratons have possitive S-wave velocity anomalies throughout the uppermost 250 km reflecting the presence of well-developed cratonic root. The anomalous upper mantle structure of the Saharan Metacraton might be due to partial loss of its cratonic root. Possible causes of such modification include mantle delamination or convective removal of the cratonic root during the Neoproterozoic due to collision-related deformation. Partial loss of the cratonic root resulted in regional destabilization, most notably in the form of emplacement of high-K calc-alkaline granitoids. We hope that this work will stimulate future multi-national research to better understand this part of the African Precambrian. Specifically, we call for efforts to conduct systematic geochronological, geochemical, and isotopic sampling, deploy a reasonably-dense seismic broadband seismic network, and conduct systematic mantle xenoliths studies.  相似文献   

10.
We investigated the seismic shear-wave velocity structure of the crust beneath nine broadband seismological stations of the Shillong–Mikir plateau and its adjoining region using teleseismic P-wave receiver function analysis. The inverted shear wave velocity models show ∼34–38 km thick crust beneath the Shillong Plateau which increases to ∼37–38 km beneath the Brahmaputra valley and ∼46–48 km beneath the Himalayan foredeep region. The gradual increase of crustal thickness from the Shillong Plateau to Himalayan foredeep region is consistent with the underthrusting of Indian Plate beyond the surface collision boundary. A strong azimuthal variation is observed beneath SHL station. The modeling of receiver functions of teleseismic earthquakes arriving the SHL station from NE backazimuth (BAZ) shows a high velocity zone within depth range 2–8 km along with a low velocity zone within ∼8–13 km. In contrast, inversion of receiver functions from SE BAZ shows high velocity zone in the upper crust within depth range ∼10–18 km and low velocity zone within ∼18–36 km. The critical examination of ray piercing points at the depth of Moho shows that the rays from SE BAZ pierce mostly the southeast part of the plateau near Dauki fault zone. This observation suggests the effect of underthrusting Bengal sediments and the underlying oceanic crust in the south of the plateau facilitated by the EW-NE striking Dauki fault dipping 300 toward northwest.  相似文献   

11.
The rupture process of the disastrous Sumatra–Andaman earthquake of 26 December 2004 was analyzed by array processes for teleseismic P-waves recorded by a dense broadband seismic array in Taiwan with epicentral distances of close to 31°. The azimuthal variation from the BATS array center to both ends of the rupture fault is approximately 21°, which is larger than that reported previously for seismic arrays used to image the rupture process of this earthquake, thereby providing a high spatial resolution in studying the source rupture behavior. Two array-processing methods were used to analyze teleseismic P-wave trains. Both analyses were based on data recorded by a broadband network, covering a region of 200 × 400 km, with the aim of evaluating the rupture behavior of the earthquake. Consistent results from both analyses indicate that the earthquake had a rupture duration exceeding 500 s, with major asperities encountered at 80, 260, and 330 s after the initiation of rupturing. We traced the ruptured fault for more than 1200 km from the point of initial rupture. The average rupture velocity was approximately 3.0 km/s and the major northward rupture propagation began at 80 s after the initiation of rupturing.  相似文献   

12.
The chemical bulk rock composition of 37 xenoliths, brought from depths of 25–30 km to the surface by penetrating Cenozoic alkali basaltic magma, from the Shamah Harrat, southwestern Syria, was determined by XRF spectroscopy. The geochemical character of these xenoliths points to original marls and within-plate igneous rocks. To obtain the mean chemical composition of the corresponding upper portion of the lower crust, the compositions of the 37 xenoliths were averaged and a leucogranitic and upper crustal component was added to account for assimilation by the Cenozoic magmas. This mean is more basic (SiO2—50.5 wt%) and richer in HFSE, LREE, and LILE compared to compositions of the lower crust given by Taylor and McLennan [1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312pp.] and Rudnick and Gao [2005. Composition of the continental crust. In: Rudnick, R.L. (Ed.), The Crust. Treatise on Geochemistry, vol. 3. Elsevier, Amsterdam, pp. 1–64]. Calculations of the seismic compressional-wave velocity from our compositional mean, using the PERPLE_X computer software, yielded values around 6.85 km/s, which are in accordance with reported seismic studies for the corresponding depth levels (6.7–7.1 km/s).  相似文献   

13.
We estimated the crustal thickness and velocity structure beneath the five stations comprising the Republic of Singapore’s seismic network. Our data set was composed of 697 teleseismic receiver functions and 7 months of broad-band data that was cross-correlated to produce inter-station Green’s functions. Surface wave group velocities were extracted from the Green’s functions to obtain dispersion data for a path from central Sumatra to Singapore in order to provide a complimentary data set to the receiver functions. Crustal thickness was estimated via an H  k stacking technique, and high-resolution 1D P-wave velocity profiles were generated beneath each station by jointly inverting receiver function stacks and the group velocity data using a linearised time-domain inversion scheme. Crustal thickness beneath four stations was found to be between 28.0 km and 32.0 km, while one station in the northeast of Singapore indicates 24.0 km thick crust. This implies a significant crustal thinning beneath Singapore over the lateral extent of 50.0 km. Inversion results exhibit several crustal features that are observable in the derived models at all five stations, indicating that they exist across Singapore as a whole. There appears to be an upper-crustal high-velocity zone beneath Singapore, underlain by a velocity inversion. Station NTU shows slower near-surface velocities than the other stations, consistent with its situation above the sedimentary Jurong formation. These results expand the available global velocity data set, as well as being useful for assessing the seismic hazard in Singapore.  相似文献   

14.
A high-resolution passive seismic experiment in the Kachchh rift zone of the western India has produced an excellent dataset of several thousands teleseismic events. From this network, 500 good teleseismic events recorded at 14 mobile broadband sites are used to estimate receiver functions (for the 30–310° back-azimuth ranges), which show a positive phase at 4.5–6.1 s delay time and a strong negative phase at 8.0–11.0 s. These phases have been modeled by a velocity increase at Moho (i.e. 34–43 km) and a velocity decrease at 62–92 km depth. The estimation of crustal and lithospheric thicknesses using the inversion of stacked radial receiver functions led to the delineation of a marked thinning of 3–7 km in crustal thickness and 6–14 km in lithospheric thickness beneath the central rift zone relative to the surrounding un-rifted parts of the Kachchh rift zone. On an average, the Kachchh region is characterized by a thin lithosphere of 75.9 ± 5.9 km. The marked velocity decrease associated with the lithosphere–asthenoshere boundary (LAB), observed over an area of 120 km × 80 km, and the isotropic study of xenoliths from Kachchh provides evidence for local asthenospheric updoming with pockets of partial melts of CO2 rich lherzolite beneath the Kachchh seismic zone that might have caused by rifting episode (at 88 Ma) and the associated Deccan thermal-plume interaction (at 65 Ma) episodes. Thus, the coincidence of the area of the major aftershock activity and the Moho as well as asthenospheric upwarping beneath the central Kachchh rift zone suggests that these pockets of CO2-rich lherzolite partial melts could perhaps provide a high input of volatiles containing CO2 into the lower crust, which might contribute significantly in the seismo-genesis of continued aftershock activity in the region. It is also inferred that large stresses in the denser and stronger lower crust (at 14–34 km depths) induced by ongoing Banni upliftment, crustal intrusive, marked lateral variation in crustal thickness and related sub-crustal thermal anomaly play a key role in nucleating the lower crustal earthquakes beneath the Kachchh seismic zone.  相似文献   

15.
We propose a genetic algorithm (GA) search procedure for waveform modeling of local crustal earthquakes for optimal one-dimensional (1-D) crustal velocity model. Both waveforms and travel-time data are used for the structure determination. The use of travel times in model evaluation improves the waveform modeling performance in the sense of computation speed and accuracy. We applied this method to broadband waveforms of a local crustal earthquake (M 4.2) in Northeast Japan. P-wave velocities of the crustal model are found to be 4.95 ± 0.30, 5.9 ± 0.02, and 6.51 ± 0.20 km/s for a surface layer, upper crust and lower crust, respectively. The surface layer thickness and the Conrad and Moho depths are found to be 3.01 ± 0.8, 17.77 ± 0.4 and 34.59 ± 1.0 km, respectively. For epicentral distances <200 km, our synthetic waveforms match the observed ones generally well. Early arrivals are mainly observed at stations near the Pacific coast in the forearc area having a thinner crust. In contrast, delayed arrivals appear at stations near the volcanic front and back-arc areas where low-velocity anomalies exist due to the effect of the Pacific slab dehydration and the hot upwelling flows in the mantle wedge. In general, our results agree well with the main tectonic setting of the study area, which confirms the reliability of the proposed approach. Despite a 1-D velocity model is too simple to represent the complex crustal structure, it is still required for the conventional routine analysis of seismology, such as earthquake location and source parameter studies. The current approach is considered as a step toward the genetic full waveform modeling for the 3-D velocity model estimation.  相似文献   

16.
《Gondwana Research》2015,28(4):1487-1493
Receiver function imaging along a temporary seismic array (ANTILOPE-2) reveals detailed information of the underthrusting of the Indian crust in southern Tibet. The Moho dips northward from ~ 50 km to 80 km beneath the Himalaya terrane, and locally reaches ~ 85 km beneath the Indus–Yalung suture. It remains at ~ 80 km depth across the Lhasa terrane, and shallows to ~ 70 km depth under the Qiangtang terrane. An intra-crustal interface at ~ 60 km beneath the Lhasa terrane can be clearly followed southward through the Main Himalaya Thrust and connects the Main Boundary Thrust at the surface, which represents the border of the Indian crust that is underthrusting until south of the Bangong–Nujiang Suture. A mid-crustal low velocity zone is observed at depths of 14–30 km beneath the Lhasa and Himalaya terranes probably formed by partial melt and/or aqueous fluids.  相似文献   

17.
This study presents the crustal shear wave velocity structure and radial anisotropy along two linear seismic arrays across the North China Craton (NCC) from ambient noise tomography. About a half to one year long ambient noise data from 87 stations were used for obtaining the inter-station surface wave empirical Green's functions (EGFs) from cross-correlation. Rayleigh and Love dispersion curves within the period band 5–30 s were measured from the EGFs of the vertical and transverse components, respectively. These dispersion data were then used to determine the crustal shear wave velocity structure (VSV and VSH) and radial anisotropy (2(VSH ? VSV) / (VSH + VSV)) from point-wise linear inversion with constraints from receiver function analysis. Our results reveal substantial structural variations among different parts of the NCC. The Bohai Bay Basin in the eastern NCC is underlain by a thin crust (~ 30 km) with relatively low velocities (particularly VSV) and large positive radial anisotropy in the middle to lower crust. Such a crustal structure is no longer of a cratonic type and may have resulted from the widespread tectonic extension and intensive magmatism in this region since late Mesozoic. Beneath the Ordos Basin in the western NCC, the crust is relatively thicker (≥ 40 km) and well stratified, and presents a large-scale low velocity zone in the middle to lower crust and overall weak radial anisotropy except for a localized lower crust anomaly. The overall structural features of this region resemble those of typical Precambrian shields, in agreement with the long-term stability of the region. The crustal structure under the Trans North China Orogen (TNCO, central NCC) is more complicated and characterized by smaller scale velocity variations, strong positive radial anisotropy in the middle crust and rapid change to weak-to-negative anisotropy in the lower crust. These features may reflect complex deformations and crust–mantle interactions, probably associated with tectonic extension and magmatic underplating during the Mesozoic to Cenozoic evolution of the region. Our structural images in combination with previous seismic, geological and geochemical observations suggest that the Phanerozoic lithospheric reactivation and destruction processes may have affected the crust (especially the middle and lower crust) of the eastern NCC, and the effect probably extended to the TNCO, but may have minor influence on the crust of the western part of the craton.  相似文献   

18.
Based on passive seismic interferometry applied to ambient seismic noise recordings between station pairs belonging to a small-scale array, we have obtained shear wave velocity images of the uppermost materials that make up the Dead Sea Basin. We extracted empirical Green’s functions from cross-correlations of long-term recordings of continuous data, and measured inter-station Rayleigh wave group velocities from the daily correlation functions for positive and negative correlation time lags in the 0.1–0.5 Hz bandwidth. A tomographic inversion of the travel times estimated for each frequency is performed, allowing the laterally varying 3-D surface wave velocity structure below the array to be retrieved. Subsequently, the velocity-frequency curves are inverted to obtain S-wave velocity images of the study area as horizontal depth sections and longitude- and latitude-depth sections. The results, which are consistent with other previous ones, provide clear images of the local seismic velocity structure of the basin. Low shear velocities are dominant at shallow depths above 3.5 km, but even so a spit of land with a depth that does not exceed 4 km is identified as a salt diapir separating the low velocities associated with sedimentary infill on both sides of the Lisan Peninsula. The lack of low speeds at the sampling depth of 11.5 km implies that there are no sediments and therefore that the basement is near 10–11 km depth, but gradually decreasing from south to north. The results also highlight the bowl-shaped basin with poorly consolidated sedimentary materials accumulated in the central part of the basin. The structure of the western margin of the basin evidences a certain asymmetry both whether it is compared to the eastern margin and it is observed in north–south direction. Infill materials down to ∼8 km depth are observed in the hollow of the basin, unlike what happens in the north and south where they are spread beyond the western Dead Sea shore.  相似文献   

19.
The mantle structure in Central Asia was investigated by surface-wave tomography from dispersion of the fundamental mode of the Rayleigh wave group velocities along more than 3200 earthquake-station paths within 40° N to 60° N and 80° E to 132° E. The velocities were processed by the frequency-time analysis at periods from 10 to 250 s to obtain their dispersion curves. Then group velocity maps were computed separately for each period, at different sampling intervals: at every 5 s for the short periods from 10 to 30 s, at 10 s for periods between 30 and 100 s, and at 25 s for the longest periods of 100 to 250 s. Resolution was estimated according to the effective averaging radius (R) and presented likewise in the form of maps. To estimate the depths of the revealed inhomogeneties, locally averaged dispersion curves were calculated using the group velocity maps, with reference to the radius R, and were then inverted to S-wave velocity-depth profiles. The resulting three-dimensional S-wave velocity structure to depths of about 700 km revealed large lateral inhomogeneties through the entire depth range. This pattern may be due to the history of the major tectonic structures, as well as to ongoing processes in the mantle.  相似文献   

20.
Since the pioneer wide-angle seismic profile along the Yadong–Gulu rift acquired in 1974 by the ex-Institute of Geophysics, Chinese Academy of Sciences (CAS), several research programs aimed to deep geophysics, performed thanks to the participation of Chinese national and international institutions, have been developed during last 35 years, including 23 wide-angle seismic profiles with total length of about 6000 km. These profiles are unevenly distributed, most of them in eastern Tibet and few profiles in western Tibet. In this paper, we make a summarized presentation of all these wide-angle seismic profiles and provide an overall view of the seismic velocity structure of the crust beneath the broad Tibetan plateau, which is the product of the continuous convergence and collision of the Indian and Eurasian plates since about 50 Ma ago. Different patterns of crustal thickness variation related to the tectonic blocks and along suture zones of the region are displayed. The crust thickness is confirmed to be about 70–75 km under southern Tibet, and 60–65 km under northern, northeastern and southeastern Tibet. The leading edge of the subducted lithosphere reaches the northern margin of the plateau and directly contacts with Tarim Basin. Westward of the 90°E boundary, the Indian crust is moving towards the northern edge of the plateau and collides with Tarim Basin at 80°E while reach the Bangong–Nujiang suture belt at 88°E; eastward of the 90°E boundary, the northern edge of the crust should be at 50–100 km south of Bangong–Nujiang suture. The results supply helpful constrains to understand the mechanism of the continent–continent collision and its consequences in the plateau and neighbouring areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号