首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 845 毫秒
1.
鲁西中、新生代镁铁质岩浆作用与地幔化学演化   总被引:13,自引:0,他引:13  
镁铁质火成岩作为分布最为广泛的典型幔源岩石, 已成为探索地幔化学性状及示踪岩石圈深部过程的主要研究对象.通过对典型样品元素-同位素组成的系统测定, 并结合前人已有资料, 综合研究了鲁西中生代和新生代镁铁质岩石的地质与地球化学特征.研究结果表明, 中生代镁铁质火成岩总体具有富轻稀土和大离子亲石元素、贫高场强元素、ISr值变化范围大(0.70396~0.71247)、εNd (t) 值显著偏低(-9.20~-21.21) 的地球化学特征, 但该区南部和北部的中生代镁铁质岩石在元素-同位素组成上仍存在一定差别, 主要表现在南部较之北部镁铁质岩石具有更高的稀土总量(ΣREE为325.52×10-6~555.75×10-6)和轻、重稀土比值(LREE/HREE=17.75~25.97), 以及更高的LILE/HFSE比值(如La/Nb=6.37~13.85, Th/Nb=0.52~1.53).南部镁铁质岩石较之北部镁铁质岩石也更富放射成因锶, ISr值分别为0.70844~0.71247和0.70396~0.70598.元素-同位素综合示踪指示鲁西中生代地幔总体具有因岩石圈大规模拆沉作用形成的EMⅠ型富集地幔特征, 但其南部叠加了因深俯冲而进入地幔的扬子陆壳的影响, 因而表现出EMⅠ和EMⅡ组分混合的富集地幔特征.新生代玄武岩具有类似于大洋玄武岩的地球化学特征, 其源区应为亏损的软流圈地幔, 但在部分熔融形成岩浆之前遭受了近期的交代作用.自中生代至新生代, 华北克拉通地幔具有由富集向亏损演变的趋势, 这一化学性状的演变最可能是中生代以来岩石圈大规模拆沉作用, 导致软流圈地幔上涌并对原有岩石圈地幔再改造所致.   相似文献   

2.
S. Harangi 《Lithos》1994,33(4):303-321
Early Cretaceous volcanic rocks (basanite to phonolite) from the Mecsek Mountains (South Hungary) represent the products of Late Mesozoic extension-related alkaline magmatism at the southern margin of the European plate. Two mafic groups have been distinguished: ankaramite-alkali basalt and Na-basanite-phonotephrite. Phonolites could have been formed from the Na-basanitic magma by low-pressure fractionation. The major and trace element characteristics of the Mecsek basalts are similar to those of alkaline basalts of other intraplate areas and have a St. Helena-type OIB affinity. The mantle source of the Mecsek volcanics could be similar to that proposed by Wilson and Downes (1991) as one of the mantle endmembers for extension-related Tertiary-Quaternary alkaline basalts in Europe. Geochemical modelling indicates that the primary magmas of the Na-basanite series were formed by about 4% partial melting, whereas ankaramites and alkali basalts originated by about 6% partial melting of a garnet-peridotite source.  相似文献   

3.
We present and compare whole-rock and zircon O and Pb isotopic compositions for the Hannuoba granulite xenoliths and Mesozoic intermediate-to-felsic igneous rocks from the Zhangjiakou region, northern margin of the North China Craton, northeast China. The xenoliths have an overall Pb isotopic range similar to rocks from the regionally exposed Neoarchaean granulite terrain. Mesozoic zircons from different types of granulite xenoliths have a narrow range of δ18O values (6.0–7.7‰) higher than normal mantle δ18O values (~5.7‰). Mesozoic intermediate–felsic igneous rocks have O and Pb isotopic compositions indistinguishable from the Hannuoba intermediate–mafic granulite xenoliths. Our new data suggest that the Mesozoic igneous rocks and granulite xenoliths are genetically linked and that both were derived from the late Neoarchaean lower crust. This argues against previous proposals that the granulite xenoliths are either products of Mesozoic basaltic underplating or formed by mixing between mantle-derived and pre-existing crustal magmas.  相似文献   

4.
塔里木盆地西北部卷入了西南天山新生代板内造山活动,以发育一系列北东向展布的断层和断层相关褶皱为特征,但该区新生代构造变形的原因尚存在争议。文中以皮羌盆地为例报道了新生代火成岩的地质特征和测年结果,认为构造变形是对幔源岩浆活动的浅部响应,与印度 亚洲大陆碰撞没有必然的联系。皮羌盆地出露有大量的新生代基性岩墙和4个古火山颈,岩墙群整体走向NNW和NNE,产状近于直立,侵入于新生界湖相沉积地层中。火山颈相玄武岩锆石SHRIMP U Pb定年结果为46 Ma,全岩K Ar等时线封闭年龄为(455±613) Ma,表明岩浆活动发生在始新世中期。岩浆活动时间比逆冲推覆构造启动时间(约24 Ma)早约22 Ma。按热传导模式估算,在此期间来自深部热源的热传递距离约为25 km。假定深部热源为底侵或内侵幔源岩浆,新生代岩浆活动可能是塔里木盆地西北部大规模构造变形的触发机制。  相似文献   

5.
吉林省长白山地区新生代火山岩的特点及其成因   总被引:7,自引:5,他引:7  
田丰  汤德平 《岩石学报》1989,5(2):49-64
长白山地区新生代火山岩是一套玄武岩、粗面岩和钠闪碱流岩的双峰式火山岩组合。玄武岩类分别属于碱性玄武岩系列和拉斑玄武岩系列。奶头山期玄武岩是幔源原生岩浆直接喷发于地表的产物,其他各期玄武岩是幔源原生岩浆经历了一定程度分异作用的产物。粗面岩和钠闪碱流岩与玄武岩有成因联系,可能是玄武岩浆通过分离结晶作用而形成的。本区新生代火山岩是大陆裂谷构造环境下的产物,是在地幔增温和底辞上升过程中形成的。  相似文献   

6.
本文对华北克拉通晚中生代和新生代碱性玄武质岩石中的单斜辉石巨晶进行了主、微量元素和Sr-Nd同位素的综合研究,发现晚中生代和新生代单斜辉石巨晶存在明显的主、微量元素和同位素组成上的差异。新生代单斜辉石巨晶有Al-普通辉石和次透辉石两类;而中生代单斜辉石巨晶只有Al-普通辉石。新生代单斜辉石SiO_2含量高、REE配分型式为上凸型、LILE和放射性元素含量高,并具有比寄主碱性玄武岩更亏损的Sr和Nd同位素组成;而中生代单斜辉石SiO_2含量低、REE配分型式为LREE富集型、LILE和部分HFSE以及放射性元素含量低,并具有比寄主碱性玄武岩稍富集的Sr和Nd同位素组成;巨晶的结构、矿物成分和地球化学特征,以及Mg-Fe在熔体与单斜辉石间的分配状况皆说明,新生代碱性玄武岩中单斜辉石巨晶是碱性玄武岩浆在高压下结晶的,因此二者是同源的;而中生代单斜辉石巨晶是被寄主岩浆偶然捕获的捕虏晶,是不同源的。华北新生代单斜辉石巨晶存在于碱性玄武岩和拉斑玄武岩中,它们具有比寄主碱性玄武岩更亏损的Sr和Nd同位素组成,说明即使是碱性玄武岩也不能完全代表软流圈来源的原始岩浆,其在上升过程中或多或少存在同位素组成富集的物质的混入。同时,拉斑玄武岩不是碱性玄武质岩浆直接结晶分异的产物,亦不是完全由部分熔融程度的不同造成的。拉斑玄武岩中存在岩石圈地幔物质的贡献或是岩浆房内碱性玄武质岩浆受地壳混染作用的结果。  相似文献   

7.
Early–Middle Jurassic igneous rocks (190–170 Ma) are distributed in an E–W-trending band within the Nanling Tectonic Belt, and have a wide range of compositions but are only present in limited volumes. This scenario contrasts with the uniform but voluminous Middle–Late Jurassic igneous rocks (165–150 Ma) in this area. The Early–Middle Jurassic rocks include oceanic-island basalt (OIB)-type alkali basalts, tholeiitic basalts and gabbros, bimodal volcanic rocks, syenites, A-type granites, and high-K calc–alkaline granodiorites. Geochemical and isotopic data indicate that alkaline and tholeiitic basalts and syenites were derived from melting of the asthenospheric mantle, with asthenosphere-derived magmas mixing with variable amounts of magmas derived from melting of metasomatized lithospheric mantle. In comparison, A-type granites in the study area were probably generated by shallow dehydration-related melting of hornblende-bearing continental crustal rocks that were heated by contemporaneous intrusion of mantle-derived basaltic magmas, and high-K calc-alkaline granodiorites resulted from the interaction between melts from upwelling asthenospheric mantle and the lower crust. The Early–Middle Jurassic magmatic event is spatially variable in terms of lithology, geochemistry, and isotopic systematics. This indicates that the deep mantle sources of the magmas that formed these igneous rocks were significantly heterogeneous, and magmatism had a gradual decrease in the involvement of the asthenospheric mantle from west to east. These variations in composition and sourcing of magmas, in addition to the spatial distribution and the thermal structure of the crust–mantle boundary during this magmatic event, indicates that these igneous rocks formed during a period of rifting after the Indosinian Orogeny rather than during subduction of the paleo-Pacific oceanic crust.  相似文献   

8.
唐杰  许文良  李宇  孙晨阳 《地球科学》2019,44(4):1096-1112
近年来,东北地区地幔热演化过程的相关研究相对较少,而揭示东北地区地幔热演化过程的有效手段就是研究东北地区玄武岩的成分变异特征.系统总结并对比了大兴安岭北段早白垩世玄武质岩石和新生代玄武质岩石的化学成分变异,以便揭示研究区中生代晚期-新生代的地幔热演化过程.大兴安岭北段早白垩世玄武岩在化学上属于拉斑玄武岩系列,以亏损Nb、Ta、Ti等高场强元素为特征,它们的La/Nb和La/Ta比值分别介于1.8~5.6和30~87,暗示岩浆起源于岩石圈地幔;它们的初始87Sr/86Sr值、εNd(t)和εHf(t)值分别介于0.704 5~0.706 9、-1.52~+3.60和+1.74~+7.77,表明岩浆源区属于弱亏损-弱富集的岩石圈地幔;早白垩世玄武质岩石的Sr-Nd-Pb同位素成分指示岩浆源区是由DM和EMⅡ型地幔端元混合而成,并经历了俯冲流体的交代.表明大兴安岭北段早白垩世玄武质岩浆源区为受早期俯冲流体交代的岩石圈地幔.新生代超钾质和钾质玄武岩具有Nb-Ta的弱负异常,87Sr/86Sr值为0.704 7~0.705 7、εNd(t)值为-6.3~-0.8,而地幔捕掳体具有Sr-Nd同位素亏损特征;钠质玄武岩具有Nb-Ta的正异常,较超钾质和钾质玄武岩具有低的87Sr/86Sr(0.703 5~0.704 2)以及高的εNd(t)值(+3.4~+6.6),类似MORB的同位素组成,这些特征说明大兴安岭北段新生代玄武质岩石起源于软流圈地幔.综上所述,大兴安岭北段早白垩世和新生代玄武质岩石成分的差异不仅指示其岩浆源区从岩石圈地幔转变为软流圈地幔,更为重要的是它揭示了研究区地幔的热演化过程——从早白垩世高的地温梯度到新生代低的地温梯度的转变.这一过程也是岩石圈从中生代晚期到新生代逐渐增厚的过程.结合区域构造演化,可以得出大兴安岭北段早白垩世的玄武质岩浆作用与岩石圈伸展、减薄形成的裂陷作用相关,而新生代玄武质岩浆作用则与陆内裂谷作用相关.   相似文献   

9.
The Topsails igneous terrane of Western Newfoundland contains a diverse suite of igneous rocks, but consists mainly of Silurian alkaline to peralkaline granites and rhyolites. The terrane exhibits evidence for the coexistence of mafic and salic magmas in the form of composite dykes and flows, sinuous, boudined mafic dykes cutting granites and net vein complexes. Field data and major and trace element chemical data suggest that these magmas mixed to produce limited volumes of more or less homogeneous hydrids.Magma mixing, a process which has received recent prominence in petrogenetic models for calc-alkaline volcanic suites, has elicited less attention than restite separation and fractional crystallization as a cause of chemical dispersion in granites. Evidence from the Topsails igneous terrane suggests the possible importance of magma mixing to granite petrogenesis and a major role for transcurrent faulting in the origin and evolution of peralkaline magmas.  相似文献   

10.
The Paleoproterozoic post-kinematic Ubendian mafic rocks from northeastern Katanga (Democratic Republic of Congo) are olivine-and-quartz tholeiites which in many respects resemble Phanerozoic continental tholeiites. The analogies are suggested by the petrographic features and the major element diagrams classically used to infer magmatic affinity. The clinopyroxene compositions straddle the boundary between clinopyroxenes from orogenic and extensional tectonic settings. In addition, the whole-rock compositions are mostly Ti- and P-poor as in low Ti–P continental flood basalts and in subduction-related mafic magmas. The same conclusion is sustained by the trace-element compositions (e.g., occurrence of mafic magmas with high Th/Ta and La/Ta values; low Sr/Ce ratios, etc). These geochemical features indicate involvement of a subduction component at the source of these extensional igneous rocks. Convective mixing of asthenospheric mantle with the overlying lithospheric mantle enriched during the Ubendian subduction or mixing of melts from both mantle components can account for the composition of the post-orogenic Ubendian mafic rocks.  相似文献   

11.
安徽的地壳演化:Sr,Nd同位素证据   总被引:13,自引:0,他引:13  
陈江峰  谢智  张巽  周泰禧 《安徽地质》2001,11(2):123-130
在地壳(幔)演化和板块构遣的框架内,评述了有关安徽南部(扬子地块东部,包括大别遣山带和江南遣山带)的同位素地质年代学和Nd,Sr同位素地球化学示踪研究的成果。该地区出露地表的中元古界溪口群浅变质岩代表皖南的基底,沿江地区和大别山区的基底包舍太古宇或/和古元古界古老岩石。此格局还影响到从震旦纪到古生代沉积岩的物源区,江南深断裂以北的沉积岩中有古老岩石的贡献,而以南的物源主要来自出露的中元古界岩石。扬子陆块南北缘(大别和江南遣山带)的晋宁期演化可能与罗迪尼亚超大陆演化有密切关系,但有关研究开展很少。三叠纪大陆深俯冲和超高压变质作用研究已成为国际地球科学的热点。晚中生代(120-140Ma)本区发生强烈的岩浆活动,并伴有重要矿床的形成。中酸性岩的形成是一种壳幔物质混合的过程。沿江地区陆下地幔具有富集特征,为扬子型岩石圈地幔与软流圈地幔混合的产物。从晚中生代到第四纪,基性岩指示其源区的地球化学性质有随时间变得越来越亏损的趋势。  相似文献   

12.
The formation and evolution conditions for alkaline magmatism and associated igneous rocks in the western framing of the Siberian craton are shown by the example of alkaline and subalkaline intrusive bodies of the Yenisei Ridge. Here we present petrographic, mineralogical, geochemical, and geochronological data for the rocks of the Srednetatarka and Yagodka plutons located within the Tatarka–Ishimba suture zone. Ferroan and metaluminous varieties enriched with rare elements (Nb, Ta, Zr, Hf, and REE) are making up most of the studied rocks. They formed at the stages of fractional crystallization of alkaline magma in a setting of active continental margin in the west of the Siberian craton in the Late Neoproterozoic (710–690 Ma). As differentiates of mantle magmas, these rocks associate with Nb-enriched rocks—A-type leucogranites and carbonatites. Sm/Nd and Rb/Sr isotopic data imply a predominance of the mantle component in the magmatic sources of the mafic and intermediate rocks as well as contamination processes of various volumes of continental crustal material by this magma.  相似文献   

13.
Based on the volume magnetic susceptibility and specific gravity measurements and mineral and lithologic identification results for 540 samples,the rock type,density,and magnetic susceptibility of rocks from northern Borneo were analyzed,and the applicability of gravity and magnetic data to the lithologic identification of the Mesozoic strata in the southern South China Sea was assessed accordingly.The results show that there are 3 types and 25 subtypes of rocks in northern Borneo,mainly intermediate-mafic igneous rocks and exogenous clastic sedimentary rocks,with small amounts of endogenous sedimentary rocks,felsic igneous rocks,and metamorphic rocks.The rocks that are very strongly-strongly magnetic and have high-medium densities are mostly igneous rocks,tuffaceous sandstones,and their metamorphic equivalents.The rocks that are weakly magnetic-non-magnetic and have medium-very low densities are mostly conglomerates,sandstones,siltstones,mudstones,and coal.The rocks that are weakly magnetic-diamagnetic and have highmedium densities are mostly limestones and siliceous rocks.The Cenozoic rocks are characterized by low densities and medium susceptibilities;the Mesozoic rocks are characterized by medium densities and medium-high susceptibilities;and the pre-Mesozoic rocks are characterized by high densities and low magnetism.Based on these results and the distribution characteristics of the various rock types,it was found that the pre-Mesozoic rocks produce weak regional gravity anomalies;the Mesozoic sedimentary rocks produce negative regional gravity anomalies;whereas the Mesozoic igneous rocks produce positive regional gravity anomalies;and the Cenozoic igneous rocks produce positive regional gravity anomalies.The regional high magnetic anomalies in the southern part of the South China Sea originate from the Mesozoic mafic igneous rocks and their metamorphic equivalents;and the regional medium magnetic anomalies may be produced by the felsic igneous rocks and their metamorphic equivalents.Accordingly,the identification of the Mesozoic lithology in the southern South China Sea shows that the Mesozoic sedimentary rocks are distributed over a large area of the southern South China Sea.Thus,it is concluded that the Mesozoic strata in this area have the potential for oil and gas exploration.  相似文献   

14.
Abundant gold deposits are distributed along the margins of the North China Craton (NCC). Occurring throughout the Precambrian basement and located in or proximal to Mesozoic granitoids, these deposits show a consistent spatial–temporal association with Late Jurassic–Early Cretaceous magmatism and are characterized by quartz lode or disseminated styles of mineralization with extensive alteration of wall rock. Their ages are mainly Early Cretaceous (130–110 Ma) and constrain a very short period of metallogenesis. Sr–Nd–Pb isotopic tracers of ores, minerals and associated rocks indicate that gold and associated metals mainly were derived from multi-sources, i.e., the wall rocks (Precambrian basement and Mesozoic granites) and associated mafic rocks.Previous studies, including high surface heat flow, uplift and later basin development, slow seismic wave speeds in the upper mantle, and a change in the character of mantle xenoliths sampled by Paleozoic to Cenozoic magmas, have been used to suggest that ancient, cratonic mantle lithosphere was removed from the base of the NCC some time after the Ordovician, and replaced by younger, less refractory lithospheric mantle. The geochemistry and isotopic compositions of the mafic rocks associated with gold mineralization (130–110 Ma) indicate that they were derived from an ancient enriched lithospheric mantle source; whereas, the mafic dikes and volcanic rocks younger than 110 Ma were derived from a relatively depleted mantle source, i.e., asthenospheric mantle. According to their age and sources, relation to magmatism and geodynamic framework, the gold deposits were formed during lithospheric thinning. The removal of lithospheric mantle and the upwelling of new asthenospheric mantle induced partial melting and dehydration of the lithospheric mantle and lower crust due to an increase of temperature. The fluids derived from the lower crust were mixed with magmatic and meteoric waters, and resulted in the deposition of gold and associated metals.  相似文献   

15.
青山群火山岩是华北克拉通破坏期间最具代表性的地幔或地壳熔融产物,记录了华北深部地质演化的重要信息。本文对胶东青山群基性火山岩进行了40Ar/39Ar定年和岩石地球化学分析,结合前人报道的胶东青山群酸性火山岩资料,发现:(1)基性火山岩喷发年龄为122~113Ma,早于青山群酸性火山岩(110~98Ma);(2)基性和酸性火山岩显示了不同的元素和同位素地球化学特征。岩石成因分析表明,基性火山岩为交代富集地幔部分熔融作用的产物,而酸性火山岩为古老下地壳和中生代底侵岩浆的熔融产物(Ling et al.,2009)。因此,胶东地区青山群火山岩记录了岩浆熔融源区从地幔向下地壳的转变。这与长时间尺度的岩石圈减薄过程中热能由地幔向地壳传递过程相吻合,而不同于地壳拆沉作用所预测的岩浆演化趋势。  相似文献   

16.
The Ulaan Tolgoi massif of rare-metal (Ta, Nb, and Zr) granites was formed at approximately 300Ma in the Eastern Sayan zone of rare-metal alkaline magmatism. The massif consists of alkaline salic rocks of various composition (listed in chronologic order of their emplacement): alkaline syenite → alkaline syenite pegmatite → pantellerite → alkaline granite, including ore-bearing alkaline granite, whose Ta and Nb concentrations reach significant values. The evolution of the massif ended with the emplacement of trachybasaltic andesite. The rocks of the massif show systematic enrichment in incompatible elements in the final differentiation products of the alkaline salic magmas. The differentiation processes during the early evolution of the massif occurred in an open system, with influx of melts that contained various proportions of incompatible elements. The magma system was closed during the origin of the ore-bearing granites. Rare-metal granitoids in the Eastern Sayan zone were produced by magmas formed by interaction between mantle melts (which formed the mafic dikes) with crustal material. The mantle melts likely affected the lower parts of the crust and either induced its melting, with later mixing the anatectic and mantle magmas, or assimilated crustal material and generated melts with crustal–mantle characteristics. The origin of the Eastern Sayan zone of rare-metal alkaline magmatism was related to rifting, which was triggered by interaction between the Tarim and Barguzin mantle plumes. The Eastern Sayan zone was formed in the marginal part of the Barguzin magmatic province, and rare-metal magmas in it were likely generated in relation with the activity of the Barguzin plume.  相似文献   

17.
 Early Cretaceous (146–115 Ma) magmatism in the region of Mt. Hermon, Northern Israel, is part of an extensive Mesozoic igneous province within the Levant associated with the evolution of the Neotethyan passive margin of Gondwana. The initial stages of activity were characterised by the emplacement of tholeiitic dykes (146–140 Ma) which were uplifted and eroded prior to the eruption of a sequence of alkali basalts, basanites and more differentiated alkaline lavas and pyroclastics from 127 to 120 Ma. The latest stages of activity (120–115 Ma) were highly explosive, resulting in the emplacement of diatreme breccias. Trace element and Sr-Nd-Pb isotope data for the most primitive Early Cretaceous mafic igneous rocks sampled suggest that they were derived by mixing of melts derived by variable degrees of partial melting of both garnet- and spinel-peridotite-facies mantle sources. Though isotopically heterogeneous, the source of the magmas has many similarities to that of HIMU oceanic island basalts. Earlier Liassic (200 Ma) transitional basalts and Neogene–Quaternary (15–0 Ma) alkali basalts erupted within northern Israel also have HIMU affinities. The petrogenesis of the Early Cretaceous and Cenozoic basalts is explained by partial melting of a lithospheric mantle protolith metasomatically enriched during the Liassic volcanic phase, which may be plume-related. Received: 23 July 1998 / Accepted: 6 December 1999  相似文献   

18.
<正>Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block,NW China.Here we report the geochronology and systematic whole-rock geochemistry of the Neoproterozoic mafic dykes and basalts along the southern margin of Tarim.Our zircon U-Pb age,in combination with stratigraphic constraint on their emplacement ages,indicates that the mafic dykes were crystallized at ca.802 Ma,and the basalt, possibly coeval with the ca.740 Ma volcanic rocks in Quruqtagh in the northern margin of Tarim. Elemental and Nd isotope geochemistry of the mafic dykes and basalts suggest that their primitive magma was derived from asthenospheric mantle(OIB-like) and lithospheric mantle respectively,with variable assimilation of crustal materials.Integrating the data supplied in the present study and that reported previously in the northern margin of Tarim,we recognize two types of mantle sources of the Neoproterozoic mafic igneous rocks in Tarim,namely the matasomatized subcontinental lithospheric mantle(SCLM) in the northern margin and the long-term enriched lithospheric mantle and asthenospheric mantle in the southern margin.A comprehensive synthesis of the Neoproterozoic igneous rocks throughout the Tarim Block led to the recognition of two major episodes of Neoproterozoic igneous activities at ca.820-800 Ma and ca.780-740 Ma,respectively.These two episodes of igneous activities were concurrent with those in many other Rodinian continents and were most likely related to mantle plume activities during the break-up of the Rodinia.  相似文献   

19.
Rock complexes composing the Daribi Range were produced in Late Vendian, Early Cambrian, and Early Paleozoic suprasubduction systems. All of the studied mafic and ultramafic magmatic mantle rocks (the post-Vendian ophiolite complex, Early Cambrian pillow basalts, and Early Paleozoic picrobasalts of the sill-dike complex) have geochemical characteristics typical of early evolutionary episodes of island arcs: low LILE concentrations, horizontal REE patterns or patterns close to those of N-MORB, and HFSE minima. The magmas were derived from depleted mantle sources of variable isotopic composition with ?Nd(T) from +2.5 to +10. The Early Paleozoic rocks of the sill-dike complex were likely produced by a complicated interaction of melts derived from different sources. The rocks of group 1 resulted from the mixing of low-K picrite and tonalite melts. The picrite melts with ?Nd(T) from +6 to +8 were melted out of garnet lherzolite in the mantle wedge. The tonalite melts with ?Nd(T) = ?3 seem to have been formed by the partial melting of mafic oceanic rocks of a subducted slab or the bottom of an island arc. The trondhjemite melts of group 2 with ?Nd(T) varying from 2.5 to 7.5 could be formed via the melting of subducted metapelites or amphibolites with low sulfide concentrations. Massifs of sodic Early Paleozoic granites also occur elsewhere in western Mongolia, Tuva, and the Altai territory. The generation of sodic silicic melts was likely a common process in supra-subduction systems in CAFB. The potassic granites (group 4) could be formed by the melting of subducted pelites or by the fractionation of mantle magmas. The genesis of the basaltic andesites (group 5) was likely related to Mesozoic-Cenozoic intraplate processes.  相似文献   

20.
Khromykh  S. V.  Semenova  D. V.  Kotler  P. D.  Gurova  A. V.  Mikheev  E. I.  Perfilova  A. A. 《Geotectonics》2020,54(4):510-528

Studies of volcanic rocks in orogenic troughs of Eastern Kazakhstan were carried out. The troughs were formed at late-orogenic stages of evolution of Hercynian Altai collision system. Volcanic rocks are represented by basalts, andesites, dacites and rhyolites. Based on geochemical and isotopic data, the basalts and andesites derived from mafic magmas that formed as a result of partial melting of garnet peridotites in the upper mantle under the orogen. U–Pb zircon data prove two volcanic stages: more-scaled Middle Carboniferous (~311 Ma) and less-scaled Early Permian (297–290 Ma). Basalts and andesites in lower parts of the orogenic troughs and independent dacite-rhyolite structures were formed at the Middle Carboniferous stage. Parental mafic magmas were formed as a result of partial melting of mantle substrates in local transtensional zones along large shear faults. The formation of dacites and rhyolites could have been caused by partial melting of crustal substrates under effect of mafic magmas. Transtensional movements in the lithosphere of orogenic belts may indicate the beginning of collapse of orogens. A smaller volume of basalts and andesites formed at the Early Permian stage. Geochemical data prove the independent episode of partial melting in upper mantle. Synchronous basalts and andesites also appeared at wide territory in Tian Shan, Central Kazakhstan, and Central and Southern Mongolia. Early Permian volcanism indicates general extension of the lithosphere at the postorogenic stages. Large-scaled Early Permian mafic and granitoid magmatism in Central Asia has been interpreted in recent years as the Tarim Large Igneous Province caused by Tarim mantle plume activity. Thus, the extension of the lithosphere and associated volcanism in the Early Permian can be an indicator of the onset of the plume–lithosphere interaction process.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号