首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nearly contemporaneous eruption of alkaline and calc-alkaline lavas occurred about 900 years BP from El Volcancillo paired vent, located behind the volcanic front in the Mexican Volcanic Belt (MVB). Emission of hawaiite (Toxtlacuaya) was immediately followed by calc-alkaline basalt (Río Naolinco). Hawaiites contain olivine microphenocrysts (Fo67–72), plagioclase (An56–60) phenocrysts, have 4–5 wt% MgO and 49.6–50.9 wt% SiO2. In contrast, calc-alkaline lavas contain plagioclase (An64–72) and olivine phenocrysts (Fo81–84) with spinel inclusions, and have 8–9 wt% MgO and 48.4–49.4 wt% SiO2. The most primitive lavas in the region (Río Naolinco and Cerro Colorado) are not as primitive as parental melts in other arcs, and could represent either (a) variable degrees of melting of a subduction modified, garnet-bearing depleted mantle source, followed by AFC process, or (b) melting of two distinct mantle sources followed by AFC processes. These two hypotheses are evaluated using REE, HFSE, and Sr, Os and Pb isotopic data. The Toxtlacuaya flow and the Y & I lavas can be generated by combined fractional crystallization and assimilation of gabbroic granulite, starting with a parental liquid similar to the Cerro Colorado basalt. Although calc-alkaline and alkaline magmas commonly occur together in other areas of the MVB, evidence for subduction component in El Volcancillo magmas is minimal and limited to <1%, which is a unique feature in this region further from the trench. El Volcancillo lavas were produced from two different magma batches: we surmise that the injection of calc-alkaline magma into an alkaline magma chamber triggered the eruption of hawaiites. Our results suggest that the subalkaline and hawaiitic lavas were formed by different degrees of partial melting of a similar, largely depleted mantle source, followed by later AFC processes. This model is unusual for arcs, where such diversity is usually explained by melting of heterogeneous (enriched and depleted) and subduction-modified mantle.  相似文献   

2.
A thermobarometric and petrologic study of basanites erupted from young volcanic cones along the submarine portions of the three El Hierro rift zones (NE-Rift, NW-Rift and S-Ridge) has been performed to reconstruct magma plumbing and storage beneath the island. Mineral-melt thermobarometry applied to naturally quenched glass and clinopyroxene rims yields pressures ranging from 350 to 1070 MPa with about 80% of the calculated pressures being in the range of 600–800 MPa. This corresponds to a depth range of 19–26 km, implying that the main level of final crystal fractionation is within the uppermost mantle. No systematic dependence between sample locality and fractionation pressures could be observed. Olivine and clinopyroxene crystals in the rocks are complexly zoned and have, on an inter-sample as well as on an intra-sample scale, highly variable core and rim compositions. This can best be explained by mixing of multiply saturated (olivine, magnetite, clinopyroxene, ilmenite), moderately evolved magmas with more mafic magmas being either only saturated with olivine + spinel or with olivine + spinel + clinopyroxene. The inter-sample differences indicate derivation from small, isolated magma chambers which have undergone distinct fractionation and mixing histories. This is in contrast to oceanic intraplate volcanoes situated on plumes with high melt supply rates, e.g. Kilauea Volcano (Hawaii), where magma is mainly transported through a central conduit system and stored in a shallow magma chamber prior to injection into the rift zones. The plumbing system beneath El Hierro rather resembles the magma storage systems beneath, e.g. Madeira or La Palma, indicating that small, intermittent magma chambers might be a common feature of oceanic islands fed by plumes with relatively low fluxes, which results in only limited and periodic magma supply.  相似文献   

3.
The 1971 Teneguía eruption is the most recent volcanic event of the Cumbre Vieja rift zone on La Palma. The eruption produced basanite lavas that host xenoliths, which we investigate to provide insight into the processes of differentiation, assimilation and magma storage beneath La Palma. We compare our results to the older volcano magmatic systems of the island with the aim to reconstruct the temporal development of the magma plumbing system beneath La Palma. The 1971 lavas are clinopyroxene-olivine-phyric basanites that contain augite, sodic-augite and aluminium augite. Kaersutite cumulate xenoliths host olivine, clinopyroxene including sodic-diopside, and calcic-amphibole, whereas an analysed leucogabbro xenolith hosts plagioclase, sodic-augite-diopside, calcic-amphibole and hauyne. Mineral thermobarometry and mineral-melt thermobarometry indicate that clinopyroxene and plagioclase in the 1971 Teneguía lavas crystallised at 20–45 km depth, coinciding with clinopyroxene and calcic-amphibole crystallisation in the kaersutite cumulate xenoliths at 25–45 km and clinopyroxene, calcic-amphibole and plagioclase crystallisation in the leucogabbro xenolith at 30–50 km. Combined mineral chemistry and thermobarometry suggest that the magmas had already crystallised, differentiated and formed multiple crystal populations in the oceanic lithospheric mantle. Notably, the magmas that supplied the 1949 and 1971 events appear to have crystallised deeper than the earlier Cumbre Vieja magmas, which suggests progressive underplating beneath the Cumbre Vieja rift zone. In addition, the lavas and xenoliths of the 1971 event crystallised at a common depth, indicating a reused plumbing system and progressive recycling of Ocean Island plutonic complexes during subsequent magmatic activity.  相似文献   

4.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

5.
The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78–85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85–92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4–5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at <~200 MPa, whereas magma evolves through a convective melt exchange between the main magma and mushy boundary layers when the magma body is located at >~200 MPa.  相似文献   

6.
Back-scattered electron (BSE)-derived zoning patterns of plagioclase phenocrysts are used to identify magma processes at Bezymianny Volcano, Kamchatka, based on the 2000–2007 sequence of eruptive products. The erupted magmas are two-pyroxene andesites, which last equilibrated at ~915°C temperature, 77–87 MPa pressure, and a water content of ~1.4 wt%. Textural and compositional zoning of individual plagioclase phenocrysts typically includes a repeated core-to-rim sequence of oscillatory zoning (An50–60) truncated by a dissolution surface followed by an abrupt increase in An content (up to An85), which then gradually decreases rimward. This zoning pattern is interpreted to be the result of frequent replenishments of the magma chamber which cause both thermal and chemical interaction between resident and recharge magmas. The outermost 70- to 150-μm-wide zoning patterns of plagioclase phenocrysts are composed of dissolution surface with a subsequent increase in An and Fe contents. Zoning patterns of the rims exhibit correlation among plagioclase phenocrysts within one eruption. Rims are interpreted as a result of crystallization of a batch of magma in the conduit after recharge event.  相似文献   

7.
Heterogeneous andesitic and dacitic lavas on Cordn El Guadalbear on the general problem of how magmas of differing compositionsand physical properties interact in shallow reservoirs beneathcontinental arc volcanoes. Some of the lavas contain an exceptionallylarge proportion (<40%) of undercooled basaltic andesiticmagma in various states of disaggregation. Under-cooled maficmagma occurs in the silicic lavas as large (<40 cm) basalticandesitic magmatic inclusions, as millimeter-sized crystal-clotsof Mg-rich olivine phenocrysts plus adhering Carich plagioclasemicrophenocrysts (An50–70), and as uniformly distributed,isolated phenocrysts and microphenocrysts. Compositions andtextures of plagioclase phenocrysts indicate that inclusion-formingmagmas are hybrids formed by mixing basaltic and dacitic melts,whereas textural features and compositions of groundmass phasesindicate that the andesitic and dacitic lavas are largely mechanicalmixtures of dacitic magma and crystallized basaltic andesiticmagma. This latter observation is significant because it indicatesthat mechanical blending of undercooled mafic magma and partiallycrystallized silicic magma is a possible mechanism for producingthe common porphyritic texture of many calc-alkaline volcanicrocks. The style of mafic-silicic magma interaction at CordonEl Guadal was strongly dependent upon the relative proportionsof the endmembers. Equally important in the Guadal system, however,was the manner in which the contrasting magmas were juxtaposed.Textural evidence preserved in the plagioclase phenocrysts indicatesthat the transition from liquid-liquid to solid-liquid mixingwas not continuous, but was partitioned into periods of magmachamber recharge and eruption, respectively. Evidently, duringperiods of recharge, basaltic magmas rapidly entrained smallamounts of dacitic magma along the margins of a turbulent injectionfountain. Conversely, during periods of eruption, dacitic magmagradually incorporated small parcels of basaltic andesitic magma.Thus, the coupled physical-chemical transition from mixed inclusionsto commingled lavas is presumably not coincidental. More likely,it probably provides a partial record of the dynamic processesoccurring in shallow magma chambers beneath continental arevolcanoes. KEY WORDS: Chile; commingling; magma mixing; magmatic inclusions *Present address: Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA  相似文献   

8.
Understanding magma plumbing is essential for predicting the behaviour of explosive volcanoes. We investigate magma plumbing at the highly active Anak Krakatau volcano (Indonesia), situated on the rim of the 1883 Krakatau caldera by employing a suite of thermobarometric models. These include clinopyroxene-melt thermobarometry, plagioclase-melt thermobarometry, clinopyroxene composition barometry and olivine-melt thermometry. Petrological studies have previously identified shallow magma storage in the region of 2–8 km beneath Krakatau, while existing seismic evidence points towards mid- to deep-crustal storage zone(s), at 9 and 22 km, respectively. Our results show that clinopyroxene in Anak Krakatau lavas crystallized at a depth of 7–12 km, while plagioclase records both shallow crustal (3–7 km) and sub-Moho (23–28 km) levels of crystallization. These magma storage regions coincide with well-constrained major lithological boundaries in the crust, implying that magma ascent and storage at Anak Krakatau is strongly controlled by crustal properties. A tandem seismic tomography survey independently identified a separate upper crustal (<7 km) and a lower to mid-crustal magma storage region (>7 km). Both petrological and seismic methods are sensitive in detecting magma bodies in the crust, but suffer from various limitations. Combined geophysical and petrological surveys, in turn, offer increased potential for a comprehensive characterization of magma plumbing at active volcanic complexes.  相似文献   

9.
Approximately 150 km west of Mexico City in the central part of the Mexican Volcanic Belt (MVB) near Zitácuaro, Mexico, young volcanism has produced shield volcanoes, large volume silicic deposits, and fault-related basalt and andesite lava flows and cinder cones. This paper concerns a small cluster of Pleistocene andesite cones and flows which can be separated into two distinct groups: high-magnesium andesites (>6% MgO, 57–59% SiO2), conveniently called basaltic andesites, with phenocrysts of orthopyroxene and augite, or augite and olivine; and andesites (60–62% SiO2, <4.6% MgO), which have phenocrysts of orthopyroxene and augite, and ghosts of relict hornblende. Remarkably, plagioclase phenocrysts are absent, and evenly distributed but sparse (0.5–3.5%) quartz xenocrysts are present in all the lavas. In order to establish the conditions under which early crystallizing plagioclase is suppressed in these lavas, water saturated experiments up to 3 kbars were performed on one of the basaltic andesites. The conditions required to reproduce the phenocryst assemblages (either olivine + augite or opx + augite) are temperatures in excess of 1000 °C, with water saturated liquids (>3 wt%) at pressures of about 1 kbar. Compared to basaltic andesites of western Mexico, the Zitácuaro basaltic andesites have ∼2 wt% lower Al2O3 concentrations, which causes plagioclase to precipitate at significantly lower temperatures, and it therefore follows the crystallization sequence: olivine, augite, and orthopyroxene. Based on ubiquitous quartz xenocrysts, with glassy rhyolitic inclusions, a reasonable conclusion is that substantial mixing of a quartz-bearing rhyolitic magma with a parental basaltic andesite has occurred at low pressure (shallow depth), and this would account for the low Al2O3 concentrations in the Zitácuaro basaltic andesites. Whatever the mechanism of incorporation, the quartz xenocrysts are evidence of contamination of basaltic magma with more siliceous material, thus making it difficult to use these magmas as indicators of mantle melting processes. Received: 29 July 1997 / Accepted: 29 January 1998  相似文献   

10.
A technique is described for determining the cooling historyof olivine phenocrysts. The technique is based on the analysisof the diffusive re-equilibration of melt inclusions trappedby olivine phenocrysts during crystallization. The mechanismof re-equilibration involves diffusion of Fe from and Mg intothe initial volume of the inclusion. The technique applies toa single crystal, and thus the cooling history of differentphenocrysts in a single erupted magma can be established. Weshow that melt inclusions in high-Fo olivine phenocrysts frommantle-derived magmas are typically partially re-equilibratedwith their hosts at temperatures below trapping. Our analysisdemonstrates that at a reasonable combination of factors suchas (1) cooling interval before eruption (<350°C), (2)eruption temperatures (>1000°C), and (3) inclusion size(<70 µm in radius), partial re-equilibration of upto 85% occurs within 3–5 months, corresponding to coolingrates faster than 1–2°/day. Short residence timesof high-Fo phenocrysts suggest that if eruption does not happenwithin a few months after a primitive magma begins cooling andcrystallization, olivines that crystallize from it are unlikelyto be erupted as phenocrysts. This can be explained by efficientseparation of olivine crystals from the melt, and their rapidincorporation into the cumulate layer of the chamber. Theseresults also suggest that in most cases erupted high-Fo olivinephenocrysts retain their original composition, and thus compositionsof melt inclusions in erupted high-Fo olivine phenocrysts donot suffer changes that cannot be reversed. Short residencetimes also imply that large unzoned cores of high-Fo phenocrystscannot reflect diffusive re-equilibration of originally zonedphenocrysts. The unzoned cores are a result of fast efficientaccumulation of olivines from the crystallizing magma, i.e.olivines are separated from the magma faster than melt changesits composition. Thus, the main source of high-Fo crystals inthe erupted magmas is the cumulate layers of the magmatic system.In other words, olivine-phyric rocks represent mixtures of anevolved transporting magma (which forms the groundmass of therock) with crystals that were formed during crystallizationof more primitive melt(s). Unlike high-Fo olivine phenocrysts,the evolved magma may reside in the magmatic system for a longtime. This reconciles long magma residence times estimated fromthe compositions of rocks with short residence times of high-Foolivine phenocrysts. KEY WORDS: melt inclusions; olivine; picrites; residence time; diffusion  相似文献   

11.
12.
We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9–6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.  相似文献   

13.
Gabbroic and ultramafic xenoliths and olivine and clinopyroxene phenocrysts in basaltic rocks from Gran Canaria, La Palma, El Hierro, Lanzarote and La Gomera (Canary Islands) contain abundant CO2-dominated fluid inclusions. Inclusion densities are strikingly similar on a regional scale. Histogram maxima correspond to one or more of the following pressures: (1) minimum 0.55 to 1.0 GPa (within the upper mantle); (2) between 0.2 and 0.4 GPa (the Moho or the lower crust); (3) at about 0.1 GPa (upper crust). Fluid inclusions in several rocks show a bimodal density distribution, the lower-density maximum comprising both texturally early and late inclusions. This is taken as evidence for an incomplete resetting of inclusion densities, and simultaneous formation of young inclusions, at well-defined magma stagnation levels. For Gran Canaria, pressure estimates for early inclusions in harzburgite and dunite xenoliths and olivine phenocrysts in the host basanites overlap at 0.9 to 1.0 GPa, indicating that such magma reservoir depths coincide with levels of xenolith entrainment into the magmas. Magma chamber pressures within the mantle, inferred to represent levels of mantle xenolith entrainment, are 0.65–0.95 GPa for El Hierro, 0.60–0.68 GPa for La Palma, and 0.55–0.75 GPa for Lanzarote. The highest-density fluid inclusions in many Canary Island mantle xenoliths have probably survived in-situ near-isobaric heating at the depth of xenolith entrainment. Inclusion data from all islands indicate ponding of basaltic magmas at Moho or lower crustal depths, and possibly at an additional higher level, strongly suggestive of two main crustal accumulation levels beneath each island. We emphasize that repeated magmatic underplating of primitive magmas, and therefore intrusive accretion, are important growth mechanisms for the Canary Islands, and by analogy, for other ocean islands. Comparable fluid inclusion data from primitive rocks in other tectonic settings, including Iceland, Etna and continental rift systems (Hungary, South Norway), indicate that magma accumulation close to Moho depths shortly before eruption is not, however, restricted to oceanic intraplate volcanoes. Lower crustal ponding and crystallization prior to eruption may be the rule rather than the exception, independent of the tectonic setting. Received: 30 May 1997 / Accepted: 6 February 1998  相似文献   

14.
Generation of Deccan Trap magmas   总被引:1,自引:0,他引:1  
Deccan Trap magmas may have erupted through multiple centers, the most prominent of which may have been a shield volcano-like structure in the Western Ghats area. The lavas are predominantly tholeiitic; alkalic mafic lavas and carbonatites are rare. Radioisotope dating, magnetic chronology, and age constraints from paleontology indicate that although the eruption started some 68 Ma, the bulk of lavas erupted at around 65–66 Ma. Paleomagnetic constraints indicate an uncertainty of ± 500,000 years for peak volcanic activity at 65 m.y. in the type section of the Western Ghats. Maximum magma residence times were calculated in this study based on growth rates of “giant plagioclase” crystals in lavas that marked the end phase of volcanic activity of different magma chambers. These calculations suggest that the > 1.7 km thick Western Ghats section might have erupted within a much shorter time interval of ∼ 55,000 years, implying phenomenal eruption rates that are orders of magnitude larger than any present-day eruption rate from any tectonic environment. Other significant observations/conclusions are as follows: (1) Deccan lavas can be grouped into stratigraphic subdivisions based on their geochemistry; (2) While some formations are relatively uncontaminated others are strongly contaminated by the continental crust; (3) Deccan magmas were produced by 15–30% melting of a Fe-rich lherzolitic source at ∼ 3–2 GPa; (4) Parent magmas of the relatively uncontaminated Ambenali formation had a primitive composition with 16%MgO, 47%SiO2; (5) Deccan magmas were generated much deeper and by significantly more melting than other continental flood basalt provinces; (6) The erupted Deccan tholeiitic lavas underwent fractionation and magma mixing at ∼ 0.2 GPa. The composition and origin of the crust and crust/mantle boundary beneath the Deccan are discussed with respect to the influence of Deccan magmatic episode.  相似文献   

15.
T. C. Feeley  G. S. Winer 《Lithos》1999,46(4):2249-676
St. Paul Island is the youngest volcanic center in the Bearing Sea basalt province. We have undertaken a field, petrographic, and geochemical study of select St. Paul volcanic rocks in order to better understand their differentiation; specifically, to test the hypothesis that magmas erupted from individual Bering Sea basaltic volcanoes are not related by shallow-level processes such as crystal fractionation. Petrographically, all of the St. Paul volcanic rocks are olivine-, plagioclase-, and clinopyroxene-phyric. Textural features and modal contents of olivine phenocrysts, however, vary widely throughout the spectrum of basalt compositions. Although differing in size and abundance, olivine phenocrysts in all rock compositions are euhedral and commonly skeletal, suggesting rapid growth during ascent or eruptive quenching. None, however, display reaction textures with surrounding groundmass liquid. Compositionally, the St. Paul volcanic rocks are basalts and tephritic basalts and all have high contents of normative nepheline (8% to 16%). Concentrations of many major and incompatible trace elements display no clear correlations with bulk-rock SiO2 and MgO contents or modal abundances of phenocrysts, suggesting that much of the compositional diversity of these magmas reflects variable mantle sources and degrees of partial melting. Similarly, chondrite-normalized REE patterns show variable degrees of light REE enrichment (Lan=70–90) that do not correlate with bulk-rock mg-numbers. In contrast, concentrations of compatible trace elements (Ni, Cr, and Co) are positively correlated with MgO contents and modal percentages of olivine phenocrysts. Maximum forsterite contents of olivine phenocryst cores in most St. Paul rocks decrease with decreasing bulk-rock mg-number and are similar to the calculated equilibrium range. This is evidence that the high mg-numbers are magmatic and do not result from olivine accumulation. Instead, major and compatible trace element mass balance calculations support derivation of the low mg-number lavas from the high mg-number lavas mainly by olivine fractionation, which, in turn, implies that St. Paul magmas may have temporarily resided in crustal magma chambers prior to eruption.  相似文献   

16.
We describe and model a potential re-equilibration process that can affect compositions of melt inclusions in magnesian olivine phenocrysts. This process, referred to as “Fe-loss”, can operate during natural pre-eruptive cooling of host magma and results in lower FeOt and higher MgO contents within the initially trapped volume of inclusion. The extent of Fe-loss is enhanced by large temperature intervals of magma cooling before eruption. The compositions of homogenised melt inclusions in olivine phenocrysts from several subduction-related suites demonstrate that (1) Fe-loss is a common process, (2) the maximum observed degree of re-equilibration varies between suites, and (3) within a single sample, variable degrees of re-equilibration can be recorded by melt inclusions trapped in olivine phenocrysts of identical composition. Our modelling also demonstrates that the re-equilibration process is fast going to completion, in the largest inclusions in the most magnesian phenocrysts it is completed within 2 years. The results we obtained indicate that the possibility of Fe-loss must be considered when estimating compositions of parental subduction-related magmas from naturally quenched glassy melt inclusions in magnesian olivine phenocrysts. Compositions calculated from glassy inclusions affected by Fe-loss will inherit not only erroneously low FeOt contents, but also low MgO due to the inherited higher Mg##of the residual melt in re-equilibrated inclusions. We also demonstrate that due to the higher MgO contents of homogenised melt inclusions affected by Fe-loss, homogenisation temperatures achieved in heating experiments will be higher than original trapping temperatures. The extent of overheating will increase depending on the degree of re-equilibration, and can reach up to 50 °C in cases where complete re-equilibration occurs over a cooling interval of 200 °C. Received: 2 November 1998 / Accepted: 27 September 1999  相似文献   

17.
Melt inclusions are small portions of liquid trapped by growingcrystals during magma evolution. Recent studies of melt inclusionshave revealed a large range of unusual major and trace elementcompositions in phenocrysts from primitive mantle-derived magmaticrocks [e.g. in high-Fo olivine (Fo > 85 mol %), spinel, high-Anplagioclase]. Inclusions in phenocrysts crystallized from moreevolved magmas (e.g. olivine Fo < 85 mol %), are usuallycompositionally similar to the host lavas. This paper reviewsthe chemistry of melt inclusions in high-Fo olivine phenocrystsfocusing on those with anomalous major and trace element contentsfrom mid-ocean ridge and subduction-related basalts. We suggestthat a significant portion of the anomalous inclusion compositionsreflects localized, grain-scale dissolution–reaction–mixing(DRM) processes within the magmatic plumbing system. The DRMprocesses occur at the margins of primitive magma bodies, wheremagma is in contact with cooler wall rocks and/or pre-existingsemi-solidified crystal mush zones (depending on the specificenvironment). Injection of hotter, more primitive magma causespartial dissolution (incongruent melting) of the mush-zone phases,which are not in equilibrium with the primitive melt, and mixingof the reaction products with the primitive magma. Localizedrapid crystallization of high-Fo olivines from the primitivemagma may lead to entrapment of numerous large melt inclusions,which record the DRM processes in progress. In some magmaticsuites melt inclusions in primitive phenocrysts may be naturallybiased towards the anomalous compositions. The occurrence ofmelt inclusions with unusual compositions does not necessarilyimply the existence of new geologically significant magma typesand/or melt-generation processes, and caution should be exercisedin their interpretation. KEY WORDS: melt inclusions; olivine; geochemistry; mush zones; MORB; subduction-related magmas  相似文献   

18.
Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes appear to require development of relatively large magma chambers in the crust that are sustained by large basalt fluxes from the mantle. The lack of extensive crustal contamination and mixing in the Miocene lavas may be related to a decreased basalt flux or initiation of blockfaulting that prevented pooling of basaltic magma in the crust.  相似文献   

19.
The Baffin Bay picrites have been the focal point of a controversy concerning the MgO content of primary magmas derived from the upper mantle. A sample population of 48 lava chilled margins collected across the Baffin Bay volcanic succession at the northeastern tip of Padloping Island exhibits a prominent compositional mode between 14 and 16 weight percent MgO (19–22 Mg, cation units = Mg/100 cations). The petrography of these samples, however, requires that the Padloping magmas were mixtures of olivine crystals and liquid at their eruption. Olivine phenocrysts constituted 15 to 30 volume percent of these magmas and retain compositions requiring coexisting liquid compositions with only 10 to 13.5 weight percent MgO (14–18.5 Mg). However, highly magnesian, olivine xenocrysts (up to Fo 93) found in the most magnesian lavas require the former existence of liquids with at least 18 weight percent MgO (24 Mg). If these xenocrysts represent early cumulates, then the primary liquids of the Padloping suite must have been at least this MgO rich with temperatures greater than 1,425° C. Such primary liquids could have evolved by olivine crystallization to a steady state, equilibrated crystal — liquid mixtures in a shallow reservoir system prior to eruption. The compositions of the liquids of these mixtures appear to have been perched at the point of plagioclase saturation at approximately 1,275° C.Despite the complications of mechanical sorting of olivine crystals, the virtual compositional reciprocity of olivine addition and olivine fractionation requires that the bulk compositions of picritic lavas provide compositional analogues of their primary magmas. A comparison of Phanerozoic picrite suites indicates that the Fe contents of terrestrial primary magmas of tholeiitic affinity have a restricted range from 6–9 Fe. Primary magmas associated with intra-plate volcanism appear to be distinctly more Fe-rich than those associated with inter-plate volcanism. The Al/Si ratios of Phanerozoic picrite suites could suggest that the primary magmas of MORB volcanism have equilibrated with relatively Fe-poor source regions at deeper levels in the Earth's mantle than those of other tholeiitic primary magmas.  相似文献   

20.
Disequilibrium phenocryst assemblages in the Younger Andesitesand Dacites of Iztacc?huatl, a major Quaternary volcano in theTrans-Mexican Volcanic Belt, provide an excellent record ofepisodic replenishment, magma mixing, and crystallization processesin calc-alkaline magma chambers. Phenocryst compositions andtextures in ‘mixed’ lavas, produced by binary mixingof primitive olivine-phyric basalt and evolved hornblende dacitemagmas, are used to evaluate the mineralogical and thermal characteristicsof end-members and the physical and chemical interactions thatattend mixing. Basaltic end-members crystallized olivine (FO90–88) andminor chrome spinel during ascent into crustal magma chambers.Resident dacite magma contained phenocrysts of andesine (An45–35),hypersthene (En67–61), edenitic-pargasitic hornblende,biotite, quartz, .titanomagnetite, and ilmenite. On reachinghigh-level reservoirs, basaltic magmas were near their liquidiat temperatures of about 1250–1200?C according to theolivine-liquid geothermometer. Application of the Fe-Ti-oxidegeothermometer-oxygen barometer indicates that hornblende dacitemagma, comprising phenocrysts (<30 vol. per cent) and coexistingrhyolitic liquid, had an ambient temperature between 940 and820?C at fO2s approximately 0?3 log units above the nickel-nickeloxide buffer assemblage. Mixing induced undercooling of hybridliquids and rapid crystallization of skeletal olivine (Fo88–73),strongly-zoned clinopyroxene (endiopside-augite), calcic plagioclase(An65–60); and orthopyroxene (bronzite), whereas low-temperaturephenocrysts derived from hornblende dacite were resorbed ordecomposed by hybrid melts. Quartz reacted to form coronas ofacicular augite and hydroxylated silicates were heated to temperaturesabove their thermal stability limit ({small tilde}940?C foramphibole, according to clinopyroxene-orthopyroxene geothermometry,and {small tilde}880?C for biotite). Calculations of phenocrystresidence times in hybrid liquids based on reaction rates suggestthat the time lapse between magma chamber recharge and eruptionwas extremely short (hours to days). It is inferred that mixing of magmas of diverse compositionis driven by convective turbulence generated by large differencesin temperature between end-members. The mixing mechanism involves:(1)rapid homogenization of contrasting residual liquid compositionsby thermal erosion and diffusive transfer (liquid blending);(2) assimilation of phenocrysts derived from the low-temperatureend-member; and (3) dynamic fractional crystallization of rapidlyevolving hybrid liquids in a turbulent boundary layer separatingbasaltic and dacitic magmas. The mixed lavas of lztacc?huatlrepresent samples of this boundary layer quenched by eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号