首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
利用Microsoft Visual Basic 6.0编制了MICAPS格式探空数据反演大气可降水量程序,通过对20102012年青海省大气可降水量数据的分析,得出青海省大气可降水量变化具有以下特征:大气可降水量月变化特征呈单峰分布,7、8月份位于峰值区域,7月末开始大气可降水量为减小趋势,1、2、12月份大气可降水量处于低值区;青海省大气可降水量季变化特征呈单峰分布,最大大气可降水量值出现在夏季,最小值出现在冬季;青海省大气可降水量呈由西南向东北逐渐增大的空间分布特征;海拔高度与大气可降水量呈反相关关系,相关系数为-0.8399;大气可降水量与降水量总体变化趋势相同,但大气可降水量不是降水形成的决定因素。  相似文献   

2.
利用2001~2009年MODIS近红外的大气可降水的逐月资料,分析了西藏地区大气可降水量时空分布特征及与实际降水量之间的关系。结果表明:西藏大气可降水量时空分布不均匀,空间分布由东南至西北递减;7、8月份大气可降水量最大,夏季大气可降水量占全年的50%;2001~2009年间西藏大气可降水量呈增加趋势,阿里地区、山南地区以及昌都地区增加明显;大气可降水量与实际降水量呈明显负相关,相关系数为-0.688。   相似文献   

3.
1960—2015年中国西北地区大气可降水量变化特征   总被引:1,自引:0,他引:1  
黄小燕  王圣杰  王小平 《气象》2018,44(9):1191-1199
采用中国西北地区1960—2015年113个地面气象站及24个探空站气象资料,建立西北地区大气可降水量与地面水汽压的经验关系式,计算西北地区各气象站点的大气可降水量,结合反距离加权插值、Mann Kendall检验、小波分析等方法,对西北地区近56年大气可降水量的时空分布特征及其与气象要素的关系进行分析。结果表明:近56年中国西北地区大气可降水量总体呈增加趋势,平均每10年增加0.11 mm,大气可降水量的月变化呈明显单峰型;空间分布上,大气可降水量的高值区主要分布在西北东部地区,低值区主要分布在西北中部地区;空间变化上,西北大部分地区大气可降水量呈增加趋势,以陕西南部、甘肃东南部、青海西北部、新疆等地增加趋势明显;西北地区年平均大气可降水量存在明显的突变特征和周期性变化特征,在1983年左右发生突变,主振荡周期为4 a左右;西北地区大气可降水量与平均气温、相对湿度呈正相关性,与平均风速呈负相关性。  相似文献   

4.
近30年西藏地区大气可降水量的时空变化特征   总被引:2,自引:0,他引:2  
利用1980-2009年NCEP/NCAR再分析资料以及同期西藏地区34个气象站的月降水量资料,分析了该地区大气可降水量和降水转化率的时空变化特征.结果表明:(1)该地区大气可降水量具有从东南向西北逐渐递减的空间分布特征;近30年大气可降水量呈逐渐减少趋势且年际变率相对较小,还表现出显著的季节差异,即夏季大气可降水量最大、冬季最小;多、少雨年大气可降水量的空间差异不显著,说明西藏地区的空中水汽含量相对稳定,有利于空中水资源的合理开发和利用.(2)降水转化率在那曲中东部和西藏东南部最高、西藏西北部最低;近30年西藏地区降水转化率呈逐渐增加趋势且年际变率较大,其季节变化与大气可降水量的变化规律一致;降水转化率的高低在一定程度上决定了某年为多(少)雨年.(3)西藏地区大气可降水量和实际降水量的空间分布规律接近,但其时间变化趋势与同期降水量增加的趋势正好相反;大气可降水量转化率与实际降水量的变化趋势基本一致,降水转化率的升高(降低)对应着降水量的增多(减少).  相似文献   

5.
利用2011—2012年3—5月江西省53个地基GPS观测站数据反演了大气可降水量,探讨了GPS/PWV的精度,分析了江西省春季大气可降水量的时空分布特征及其在人工增雨作业中的演变等。结果表明:江西省整个春季的水汽主要呈南多北少、西高东低分布,各站的GPS/PWV时间分布变化总体趋势较一致,日变化特征均呈先上升后下降趋势。在实际的人工增雨作业中,火箭催化作业前,GPS/PWV呈明显的上升趋势,作业后GPS/PWV快速减小,降水随之出现。  相似文献   

6.
利用2012年3月—2013年2月新疆巴里坤国家基本气象站地基GPS反演的大气可降水量(P_(WV))、降水量逐时资料,研究分析了P_(WV)的时间变化特征及其与降水的关系。结果表明:GPS/P_(WV)资料能够反映巴里坤地区大气中水汽含量的变化。其中,P_(WV)月变化呈典型的单峰型分布,7月最大,1月最小;P_(WV)日变化呈1峰2谷变化,最大值出现在10:00,最小值出现在04:00和20:00。降水较最大P_(WV)出现时间明显滞后,春、夏季降水多发生在P_(WV)最大值出现后1~3 h,秋、冬季降水多发生在P_(WV)最大值出现后2~4 h;P_(WV)最大值与小时降水量有很好的对应关系,P_(WV)最大值出现有降水产生共39次,占总次数62.9%,但与小时最大降水对应仅有18次。  相似文献   

7.
利用2000—2010年1°× 1°的NCEP FNL分析资料,分析了河南地区大气可降水量的时空分布特征及变化趋势。结果表明:河南省年大气可降水量为266.86 kg/m2,从西北向东南逐渐增加。可降水量季节变化显著,夏季最大,月平均为41.77 kg/m2;冬季最少,月平均为8.54 kg/m2。1月份大气可降水量最少,平均8.04 kg/m2;7月最多,平均47.19 kg/m2。11年来, 丰水年大气可降水量是枯水年的1.12倍,大气可降水量年际变化特征不明显,总体上有所减少。  相似文献   

8.
地基GPS遥测大气可降水量在天气分析诊断中的应用   总被引:6,自引:2,他引:6  
利用河北省石家庄、张家口、秦皇岛3个GPS站观测资料,通过GAMIT软件处理反演到2005年4—11月的大气可降水量(PWV)资料,初步分析了河北大气可降水量时空分布特征。结果表明,GPS反演的大气可降水量具有较高的使用价值,其时空变化明显,反映了河北降水的季节和地区变化特征。通过与降水之间关系分析发现,降水大多出现在高于大气可降水量基值的时段,不同影响天气系统,大气可降水量变化具有不同的变化特征。  相似文献   

9.
利用海东区域自动气象站2007—2016年逐小时降水数据,分析比较河湟流域~*5—9月份降水量、降水频次和降水强度的日变化峰值位相的整体特征、空间分布差异和典型区域平均的日变化演变特征。得出,河湟流域降水日变化峰值时间主要是傍晚到夜间和清晨双峰型位相和午夜单峰型位相,就整体而言,降水强度的下午峰值特征更加突出,降水频次以午夜峰值为主。综合考虑降水量和降水强度降水频次的日变化峰值位相发,发现河湟流域降水日变化峰值位相在空间分布上存在南北差异,北部双峰型位相和南部单峰型位相特征;从降水量、频次、强度的日变化演变特征来看,北部地区双峰型位相特征,降水量以傍晚至夜间峰值为主清晨峰值为次,降水量位相与降水频次位同步相滞后于降水强度位相;南部地区是单峰型位相特征,降水量峰值出现在午夜,低谷出现在中午,降水量位相与降水频次位相同步滞后于降水强度位相,这应是降水演变过程中时间演变不对称性和高原对流云系发展演变的具体表现。  相似文献   

10.
利用2000-2010年1°×1°的NCEP FNL分析资料,分析了河南大气可降水量的时空分布特征及变化趋势。结果表明:河南省年大气可降水量为270.48 kg/m2,从西北向东南逐渐增加。可降水量季节变化显著,夏季最大,月平均为41.77 kg/m2;冬季最少,月平均为8.54 kg/m2。1月份大气可降水量最少,平均为8.04 kg/m2;7月最多,平均为47.19 kg/m2。11 a来,大气可降水量最多年份是最少年份的1.12倍,大气可降水量年际变化特征不明显,总体上有所减少。  相似文献   

11.
利用福建省2010—2019年地基GPS站大气可降水量资料、地面气象观测资料和探空数据及ERA-Interim再分析资料,分析福建水汽资源的季节、月、日变化特征,并采用EOF、Mann-Kendall和滑动t检验等方法对近10 a水汽资源的时空分布和变化特征进行分析。结果表明:相较于ERA-Interim再分析资料,福建地基GPS大气可降水量具有较高精度。水汽季节分布以夏季最大,春季次之,秋冬季最低;其月际变化呈倒“U”型分布;晴日和雨日水汽变化差异显著。东部沿海地区水汽含量普遍高于西部山区,但降水转化率低于内陆山区。EOF分析结果显示福建省大气可降水量主要存在2种空间模态,其中第一模态方差贡献率占80.06%,主要表现为空间分布一致型,振荡强度由西北、西南向东部逐渐增强,相应的时间系数表征了大气可降水量显著的季节性变化特征。Mann-Kendall突变检验和滑动t检验的结果表明近10 a福建上空水汽资源未发生突变。  相似文献   

12.
四川上空大气可降水量时空分布特征   总被引:4,自引:0,他引:4  
本文利用94个气象台站30 a地面湿度参量资料,采用通过地面水汽压计算大气可降水量的经验公式,分析了四川上空大气可降水量时空分布特征,初步评估了四川地区的空中水资源。结果表明:(1)四川地区空中水资源十分丰富,开发潜力巨大:东部盆地区全年大气可降水量为1178.11 cm、降水效率8.98%;西部高山高原区全年大气可降水量为321.06 cm、降水效率21.16%。(2)大气可降水量和降水效率空间分布明显不均匀,东部盆地区大气可降水量远远高于西部高山高原区,降水效率则是西部高山高原区高于东部盆地区。(3)大气可降水量季节变化明显,一年之中夏季最多,秋季次之,冬季最少。西部高山高原区大气可降水量季节差异尤其显著。(4)30 a来,大气可降水量波动略呈线性增多,大气可降水量年际变化小。   相似文献   

13.
基于2016—2018年GNSS/MET反演大气可降水量资料,分析了内蒙古中东部地区大气可降水量的变化特征,讨论了其与地面温度、气压和降水的关系,并对降水天气过程中水汽的变化特征进行了分析。结果表明:1)内蒙古中东部地区大气可降水量的分布主要受地形和环境因素影响,具有明显的季节变化特征。2)大气可降水量与地面温度在秋季存在显著的正相关关系,春季次之;与地面气压存在负相关关系,二者在春季相关最显著,秋季次之。3)大气可降水量与地面降水的相关关系在夏季最显著,春季和秋季次之。在降水发生前1—2 h,大气可降水量会有一次增长过程;降水期间大气可降水量通常维持高值,且均高于当月均值;降水结束后,大气可降水量迅速下降至低值。  相似文献   

14.
GPS遥感大气可降水量在降水天气过程分析中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
应用GPS探测的大气可降水量(PWV)对2010年大连地区降水过程中水汽变化特征进行了分析。结果表明:GPS/PWV资料能反映大气中水汽的时间和空间变化,其变化特征与降水有较好的对应关系;不同性质的降水过程PWV变化特征明显不同,稳定性降水过程中PWV变化较为平缓,呈明显的单峰结构,对流性降水过程水汽变化程度剧烈,呈震荡趋势,而混合型降水具有两种性质降水的共同特征;降水过程中GPS/PWV阈值表明,GPS/PWV资料在降水天气预报方面有一定的应用价值。  相似文献   

15.
基于2017-2019年南疆地基GPS大气可降水量(下文简称“GPS-PWV”)、常规探空水汽廓线计算的大气可降水量(下文简称“RS-PWV”)和逐时降水资料,统计分析南疆西部和昆仑山北坡GPS-PWV时空变化特征、夏季不同海拔高度不同降水量级下GPS-PWV变化与实际降水的对应关系。结果表明:(1)南疆西部和昆仑山北坡GPS-PWV与RS-PWV,二者具有符合预期的很高的相关性。(2)不同海拔高度站点GPS-PWV空间分布差异明显,大部分站点GPS-PWV随海拔高度的增加而降低。(3)各站点GPS-PWV逐月变化均呈单峰型,冬季12月或1月最小,夏季7、8月最大;春、夏季各站GPS-PWV距平日变化为单峰型,秋、冬季GPS-PWV距平日变化除秋季乌恰站、若羌站为单峰型外,其它均为三峰或四峰型。(4)各站有、无降水时PWV平均值差异明显,昆仑山北坡差异更大;降水发生前GPS-PWV已开始上升,南疆西部PWV峰值主要出现在降水前0~1 h,昆仑山北坡PWV峰值主要出现在降水前0~3 h和7~9 h。  相似文献   

16.
利用拉萨2005—2017年逐小时降水观测资料和1969—2017年逐3 h降水观测资料,在分析该站汛期(5—9月)降水日变化特征的基础上,揭示该站昼夜降水的长期演变特征。结果表明:(1)拉萨小时降水量和降水频次日变化呈单峰型分布,两者峰值均出现在05:00(北京时,下同),谷值出现在15:00—17:00;小时降水强度日变化呈双峰型分布,峰值出现在17:00和00:00,谷值出现在13:00—15:00。(2)拉萨汛期不同等级降水的小时降水量和降水频次日变化位相不同,其中微雨和小雨的小时降水量和降水频次日变化为单峰型,且峰值均出现在05:00,而中雨及以上小时降水量和降水频次日变化峰值出现时间较微雨和小雨略有提前。(3)近49 a拉萨汛期昼夜降水量显著增多,降水强度显著增强,而降水日数无明显趋势,降水强度增强是拉萨汛期降水量增多的主要原因。  相似文献   

17.
利用柴达木盆地格尔木站2014年每日00:00和12:00 (世界时,下同) L波段探空数据计算得到的大气可降水量资料(P_(WV_RS))用来验证GPS数据反演的大气可降水量(P_(WV_GPS))精度。在此基础上,利用格尔木、德令哈两站P_(WV_GPS)资料,对该地区大气可降水量P_(WV)变化特征进行分析。结果表明:柴达木盆地P_(WV_RS)和P_(WV_GPS)逐日变化具有很好的一致性,P_(WV_GPS)略高于P_(WV_RS),两者相关系数在0. 9以上。夏秋季P_(WV_RS)和P_(WV_GPS)相关性明显好于冬春季,00:00的相关系数略高于12:00。00:00和12:00 P_(WV_GPS)均方根误分别为1. 8和2. 4 mm,平均相对误差分别为0. 2和0. 4,平均偏差分别为4. 2和4. 3 mm。柴达木盆地P_(WV_GPS)能够反映这一地区实际大气可降水量水平。柴达木盆地P_(WV_GPS)月变化呈单峰型分布,7月最大、12月最小。P_(WV_GPS)夏季最为丰富、秋季次之、冬季最小,呈南多北少的空间分布特征。柴达木盆地日均P_(WV_GPS)为0. 4~28. 0 mm,逐时P_(WV_GPS)为6. 9~7. 3 mm。  相似文献   

18.
利用2012—2014年地面自动站与中国区域CMORPH(Climate Prediction Center Morphing)多卫星降水数据相融合的逐时降水量数据集,分析大别山区的降水时空分布特征。2012—2014年大别山区年平均降水量978.5mm,降水大值区出现在大别山主峰的东南侧,降水主要集中在5—7月,且呈现明显的地形降水特征。从时间变化情况看,降水量呈现单峰的特征,7月降水量最大。从空间分布情况看,大别山及其东部地区是强降水的频发区,出现暴雨日数最多的区域位于主峰及其东侧。降水中心表现出显著的季节变化特征,冬季降水中心位于大别山区的东南部,进入春季以后降水中心向西北方向移动,北抬至大别山主峰北侧,进入秋季(9月以后)以后降水中心逐渐向南回落。大别山区大气环流的季节性变化及其与地形的相互作用是造成大别山区出现明显地形降水(与降水随海拔先增加后减小)和降水季节性变化的主要原因。  相似文献   

19.
利用地面露点温度求算整层大气可降水量的经验关系式,对2002年1月至2007年7月典型月(1月、4月、7月、10月)内蒙古地区117个地面观测站上空的大气可降水量进行计算,分析了近5年内蒙古地区大气可降水量的时空分布特征。分析结果表明,内蒙古7月份是大气可降水量最大的月份,月平均大气可降水量达到2.497cm。内蒙古大气可降水量分布的高值区在阴山到大兴安岭一线沿山的东南侧。大气可降水高值区与年平均降水量分布高值区相比,大气可降水高值区在河套地区有西伸的倾向,而大气可降水量的空间分布梯度在东部的呼伦贝尔有减小的倾向。  相似文献   

20.
青海省雷暴年际变化特征分析   总被引:7,自引:0,他引:7  
使用青海41个气象台站1961~2007年的年雷暴资料,对青海省年雷暴日数的时空分布及变化特征进行了分析。结果表明:雷暴空间分布青南地区最多,柴达木盆地最少;年雷暴47a来总体呈减少趋势,但各区变化特征不一致,基本上雷暴多的地区减少趋势越明显,雷暴最少的柴达木盆地变化不明显,甚至略有增加。青海省年平均雷暴日数在2000年发生明显突变,周期分析发现存在准5a周期振荡。青海省雷暴的年内分布为单峰型分布,雷暴主要发生在4~10月,占全年发生总数的99.6%,4~10月雷暴日数1961~2007年期间均呈不同程度的下降趋势,夏季减少趋势最为明显,春季(4~5月份)减少趋势较秋季(9~10月份)明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号