首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南菲律宾地区类埃达克岩和富铌玄武质熔岩的成因   总被引:7,自引:3,他引:7  
埃达克岩(adakite)最初 是指由消减板片玄武岩物质熔融形成的富硅、富钠、高Sr/Y和La/Yb比值的弧火山熔岩。它通常产在会聚带,这个部位的年轻的、因而仍然是热的大洋板片正在发生俯冲消减。富铌的岛弦玄武央进则是吕等到高碱的镁铁质熔岩,它们相对于正常的岛弦玄武岩含有较多的高场强元素(HFSE)。这些玄武岩通常与埃达克央共生, 这一组合是直被用于论证他们的高HFSE含量是因为他们的地幔源区受到板片来源的熔体的交代。先前的区域研究结果表明,南菲律宾是埃达克岩和富铌岛孤玄武岩的一个典型产地。然而最近的详细研究显示,尽管该地区的一些岛弧火山岩是类埃达克岩的,但是它们很可能是来自地幔楔的母岩浆的分异作用的产物,而这里的地幔楔主要是受沉积来源的成分交代的,此外,菲律宾南部最典型的富铌熔岩中HFSE的富集,也很有可能是起因于似乎是西太平洋边缘特有的富集地幔组分的熔融。这些结果提出了如下问题:南菲律宾是否存在真正的板片来源的熔体?这里的富铌岛弧 熔岩是否起因于地幔楔被这种熔体交代?  相似文献   

2.
Laboratory experiments on natural, hydrous basalts at 1–4 GPa constrain the composition of “unadulterated” partial melts of eclogitized oceanic crust within downgoing lithospheric slabs in subduction zones. We complement the “slab melting” experiments with another set of experiments in which these same “adakite” melts are allowed to infiltrate and react with an overlying layer of peridotite, simulating melt:rock reaction at the slab–mantle wedge interface. In subduction zones, the effects of reaction between slab-derived, adakite melts and peridotitic mantle conceivably range from hybridization of the melt, to modal or cryptic metasomatism of the sub-arc mantle, depending upon the “effective” melt:rock ratio. In experiments at 3.8 GPa, assimilation of either fertile or depleted peridotite by slab melts at a melt:rock ratio 2:1 produces Mg-rich, high-silica liquids in reactions which form pyrope-rich garnet and low-Mg# orthopyroxene, and fully consume olivine. Analysis of both the pristine and hybridized slab melts for a range of trace elements indicates that, although abundances of most trace elements in the melt increase during assimilation (because melt is consumed), trace element ratios remain relatively constant. In their compositional range, the experimental liquids closely resemble adakite lavas in island-arc and continental margin settings, and adakite veins and melt inclusions in metasomatized peridotite xenoliths from the sub-arc mantle. At slightly lower melt:rock ratios (1:1), slab melts are fully consumed, along with peridotitic olivine, in modal metasomatic reactions that form sodic amphibole and high-Mg# orthopyroxene.  相似文献   

3.
Volcanic suites from Wawa greenstone belts in the southern Superior Province comprise an association of typical late Archean arc volcanic rocks including adakites, magnesian andesites (MA), niobium-enriched basalts (NEB), and ‘normal’ tholeiitic to calc-alkaline basalts to rhyolites. The adakites represent melts from subducted oceanic crust and all other suites were derived from the mantle wedge above the subducting oceanic lithosphere. The magnesian andesites are interpreted to be the product of hybridization of adakite melts with arc mantle wedge peridotite. The initial ?Hf values of the ∼2.7 Ga Wawa adakites (+3.5 to +5.2), magnesian andesites (+2.6 to +5.1), niobium-enriched basalts (+4.4 to +6.6), and ‘normal’ tholeiitic to calc-alkaline arc basalts (+5.3 to +6.4) are consistent with long-term depleted mantle sources. The niobium-enriched basalts and ‘normal’ arc basalts have more depleted ?Hf values than the adakites and magnesian andesites. The initial ?Nd values in the magnesian andesites (+0.4 to +2.0), niobium-enriched basalts (+1.4 to +2.4), and ‘normal’ arc tholeiitic to calc-alkaline basalts (+1.6 to +2.9) overlap with, but extend to lower values than, the slab-derived adakites (+2.3 to +2.8). The lower initial ?Nd values in the mantle-wedge-derived suites, particularly in the magnesian andesites, are attributed to recycling of an Nd-enriched component with lower ?Nd to the mantle wedge. As a group, the slab-derived adakites plot closest to the 2.7 Ga depleted mantle value in ?Nd versus ?Hf space, additionally suggesting that the Nd-enriched component in the mantle wedge did not originate from the 2.7 Ga slab-derived melts. Accordingly, we suggest that the enriched component had been added to the mantle wedge at variable proportions by recycling of older continental material. This recycling process may have occurred as early as 50-70 Ma before the initiation of the 2.7 Ga subduction zone. The selective enrichment of Nd in the sources of the Superior Province magmas can be explained by experimental studies and geochemical observations in modern subduction systems, indicating that light rare earth elements (e.g., La, Ce, Sm, Nd) are more soluble than high field strength elements (e.g., Zr, Hf, Nb, Ta) in aqueous fluids that are derived from subducted slabs. As a corollary, we suggest that the recycled Nd-enriched component was added to the mantle source of the Wawa arc magmas by dehydration of subducted sediments.  相似文献   

4.
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show 206 Pb/238 U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.  相似文献   

5.
Compositionally, high-Nb basalts are similar to HIMU (high U/Pb) ocean island basalts, continental alkaline basalts and alkaline lavas formed above slab windows. Tertiary alkaline basaltic lavas from eastern Jamaica, West Indies, known as the Halberstadt Volcanic Formation have compositions similar to high-Nb basalts (Nb > 20 ppm). The Halberstadt high-Nb basalts are divided into two compositional sub-groups where Group 1 lavas have more enriched incompatible element concentrations relative to Group 2. Both groups are derived from isotopically different spinel peridotite mantle source regions, which both require garnet and amphibole as metasomatic residual phases. The Halberstadt geochemistry demonstrates that the lavas cannot be derived by partial melting of lower crustal ultramafic complexes, metasomatised mantle lithosphere, subducting slabs, continental crust, mantle plume source regions or an upper mantle source region composed of enriched and depleted components. Instead, their composition, particularly the negative Ce anomalies, the high Th/Nb ratios and the similar isotopic ratios to nearby adakite lavas, suggests that the Halberstadt magmas are derived from a compositionally variable spinel peridotite source region(s) metasomatised by slab melts that precipitated garnet, amphibole, apatite and zircon. It is suggested that high-Nb basalts may be classified as a distinct rock type with Nb > 20 ppm, intraplate alkaline basalt compositions, but that are generated in subduction zones by magmatic processes distinct from those that generate other intraplate lavas.  相似文献   

6.
We report here major, trace element and Sr–Nd–Pb isotopic data for a new set of basaltic lavas and melt inclusions hosted in Mg-rich olivines (Fo86–91) from Mota Lava, in the Banks islands of the Vanuatu island arc. The results reveal the small-scale coexistence of typical island-arc basalts (IAB) and a distinct type of Nb-enriched basalts (NEB) characterized by primitive mantle-normalized trace element patterns without high-field-strength element (HFSE) depletion. The IAB show trace element patterns with prominent negative HFSE anomalies acquired during melting of mantle sources enriched with slab-derived, H2O-rich components during subduction. In contrast, the NEB display trace element features that compare favourably with enriched-mid-ocean ridge basalt (MORB) and the most enriched basalts from the Vanuatu back-arc troughs. Both their trace element and Nd–Sr isotopic compositions require partial melting of an enriched-MORB-type mantle source, almost negligibly contaminated by slab-derived fluids (~0.2 wt%). The coexistence of these two distinct types of primitive magma, at the scale of one volcanic island and within a relatively short span of time, would reflect a heterogeneous mantle source and/or tapping of distinct mantle sources. Direct ascent of such distinct magmas could be favoured by the extensive tectonic setting of Mota Lava Island, allowing decompression melting and sampling of variable mantle sources. Significantly, this island is located at the junction of the N–S back-arc troughs and the E–W Hazel Home extensional zone, where the plate motion diverges in both direction and rate. More broadly, this study indicates that crustal faulting in arc contexts would permit basaltic magmas to reach Earth’s surface, while preserving the geochemical heterogeneity of their mantle sources.  相似文献   

7.
Continental intraplate basalts (15.42–0.16 Ma) from Abaga–Dalinuoer volcanic field (ADVF) in central Inner Mongolia of eastern China, as a part of Cenozoic volcanic province along eastern margin of the Eurasian continent, provide a good opportunity to explore potential links between deep subduction of the Pacific slab and continental intraplate volcanism. In this study, we report an integrated dataset of whole-rock K–Ar ages, major and trace elements and Sr–Nd–Pb isotopes, and olivine major and minor elements for the Abaga–Dalinuoer basalts (ADBs), and propose that mantle source lithology of the ADB magmas may consist of both pyroxenite and peridotite. The ADBs display low SiO2 (42.3–50.2 wt.%), high MgO (7.3–11.4 wt.%) and moderate K2O + Na2O (3.8–6.4 wt.%), and can be subdivided into basanites, alkali basalts and tholeiitic basalts that are all characterized by ocean island basalt (OIB)-like rare earth elements (REE) and enrichment in both large ion lithosphile elements (LILE) and high field strength elements (HFSE). Olivine phenocrysts have higher Ni and Fe/Mn and lower Mn, Ca and Ca/Fe relative to those from peridotite melts, but exhibit clearly lower Ni contents (< 2500 ppm) compared with expected Ni range (> 3000 ppm) for olivines crystallized from olivine-free pyroxenite melts. Estimated compositions of the ADB primary magmas, together with olivine compositions, suggest an iron-rich mantle source related with silica-deficient pyroxenite that is most likely derived from deeply subducted Pacific oceanic crust. Additionally, peridotite and recent subducted sediments are also required to account for high Ni and MgO in primary magmas together with their trace elements and Sr–Nd–Pb isotope systematics. We suggest that a mixed pyroxenite–peridotite source lithology can better match observed whole-rock and olivine signatures in the ADB, compared with either peridotite only or olivine-free pyroxenite only source lithology. In our model, pyroxenite melts would either react with or mechanically mix with peridotite, and the proportion of pyroxenite melts may range from 30% to 45% for mechanical mixing scenario. A continuous spectrum from tholeiitic to alkali melts revealed by melt-peridotite reaction experiment can explain formation of primary magmas of basanites, alkali basalts and tholeiitic basalts by increasing melting degree of a similar mantle source. Relatively higher 206Pb/204Pb of the ADB may suggest more significant role of recent (< 0.5 Ga) subducted Pacific oceanic materials, in contrast to other Cenozoic basalts in eastern China (e.g., Changbai basalts) that exhibit varying contributions from ancient (> 1.5 Ga) subducted continental sediments. We emphasize that coupled geochemical and geodynamic links (i.e., subduction polarity) between deeply subducted Pacific slab and continental intraplate volcanism in eastern China may exist, which directly support the involvement of deeply subducted Pacific materials in petrogenesis of the ADB. From the perspective of plate motion kinetics, decompression partial melting of upwelling fragmented Pacific slab (silica-deficient pyroxenite + recent subducted sediments) may be triggered by rollback of deeply subducted Pacific slab during Late Cenozoic times. Continental intraplate volcanism in the ADVF generally started with termination of opening of the Japan Sea, suggesting that deep subduction of the Pacific slab may have been an important geodynamic mechanism responsible for tectono-magmatic evolution of northeastern Asia. We suggest that the ADBs have the potential to shed light on genetic links between continental intraplate volcanism and deep subduction of the Pacific slab in geochemical and geodynamic processes.  相似文献   

8.
岛弧火山岩主要为俯冲带的俯冲板片脱水形成的富大离子亲石元素流体交代地幔楔,并使其发生部分熔融,产生岛弧岩浆作用而形成的,岩石组合通常为玄武岩—安山岩—英安岩—流纹岩及相应侵入岩组合。它以Al2O3、K2O高,低Ti O2,且K2ONa2O为特征,相对富集LILE,亏损HFSE,特别是Ti、Nb、Ta等。本文主要从岛弧岩浆作用的起因着手,分析流体和熔体对地幔楔的交代作用,以及岛弧岩浆作用过程,进而分析岛弧火山岩的地球化学特征。  相似文献   

9.
俯冲带复杂的壳幔相互作用   总被引:15,自引:0,他引:15  
俯冲带除俯冲板片脱水形成的富大离子亲石元素流体、交代地幔楔形成的岛弧钙碱性玄武岩安山岩-英安岩-流纹岩及相应侵入岩组合外,还存在由俯冲扳片熔融形成的埃达克质熔体交代地慢楔形成的埃达克岩-富铌玄武岩-富镁安山岩组合,从而构成了俯冲带的流体交代与熔体交代两大类壳慢相互作用体系及相应的岩石组合。熔体交代作用的显著特点是Mg、高场强元素Nb、Ti、P等含量增加,Nd/Sr值增高,而Si、K、Na及La/Yb降低。洋壳板片或洋脊俯冲、玄武质岩浆底侵使地壳增厚,或板片断离、撕裂等作用均可产生埃达克质熔体并随之产生熔体交代作用。流体和熔体与地幔橄揽岩的相互作用构成了俯冲带复杂的地球化学体系。  相似文献   

10.
Central Mindanao was the locus of a Pliocene (4–5 Ma old) arc–arc collision event followed by basaltic to dacitic magmatism starting at 2.3 Ma, representing the most voluminous volcanic field in the Philippines. Lava compositions range from calc-alkaline to shoshonitic. Adakites and Nb-enriched basalts are among the magmatic products. All the lavas are Na-rich (up to 4.88%), with Na2O/K2O ratios from 2.5 to 6.5. Sr, Nd and Pb isotopic compositions are similar to MORB, except for some shoshonitic lavas that have slightly less radiogenic Nd ratios. K-enrichment in basalts can be related to both fractional crystallization (FC) at moderate pressures and to partial melting of an enriched source. Trace element systematics indicate that the sub-central Mindanao mantle is characterized by the presence of garnet, phlogopite, amphibole, and perhaps some titanate phase. The enrichment of this source is attributed to the interaction of slab-derived melts, i.e., adakites, with the arc mantle. This would explain the presence of Nb-enriched basalts, transitional adakites and high-magnesium andesites, as well as the bulk Na-enrichment and relatively unradiogenic character of the central Mindanao lavas. We envision an ion-exchange type of enrichment, in which the HFSE, LILE and LREE, mobilized during slab melting, are preferentially enriched in the metasomatized mantle, resulting in a diversity of post-collision magma compositions. The MORB-like isotopic signatures of the central Mindanao lavas preclude important contributions of slab-derived hydrous fluids, sediments, continental crust or an OIB-type contaminant. Slab melting after cessation of subduction is deemed possible by thermal rebound of previously depressed geotherms. Initial contributions to mantle enrichment in post-collision sites may thus come from slab melts. In most other cases of post-collision magmatism, however, this signature can be easily masked by enrichments coming from other sources, e.g., the continental lithosphere.  相似文献   

11.
Subduction zone geochemistry   总被引:1,自引:0,他引:1  
Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity.However,crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of liquid rather than solid phases.The physicochemical property of liquid phases is determined by the dehydration behavior of crustal rocks at the slab-mantle interface in subduction channels.Because of the significant fractionation in incompatible trace elements but the full inheritance in radiogenic isotopes relative to their crustal sources,the production of liquid phases is crucial to the geochemical transfer from the subducting crust into the mantle.In this process,the stability of specific minerals in subducting crustal rocks exerts a primary control on the enrichment of given trace elements in the liquid phases.For this reason,geochemically enriched oceanic basalts can be categorized into two types in terms of their trace element distribution patterns in the primitive mantle-normalized diagram.One is island arc basalts(IAB),showing enrichment in LILE,Pb and LREE but depletion in HFSE such as Nb and Ta relative to HREE,The other is ocean island basalts(OIB),exhibiting enrichment in LILE and LREE,enrichment or non-depletion in HFSE but depletion in Pb relative to HREE.In either types,these basalts show the enhanced enrichment of LILE and LREE with increasing their incompatibility relative to normal mid-ocean ridge basalts(MORB).The thermal regime of subduction zones can be categorized into two stages in both time and space,The first stage is characterized by compressional tectonism at low thermal gradients.As a consequence,metamorphic dehydration of the subducting crust prevails at forearc to subarc depths due to the breakdown of hydrous minerals such as mica and amphibole in the stability field of garnet and rutile,resulting in the liberation of aqueous solutions with the trace element composition that is considerably enriched in LILE,Pb and LREE but depleted in HFSE and HREE relative to normal MORB.This provides the crustal signature for the mantle sources of IAB.The second stage is indicated by extensional tectonism at high thermal gradients,leading to the partial melting of metamorphically dehydrated crustal rocks at subarc to postarc depths.This involves not only the breakdown of hydrous minerals such as amphibole,phengite and allanite in the stability field of garnet but also the dissolution of rutile into hydrous melts.As such,the hydrous melts can acquire the trace element composition that is significantly enriched in LILE,HFSE and LREE but depleted in Pb and HREE relative to normal MORB,providing the crustal signature for the mantle sources of OIB.In either case,these liquid phases would metasomatize the overlying mantle wedge peridotite at different depths,generating ultramafic metasomatites such as serpentinized and chloritized peridotites,and olivine-poor pyroxenites and hornblendites.As a consequence,the crustal signatures are transferred by the liquid phases from the subducting slab into the mantle.  相似文献   

12.
富铌玄武岩:板片熔体交代的地幔楔橄榄岩部分熔融产物   总被引:4,自引:0,他引:4  
富铌玄武岩是一类具有特殊地球化学特征的岛弧玄武岩。与正常岛弧玄武岩相比,它具有硅饱和并富钠的特征;同时具有相对高的Nb(一般>7×10-6)、TiO2(1%~2%)和P含量,以及低的LILE/HFSE和HREE/HFSE比值,并富集高场强元素;它的原始地幔标准化微量元素图显示了弱的Nb、Ta负异常(有时出现弱的正异常),原始地幔标准化La/Nb比值小于2(但很少小于0.7),它是由受埃达克质熔体交代过的地幔橄榄岩部分熔融形成的。由于富铌玄武岩与埃达克岩是大洋板片俯冲作用的直接产物,因此,通过对该岩石组合及与俯冲作用有关的流体和熔体的研究,不仅可以查明洋壳俯冲作用过程中的岩浆活动特征,还可以阐明洋壳俯冲及壳幔相互作用,具十分重要的地质意义。  相似文献   

13.
Subduction initiation and ophiolite crust: new insights from IODP drilling   总被引:1,自引:0,他引:1  
International Ocean Discovery Program (IODP) Expedition 352 recovered a high-fidelity record of volcanism related to subduction initiation in the Bonin fore-arc. Two sites (U1440 and U1441) located in deep water nearer to the trench recovered basalts and related rocks; two sites (U1439 and U1442) located in shallower water further from the trench recovered boninites and related rocks. Drilling in both areas ended in dolerites inferred to be sheeted intrusive rocks. The basalts apparently erupted immediately after subduction initiation and have compositions similar to those of the most depleted basalts generated by rapid sea-floor spreading at mid-ocean ridges, with little or no slab input. Subsequent melting to generate boninites involved more depleted mantle and hotter and deeper subducted components as subduction progressed and volcanism migrated away from the trench. This volcanic sequence is akin to that recorded by many ophiolites, supporting a direct link between subduction initiation, fore-arc spreading, and ophiolite genesis.  相似文献   

14.
Geochemical and isotopic (Nd, Sr) data are reported on Paleoproterozoic (1904–1864 Ma), maficintermediate (<63% SiO2), arc metavolcanic rocks from the Flin Flon greenstone belt, Manitoba and Saskatchewan. Major element criteria permit subdivision of the rocks into tholeiitic (TH), calc-alkaline (CA), alkaline, and boninitic (BO) magma series. Subaqueously erupted, TH and related CA basalt-basaltic andesite, and rare high-Ca boninites dominated between 1904 Ma and 1890 Ma. The TH rocks are similar to modern island are tholeiites, having low high-field-strength element (HFSE) and rare earth element (REE) abundances, and chondrite-normalized light REE depletion to slight enrichment. The boninites have even lower HFSE and REE abundances (1–2X chondrites). Along with their extreme ratios of refractory incompatible elements (e.g., high Al/Ti, Ti/Zr, low Ti/V, Zr/Y), these features indicate that the arc mantle source was strongly depleted, probably residual after MORB or back-arc basin basalt extraction. Elevated Th/Yb, Ba/La, La/Nb values, and the spread in Nd isotopic compositions (initial Nd=–0.4 to +4.8) suggest recycling of small amounts (0–8%) of Archean and possibly older Proterozoic crust via sediment subduction and, locally, intracrustal contamination. Calcalkaline andesite-rhyolite and rare shoshonite and trachyandesite, erupted between 1890 Ma and 1864 Ma, are more strongly light REE enriched and have comparatively higher HFSE abundances, and higher Zr/Y and Nb/Y values. The rocks have strong arc trace element signatures (e.g., high Th/Nb, La/Nb), and initial Nd values (+2.3 to +4.6) indicate that depleted mantle contributions to the magmas continued to be dominant. The geochemistry and geology of these younger volcanic rocks suggest a mature island arc setting in which the arc lithosphere was thicker than in the previous period, and a more fertile sub-arc mantle source was tapped. The pre-1890 Ma volcanism occurred in one or more separate arcs, probably characterized by rapid subduction of oceanic lithosphere, relatively thin, tholeiitic arc crust, and extensive backarc basin formation. In contrast, post-1890 Ma volcanism is dominantly calc-alkaline to (rarely) alkaline, and is interpreted to reflect crustal thickening due to longterm growth of arc edifice(s) and tectonic thickening associated with intraoceanic arc-arc (>1870 Ma) collision and subsequent intra-arc deformation.  相似文献   

15.
徐峥  郑永飞 《地球科学》2019,44(12):4135-4143
大陆玄武岩通常具有与洋岛玄武岩相似的地球化学成分,其中含有显著的壳源组分.对于洋岛玄武岩来说,虽然其中的壳源组分归咎于深俯冲大洋板片的再循环,但是对板片俯冲过程中的壳幔相互作用缺乏研究.对于大陆玄武岩来说,由于其形成与特定大洋板片在大陆边缘之下的俯冲有关,可以用来确定古大洋板片俯冲的地壳物质再循环.本文总结了我们对中国东部新生代玄武岩所进行的一系列地球化学研究,结果记录了古太平洋板片俯冲析出流体对地幔楔的化学交代作用.这些大陆玄武岩普遍具有与洋岛玄武岩类似的地球化学成分,在微量元素组成上表现为富集LILE和LREE、亏损HREE,但是不亏损HFSE的分布特点,在放射成因同位素组成上表现为亏损至弱富集的Sr-Nd同位素组成.在排除地壳混染效应之后,这些玄武岩的地球化学特征可以由其地幔源区中壳源组分的性质来解释.俯冲大洋地壳部分熔融产生的熔体提供了地幔源区中的壳源组分,其中包括洋壳镁铁质火成岩、海底沉积物和大陆下地壳三种组分.华北和华南新生代大陆玄武岩在Pb同位素组成上存在显著差异,反映它们地幔源区中的壳源组分有所区别.中国东部新生代玄武岩的地幔源区是古太平洋板片于中生代俯冲至亚欧大陆东部之下时,在>200 km的俯冲带深度发生壳幔相互作用的产物.在新生代期间,随着俯冲太平洋板片的回卷引起的中国东部大陆岩石圈拉张和软流圈地幔上涌,那些交代成因的地幔源区发生部分熔融,形成了现今所见的新生代玄武岩.   相似文献   

16.
Rare Archaean light rare earth element (LREE)-enriched mafic rocks derived from a strongly refractory mantle source show a range of features in common with modern boninites. These Archaean second-stage melts are divided into at least two distinct groups—Whundo-type and Whitney-type. Whundo-type rocks are most like modern boninites in terms of their composition and association with tholeiitic to calc-alkaline mafic to intermediate volcanics. Small compositional differences compared to modern boninites, including higher Al2O3 and heavy REE (HREE), probably reflect secular changes in mantle temperatures and a more garnet-rich residual source. Whundo-type rocks are known from 3.12 and 2.8 Ga assemblages and are true Archaean analogues of modern boninites. Whitney-type rocks occur throughout the Archaean, as far back as ca. 3.8 Ga, and are closely associated with ultramafic magmatism including komatiites, in an affiliation unlike that of modern subduction zones. They are characterised by very high Al2O3 and HREE concentrations, and their extremely depleted compositions require a source which at some stage was more garnet-rich than the source for either modern boninites or Whundo-type second-stage melts. Low La/Yb and La/Gd ratios compared to Whundo-type rocks and modern boninites either reflect very weak subduction-related metasomatism of the mantle source or very limited crustal assimilation by a refractory-mantle derived melt. Regardless, the petrogenesis of the Whitney-type rocks appears either directly or indirectly related to plume magmatism. If Whitney-type rocks have a boninitic petrogenesis then a plume related model similar to that proposed for the modern Tongan high-Ca boninites might apply, but with uniquely Archaean source compositions and source enrichment processes. Second-stage melts from Barberton (S. Africa –3.5 Ga) and ca. 3.0 Ga rocks from the central Pilbara (Australia) have features in common with both Whundo- and Whitney-types, but appear more closely related to the Whitney-type. Subduction zone processes essentially the same as those that produce modern boninites have operated since at least ~3.12 Ga, while a uniquely Archaean boninite-forming process, involving more buoyant oceanic plates and very inefficient mantle-source enrichment, may have occurred before then.  相似文献   

17.
The Neoarchaean Jonnagiri greenstone terrane (JGT) is located at the centre of the arcuate Hutti–Jonnagiri–Kadiri–Kolar composite greenstone belt in the eastern Dharwar Craton. High MgO (MgO = ~14 wt.%; Nb = 0.2 ppm), low Nb (LNB) (MgO = 7.8–12 wt.%; Nb = 0.1–5.1 ppm) and high Nb basalts (HNB) (MgO = 5.6–10.1 wt.%; Nb = 9.0–10.6 ppm) metamorphosed to lower amphibolite facies are identified based on their geochemical compositions. These metabasalts exhibit depleted HFSE (Nb–Ta, Zr–Hf), pronounced LREE and LILE enrichments suggesting contribution from subduction‐related components during their genesis. Th and U enrichment over Nb–Ta indicates influx of fluids dehydrated from subducted oceanic lithosphere. The high MgO basalts with higher Mg# (51) than that of the associated LNB and HNB (Mg# = 34–47) represent early fractionated melts of subduction‐modified mantle peridotite. The LNB were produced by partial melting of mantle wedge metasomatized by slab‐dehydrated fluids, whereas the HNB represents melts of subducted oceanic crust and hybridized mantle wedge. Lower Dy/Yb and variable La/Yb ratios suggest their generation at shallower depth within spinel peridotite stability field. The low Ce–Yb trend of these metabasalts reflects intraoceanic type subduction which straddles the fields of arc and back‐arc basin basalts, resembling the Mariana‐type arc basalts. The Jonnagiri metabasalts were derived in a paired arc‐back‐arc setting marked by nascent back‐arc rift system that developed in the proximity of an intraoceanic arc. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
P.R. Castillo  S.J. Rigby  R.U. Solidum   《Lithos》2007,97(3-4):271-288
Lavas from the Sulu Arc, southern Philippines, exhibit an enrichment in high field strength elements (HFSE) that represents a departure from the typical volcanic arc geochemical signature. It has been postulated that this relative enrichment arises from metasomatism of mantle wedge peridotites by melts derived from the subducting oceanic lithosphere, through formation of amphibole which subsequently breaks down and enriches the mantle source of parental arc magmas in HFSE. Divergent chemical and isotopic characteristics between Sulu Arc HFSE-enriched lavas and the Sulu Sea crust being subducted—the presumed source of slab-derived melts—render it unlikely, however, that HFSE enrichment arises from the influence of such melts. New geochemical data suggest that the varying degrees of HFSE enrichment in Sulu Arc lavas are instead the result of variable amounts of mixing between enriched and depleted mantle end-components—the sources of South China Sea intraplate lavas and Sulu seafloor basalts, respectively—within a compositionally heterogeneous mantle wedge.  相似文献   

19.
The Carpathian–Pannonian Region contains Neogene to Quaternary magmatic rocks of highly diverse composition (calc-alkaline, shoshonitic and mafic alkalic) that were generated in response to complex microplate tectonics including subduction followed by roll-back, collision, subducted slab break-off, rotations and extension. Major element, trace element and isotopic geochemical data of representative parental lavas and mantle xenoliths suggests that subduction components were preserved in the mantle following the cessation of subduction, and were reactivated by asthenosphere uprise via subduction roll-back, slab detachment, slab-break-off or slab-tearing. Changes in the composition of the mantle through time are evident in the geochemistry, supporting established geodynamic models.Magmatism occurred in a back-arc setting in the Western Carpathians and Pannonian Basin (Western Segment), producing felsic volcaniclastic rocks between 21 to 18 Ma ago, followed by younger felsic and intermediate calc-alkaline lavas (18–8 Ma) and finished with alkalic-mafic basaltic volcanism (10–0.1 Ma). Volcanic rocks become younger in this segment towards the north. Geochemical data for the felsic and calc-alkaline rocks suggest a decrease in the subduction component through time and a change in source from a crustal one, through a mixed crustal/mantle source to a mantle source. Block rotation, subducted roll-back and continental collision triggered partial melting by either delamination and/or asthenosphere upwelling that also generated the younger alkalic-mafic magmatism.In the westernmost East Carpathians (Central Segment) calc-alkaline volcanism was simultaneously spread across ca. 100 km in several lineaments, parallel or perpendicular to the plane of continental collision, from 15 to 9 Ma. Geochemical studies indicate a heterogeneous mantle toward the back-arc with a larger degree of fluid-induced metasomatism, source enrichment and assimilation on moving north-eastward toward the presumed trench. Subduction-related roll-back may have triggered melting, although there may have been a role for back-arc extension and asthenosphere uprise related to slab break-off.Calc-alkaline and adakite-like magmas were erupted in the Apuseni Mountains volcanic area (Interior Segment) from15–9 Ma, without any apparent relationship with the coeval roll-back processes in the front of the orogen. Magmatic activity ended with OIB-like alkali basaltic (2.5 Ma) and shoshonitic magmatism (1.6 Ma). Lithosphere breakup may have been an important process during extreme block rotations (60°) between 14 and 12 Ma, leading to decompressional melting of the lithospheric and asthenospheric sources. Eruption of alkali basalts suggests decompressional melting of an OIB-source asthenosphere. Mixing of asthenospheric melts with melts from the metasomatized lithosphere along an east–west reactivated fault-system could be responsible for the generation of shoshonitic magmas during transtension and attenuation of the lithosphere.Voluminous calc-alkaline magmatism occurred in the Cãlimani-Gurghiu-Harghita volcanic area (South-eastern Segment) between 10 and 3.5 Ma. Activity continued south-eastwards into the South Harghita area, in which activity started (ca. 3.0–0.03 Ma, with contemporaneous eruption of calc-alkaline (some with adakite-like characteristics), shoshonitic and alkali basaltic magmas from 2 to 0.3 Ma. Along arc magma generation was related to progressive break-off of the subducted slab and asthenosphere uprise. For South Harghita, decompressional melting of an OIB-like asthenospheric mantle (producing alkali basalt magmas) coupled with fluid-dominated melting close to the subducted slab (generating adakite-like magmas) and mixing between slab-derived melts and asthenospheric melts (generating shoshonites) is suggested. Break-off and tearing of the subducted slab at shallow levels required explaining this situation.  相似文献   

20.
The Diagorou-Darbani Birimian greenstone belt includes (i) tholeiitic metabasalts with flat to slightly depleted LREE patterns, (ii) amphibolites having high contents in both compatible and incompatible elements with strongly fractionated spidergrams showing large HFSE negative anomalies, and (iii) metabasalts and amphibolites with intermediate features between the two previous groups. The chemical compositions of these rocks are not those of oceanic plateau basalts, but suggest a magmatic evolution from an arc environment to a back-arc oceanic basin. Source of the highly enriched amphibolites could be a depleted mantle metasomatized by slab-derived siliceous melts. To cite this article: A. Soumaila et al., C. R. Geoscience 336 (2004).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号