首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methylmercury can accumulate in fish to concentrations unhealthy for humans and other predatory mammals. Most sources of mercury (Hg) emit inorganic species to the environment. Therefore, ecological harm occurs when inorganic Hg is converted to methylmercury. Sulfate- and iron-reducing bacteria (SRB and FeRB) methylate Hg, but the effects of processes involving oxidized and reduced forms of sulfur and iron on the reactivity of Hg, including the propensity of inorganic Hg to be methylated, are poorly understood. Under abiotic conditions, using a laboratory flow reactor, bisulfide (HS) was added at 40 to 250 μM h−1 to 5 g L−1 goethite (α-FeOOH) suspensions to which Hg(II) was adsorbed (30-100 nmol m−2) at pH 7.5. Dissolved Hg initially decreased from 103 or 104 nM (depending on initial conditions) to 10−1 nM, during which the concentration of Hg(II) adsorbed to goethite decreased by 80% and metacinnabar (β-HgS(s)) formed, based on identification using Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopic analysis. The apparent coordination of oxygens surrounding Hg(II), measured with EXAFS spectroscopy, increased during one flow experiment, suggesting desorption of monodentate-bound Hg(II) while bidentate-bound Hg(II) persisted on the goethite surface. Further sulfidation increased dissolved Hg concentrations by one to two orders of magnitude (0.5 to 10 nM or 30 nM), suggesting that byproducts of bisulfide oxidation and Fe(III) reduction, primarily polysulfide and potentially Fe(II), enhanced the dissolution of β-HgS(s) and/or desorption of Hg(II). Rapid accumulation of Fe(II) in the solid phase (up to 40 μmol g−1) coincided with faster elevation of dissolved Hg concentrations. Fe(II) served as a proxy for elemental sulfur [S(0)], as S(0) was the dominant bisulfide oxidation product coupled to Fe(III) reduction, based on sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy. In one experiment, dissolved Hg concentrations tracked those of all sulfide species [S(-II)]. These results suggest that S(-II) reacted with S(0) to form polysulfide, which then caused the dissolution of β-HgS(s). A secondary Fe-bearing phase resembling poorly formed green rust was observed in sulfidized solids with scanning electron microscopy, although there was no clear evidence that either surface-bound or mineralized Fe(II) strongly affected Hg speciation. Examination of interrelated processes involving S(-II) and Fe(III) revealed new modes of Hg solubilization previously not considered in Hg reactivity models.  相似文献   

2.
Research concerning the fate and biogeochemical cycling of mercury (Hg) within coastal ecosystems has suggested that microbially mediated diagenetic processes control Hg mobilization and that ligands with strong affinity for Hg, such as dissolved inorganic sulfide (S(-II)) and dissolved organic matter (DOM), control Hg partitioning between the dissolved and particulate phases. We have studied total Hg cycling in the sediments of the Penobscot River estuary using a combination of equilibrium porewater samplers and kinetic modeling. The Penobscot estuary has been subject to Hg contamination from multiple industries including a recently closed chlor-alkali production facility. The Hg concentration within the estuary surface sediments ranges from 1.25 to 27.5 nmol Hg g−1 sediment and displays an association with sediment organic matter and a concentration maximum within 3 cm of the sediment-water interface (SWI). Porewater profiles for the Penobscot estuary are divisible into three kinetically discrete intervals with respect to Hg dynamics. Beginning at depth in the sediment and moving upward toward the SWI we have defined: (1) a zone of net Hg solubilization at depth, with a zero-order net Hg production rate , (2) a zone of net Hg consumption within the zone dominated by FeS(s) precipitation with , and (3) a zone of net diffusive transfer within the vicinity of the SWI. Zone 1 is characterized by dissolved S(-II) concentrations ranging from 400 to 500 μM. Equilibrium modeling in this zone suggests that inorganic S(-II) plays the dominant role in both mobilization of sediment-bound Hg and complexation of dissolved Hg. In zone 2, FeS(s) precipitation occurs concomitant with Hg consumption. Net transfer within zone 3 is consistent with the potential for ligand-mediated Hg efflux across the SWI. S(-II)-mediated Hg mobilization at depth in Penobscot estuary sediments suggests a broadening of the depth interval over which biogeochemical Hg cycling must be examined. Our results also show that, while estuary sediments act as a net sink for particulate Hg inputs, they may also function for a considerable time interval as a source of dissolved Hg.  相似文献   

3.
Exposure of humans to monomethylmercury (MMHg) occurs primarily through consumption of marine fish, yet there is limited understanding concerning the bioaccumulation and biogeochemistry of MMHg in the biologically productive coastal ocean. We examined the cycling of MMHg in sediments at three locations on the continental shelf of southern New England in September 2003. MMHg in surface sediments is related positively to inorganic Hg (Hg(II) = total Hg − MMHg), the geographical distribution of which is influenced by organic material. Organic matter also largely controls the sediment-water partitioning of Hg species and governs the availability of dissolved Hg(II) for methylation. Potential gross rates of MMHg production, assayed by experimental addition of 200Hg to intact sediment cores, are correlated inversely with the distribution coefficient (KD) of Hg(II) and positively with the concentration of Hg(II), most probably as HgS0, in 0.2-μm filtered pore water of these low-sulfide deposits. Moreover, the efflux of dissolved MMHg to overlying water (i.e., net production at steady state) is correlated with the gross potential rate of MMHg production in surface sediments. These results suggest that the production and efflux of MMHg from coastal marine sediments is limited by Hg(II), loadings of which presumably are principally from atmospheric deposition to this region of the continental shelf. The estimated diffusive flux of MMHg from the shelf sediments averages 9 pmol m−2 d−1. This flux is comparable to that required to sustain the current rate of MMHg accumulation by marine fish, and may be enhanced by the efflux of MMHg from near-shore deposits contaminated more substantially with anthropogenic Hg. Hence, production and subsequent mobilization of MMHg from sediments in the coastal zone may be a major source of MMHg to the ocean and marine biota, including fishes consumed by humans.  相似文献   

4.
Pyrite dissolution and interaction with Fe(II), Co(II), Eu(III) and U(VI) have been studied under anoxic conditions by solution chemistry and spectroscopic techniques. Aqueous data show a maximal cation uptake above pH 5.5. Iron (II) uptake can explain the non-stoichiometric [S]aq/[Fe]aq ratios often observed during dissolution experiments. Protonation data corrected for pyrite dissolution resulted in a proton site density of 9 ± 3 sites nm−2. Concentration isotherms for Eu(III) and U(VI) sorption on pyrite indicate two different behaviours which can be related to the contrasted redox properties of these elements. For Eu(III), sorption can be explained by the existence of a unique site with a saturation concentration of 1.25 × 10−6 mol g−1. In the U(VI) case, sorption seems to occur on two different sites with a total saturation concentration of 4.5 × 10−8 mol g−1. At lower concentration, uranium reduction occurs, limiting the concentration of dissolved uranium to the solubility of UO2(s).Scanning electron microscopy and micro-Raman spectrometry of U(VI)-sorbed pyrite indicate a heterogeneous distribution of U at the pyrite surface and a close association with oxidized S. X-ray photoelectron spectroscopy confirms the partial reduction of U and the formation of a hyperstoichiometric UO2+x(s). Our results are consistent with a chemistry of the pyrite surface governed not by Fe(II)-bound hydroxyl groups, but by S groups which can either sorb cations and protons, or sorb and reduce redox-sensitive elements such as U(VI).  相似文献   

5.
The contents of different organic matter components and dissolved organic matter (DOM) release kinetics of the sediments from the middle and lower reaches of the Yangtze River region were investigated, and their relationships discussed. The results show that organic C (OC) ranged from 8.14 to 43.65 g kg−1, dissolved organic C (DOC) from 0.38 to 1.38 g kg−1, active organic C (AOC) from 1.12 to 4.45 g kg−1, heavy fraction organic C (HFOC) from 6.86 to 39.08 g kg−1, accounting for 2.42-9.34%, 8.66-29.72% and 84.29-93.18% of OC, respectively. With increasing of OC content the ratios of DOC to OC and AOC to OC decreased. The contents of AOC, DOC, light fraction organic C (LFOC) and their contribution ratios to OC in studied sediments were higher than those reported in soils. The DOM release process of the studied sediments includes rapid and slow stages, and the rapid release occurred within 30 min, mainly in 5 min. The DOM release kinetic data in this investigation can be best fitted by the Power Function model. The correlations between total N (TN), total P (TP), OC, DOC, AOC, LFOC, HFOC and the DOM release kinetic parameters (k, c, a, b, rate30) of the sediments were significant. There were also significant correlations between TN, TP, OC, DOC, LFOC and HFOC in sediments. So the DOM release from sediment was not only related to the OC content, but also related to the organic matter composition characteristics, especially the contents of DOC, AOC and LFOC.  相似文献   

6.
The distribution, partition and speciation of mercury (Hg) were studied along the redox gradient of an anthropogenically perturbed tropical estuary, the Sinnamary Estuary in French Guiana. This system is a partially mixed estuary characterized by an anoxic freshwater end-member, while the marine end-member consists of the Amazon Plume.The set up of an artificial oxygenation system in the anoxic freshwater end-member generates sharp gradients of major chemical species (iron, sulfides, etc.) coupled with intense organic matter (OM) turnover. The coexistence of oxygenated waters and dissolved sulfides in an organic rich environment depicts the Upper Sinnamary Estuary (USE: part of Sinnamary Estuary under the tidal influence but upstream of the salt intrusion) as a potential site for Hg methylation. The concentrations of all mercury compounds (HgT) in the unfiltered samples (HgTUNF), in the dissolved (HgTD) and particulate (HgTP) phases of the USE average 11 ± 3, 6 ± 2 and 5 ± 3 (i.e. 600 ± 200 pmol g−1) pmol L−1, respectively. Average concentrations of monomethylmercury (MMHg) in the unfiltered (MMHgUNF), dissolved (MMHgD) and particulate (MMHgP) phases were 3.7 ± 1.0, 2.0 ± 0.9 and 1.8 ± 1.2 (i.e. 220 ± 130 pmol g−1) pmol L−1, respectively. Water oxygenation and sulfides concentrations emerged to play a critical role in controlling MMHg levels. Additionally, iron cycling, acid-base mechanisms, and redox-dependent processes were involved in the MMHg partitioning between phases.Overall, the USE constitutes a biogeochemical reactor that gathers partitioning and methylation processes. The permanent MMHg inputs from the anoxic freshwater end-member combined with the intense endogenous Hg methylation ensures high-MMHg levels in both dissolved and particulate phases. To illustrate, the USE exports 60 ± 20% more MMHgUNF than it imports: 5.5 ± 0.7 vs. 3.5 ± 1.2 kg year−1.  相似文献   

7.
The role of the major biogeochemical processes in Hg cycling at the sediment–water interface was investigated in the Grado Lagoon (Northern Adriatic Sea). This wetland system has been extensively contaminated from the Idrija Hg Mine (Slovenia) through the Isonzo River suspended load carried by tidal fluxes. Three approaches were used to study the sediment–water exchange of total Hg (THg), methylmercury (MeHg), reactive Hg (RHg) and dissolved gaseous Hg (DGHg): (1) estimation of diffusive fluxes from porewater and overlying water concentrations, (2) measurements of benthic fluxes using a deployed light benthic chamber in situ and (3) measurements of benthic fluxes during oxic–anoxic transition with a laboratory incubation experiment. The THg solid phase, ranging between 9.5 and 14.4 μg g−1, showed slight variability with depth and time. Conversely, MeHg contents were highest (up to 21.9 ng g−1) at the surface; they tended to decrease to nearly zero concentration with depth, thus suggesting that MeHg production and accumulation occur predominantly just below the sediment–water interface. Porewater MeHg concentrations (0.9–7.9 ng L−1, 0.15–15% of THg) varied seasonally; higher contents were observed in the warmer period. The MeHg diffusive fluxes (up to 17 ng m−2 day−1) were similar to those in the nearby Gulf of Trieste [Covelli, S., Horvat, M., Faganeli, J., Brambati, A., 1999. Porewater distribution and benthic flux of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuar. Coast. Shelf Sci. 48, 415–428], although the lagoon sediments contained four-fold higher THg concentrations. Conversely, the THg diffusive fluxes in the lagoon (up to 110 ng m−2 day−1) were one- to two-fold higher than those previously estimated for the Gulf of Trieste. The diurnal MeHg benthic fluxes were highest in summer at both sites (41,000 and 33,000 ng m−2 day−1 at the fishfarm and in the open lagoon, respectively), thus indicating the influence of temperature on microbial processes. The diurnal variations of dissolved THg and especially MeHg were positively correlated with O2 and inversely with DIC, suggesting an important influence of benthic photosynthetic activities on lagoon benthic Hg cycling, possibly through the production of organic matter promptly available for methylation. The results from the dark chamber incubated in the laboratory showed that the regeneration of dissolved THg was slightly affected by the oxic–anoxic transition. Conversely, the benthic flux of MeHg was up to 15-fold higher in sediments overlain by O2 depleted waters. In the anoxic phase, the MeHg fluxes proceeded in parallel with Fe fluxes and the methylated form reached approximately 100% of dissolved THg. The MeHg is mostly released into overlying water (mean recycling efficiency of 89%) until the occurrence of sulphide inhibition, due to scavenging of the available Hg substrate for methylation. The results suggest that sediments in the Grado Lagoon, especially during anoxic events, should be considered as a primary source of MeHg for the water column.  相似文献   

8.
Lake Iso Valkjärvi (southern Finland, Europe) was divided in two with a plastic curtain in 1991. One half was neutralized with CaCO3, and the other acted as a control. Mercury concentrations of perch (Perca fluviatilis) and northern pike (Esox lucius) in the limed and control side of the lake were studied both before and after the treatment. Average Hg concentrations of perch and pike were 0.40 and 1.2 μg g−1 (ww) in the early 1980s and 0.25 and 0.72 μg g−1 (ww) a decade later at the time of liming. Ten years after the liming the Hg concentrations of perch in the limed and control sides of the lake were 0.21 and 0.28 μg g−1 (ww) and those of pike were 0.69 and 0.43 μg g−1 (ww), respectively. Nitrogen isotope ratios (δ15N) for perch in the sampling period 2002–2004 showed wide variation suggesting variable trophic positions for individual fish. Pike formed two groups according to their δ15N-values, suggesting that zoobenthos dominated the diet of pike around 20 cm in length and fish that of the larger pikes. Because the δ15N-values of fish were at similar levels in the limed and control sides of L. Iso Valkjärvi, differences in food web structure cannot account for the different fish Hg concentrations. A more likely explanation is water quality induced differences in the dynamics and bioavailability of Hg, leading to decreased formation of methyl Hg.  相似文献   

9.
We present here the first mercury speciation study in the water column of the Southern Ocean, using a high-resolution south-to-north section (27 stations from 65.50°S to 44.00°S) with up to 15 depths (0-4440 m) between Antarctica and Tasmania (Australia) along the 140°E meridian. In addition, in order to explore the role of sea ice in Hg cycling, a study of mercury speciation in the “snow-sea ice-seawater” continuum was conducted at a coastal site, near the Australian Casey station (66.40°S; 101.14°E). In the open ocean waters, total Hg (HgT) concentrations varied from 0.63 to 2.76 pmol L−1 with “transient-type” vertical profiles and a latitudinal distribution suggesting an atmospheric mercury source south of the Southern Polar Front (SPF) and a surface removal north of the Subantartic Front (SAF). Slightly higher mean HgT concentrations (1.35 ± 0.39 pmol L−1) were measured in Antarctic Bottom Water (AABW) compared to Antarctic Intermediate water (AAIW) (1.15 ± 0.22 pmol L−1). Labile Hg (HgR) concentrations varied from 0.01 to 2.28 pmol L−1, with a distribution showing that the HgT enrichment south of the SPF consisted mainly of HgR (67 ± 23%), whereas, in contrast, the percentage was half that in surface waters north of PFZ (33 ± 23%). Methylated mercury species (MeHgT) concentrations ranged from 0.02 to 0.86 pmol L−1. All vertical MeHgT profiles exhibited roughly the same pattern, with low concentrations observed in the surface layer and increasing concentrations with depth up to an intermediate depth maximum. As for HgT, low mean MeHgT concentrations were associated with AAIW, and higher ones with AABW. The maximum of MeHgT concentration at each station was systematically observed within the oxygen minimum zone, with a statistically significant MeHgTvs Apparent Oxygen Utilization (AOU) relationship (p < 0.001). The proportion of HgT as methylated species was lower than 5% in the surface waters, around 50% in deep waters below 1000 m, reaching a maximum of 78% south of the SPF. At Casey coastal station HgT and HgR concentrations found in the “snow-sea ice-seawater” continuum were one order of magnitude higher than those measured in open ocean waters. The distribution of HgT there suggests an atmospheric Hg deposition with snow and a fractionation process during sea ice formation, which excludes Hg from the ice with a parallel Hg enrichment of brine, probably concurring with the Hg enrichment of AABW observed in the open ocean waters. Contrastingly, MeHgT concentrations in the sea ice environment were in the same range as in the open ocean waters, remaining below 0.45 pmol L−1. The MeHgT vertical profile through the continuum suggests different sources, including atmosphere, seawater and methylation in basal ice. Whereas HgT concentrations in the water samples collected between the Antarctic continent and Tasmania are comparable to recent measurements made in the other parts of the World Ocean (e.g., Soerensen et al., 2010), the Hg species distribution suggests distinct features in the Southern Ocean Hg cycle: (i) a net atmospheric Hg deposition on surface water near the ice edge, (ii) the Hg enrichment in brine during sea ice formation, and (iii) a net methylation of Hg south of the SPF.  相似文献   

10.
Dissolution of cinnabar (HgS) in the presence of natural organic matter   总被引:2,自引:0,他引:2  
Cinnabar (HgS) dissolution rates were measured in the presence of 12 different natural dissolved organic matter (DOM) isolates including humic, fulvic, and hydrophobic acid fractions. Initial dissolution rates varied by 1.3 orders of magnitude, from 2.31 × 10−13 to 7.16 × 10−12 mol Hg (mg C)−1 m−2s−1. Rates correlate positively with three DOM characteristics: specific ultraviolet absorbance (R2 = 0.88), aromaticity (R2 = 0.80), and molecular weight (R2 = 0.76). Three experimental observations demonstrate that dissolution was controlled by the interaction of DOM with the cinnabar surface: (1) linear rates of Hg release with time, (2) significantly reduced rates when DOM was physically separated from the surface by dialysis membranes, and (3) rates that approached constant values at a specific ratio of DOM concentration to cinnabar surface area, suggesting a maximum surface coverage by dissolution-reactive DOM. Dissolution rates for the hydrophobic acid fractions correlate negatively with sorbed DOM concentrations, indicating the presence of a DOM component that reduced the surface area of cinnabar that can be dissolved. When two hydrophobic acid isolates that enhanced dissolution to different extents were mixed equally, a 20% reduction in rate occurred compared to the rate with the more dissolution-enhancing isolate alone. Rates in the presence of the more dissolution-enhancing isolate were reduced by as much as 60% when cinnabar was prereacted with the isolate that enhanced dissolution to a lesser extent. The data, taken together, imply that the property of DOM that enhances cinnabar dissolution is distinct from the property that causes it to sorb irreversibly to the cinnabar surface.  相似文献   

11.
Brazil has extensive sugar cane monocultures, which significantly alter hydrogeochemical material fluxes. We studied dissolved organic matter (OM) fluxes in the Manguaba lagoon-estuary system, which drains a sugar cane monoculture-dominated hinterland and discharges into the Atlantic coastal ocean. The OM fluxes into the lagoon originate from baseflow, field runoff and sugar cane factory effluents. In the study, dissolved organic carbon (DOC) concentration, δ13C DOC and UV absorbance were analysed along a freshwater-seawater salinity gradient that encompasses river (DOC 9-11 mg l−1, δ13C −22.2‰ to −25.5‰); lagoon (4-11 mg l−1, −20.5‰ to −24.8‰); estuary (3-9 mg l−1, −22.6‰ to −25.3‰) and coastal waters (1.64 mg l−1, −21‰) with different intra-seasonal runoff conditions. We used the carbon isotope data to quantify the sugar cane derived DOC. Where river water meets brackish lagoon water, substantial loss of DOC occurs during rainy conditions, when suspended sediment from eroded fields in the river is very high. During dry weather, at much lower suspension levels, DOC increases, however, presumably from addition of photolysed resuspended sedimentary OM. In the estuary, mixing of DOC is strictly conservative. Ca. 1/3 of riverine DOM discharged into the lagoon has a sugar cane source. Within the lagoon on avg. 20% of the bulk DOM is comprised of sugar cane DOM, whereas during heavy rainfall the amount increases to 31%, due to intensified drainage flow and soil erosion. In the estuary, 14-26% is of sugar cane origin. The sugar cane-derived component follows the mixing patterns of bulk DOM.  相似文献   

12.
Concentrations of atmospheric Hg species, elemental Hg (Hg°), reactive gaseous Hg (RGM), and fine particulate Hg (Hg-PM2.5) were measured at a coastal site near Weeks Bay, Alabama from April to August, 2005 and January to May, 2006. Mean concentrations of the species were 1.6 ± 0.3 ng m−3, 4.0 ± 7.5 pg m−3 and 2.7 ± 3.4 pg m−3, respectively. A strong diel pattern was observed for RGM (midday maximum concentrations were up to 92.7 pg m−3), but not for Hg° or Hg-PM2.5. Elevated RGM concentrations (>25 pg m−3) in April and May of 2005 correlated with elevated average daytime O3 concentrations (>55 ppbv) and high light intensity (>500 W m−2). These conditions generally corresponded with mixed continental-Gulf and exclusively continental air mass trajectories. Generally lower, but still elevated, RGM peaks observed in August, 2005 and January–March, 2006 correlated significantly (p < 0.05) with peaks in SO2 concentration and corresponded to periods of high light intensity and lower average daytime O3 concentrations. During these times air masses were dominated by trajectories that originated over the continent. Elevated RGM concentrations likely resulted from photochemical oxidation of Hg° by atmospheric oxidants. This process may have been enhanced in and by the near-shore environment relative to inland sites. The marine boundary layer itself was not found to be a significant source of RGM.  相似文献   

13.
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering.  相似文献   

14.
As paleoceanographic archives, deep sea coral skeletons offer the potential for high temporal resolution and precise absolute dating, but have not been fully investigated for geochemical reconstructions of past ocean conditions. Here we assess the utility of skeletal P/Ca, Ba/Ca and U/Ca in the deep sea coral D. dianthus as proxies of dissolved phosphate (remineralized at shallow depths), dissolved barium (trace element with silicate-type distribution) and carbonate ion concentrations, respectively. Measurements of these proxies in globally distributed D. dianthus specimens show clear dependence on corresponding seawater properties. Linear regression fits of mean coral Element/Ca ratios against seawater properties yield the equations: P/Cacoral (μmol/mol) = (0.6 ± 0.1) P/Casw(μmol/mol) - (23 ± 18), R2 = 0.6, n = 16 and Ba/Cacoral(μmol/mol) = (1.4 ± 0.3) Ba/Casw(μmol/mol) + (0 ± 2), R2 = 0.6, n = 17; no significant relationship is observed between the residuals of each regression and seawater temperature, salinity, pressure, pH or carbonate ion concentrations, suggesting that these variables were not significant secondary dependencies of these proxies. Four D. dianthus specimens growing at locations with Ωarag ? 0.6 displayed markedly depleted P/Ca compared to the regression based on the remaining samples, a behavior attributed to an undersaturation effect. These corals were excluded from the calibration. Coral U/Ca correlates with seawater carbonate ion: U/Cacoral(μmol/mol) = (−0.016 ± 0.003) (μmol/kg) + (3.2 ± 0.3), R2 = 0.6, n = 17. The residuals of the U/Ca calibration are not significantly related to temperature, salinity, or pressure. Scatter about the linear calibration lines is attributed to imperfect spatial-temporal matches between the selected globally distributed specimens and available water column chemical data, and potentially to unresolved additional effects. The uncertainties of these initial proxy calibration regressions predict that dissolved phosphate could be reconstructed to ±0.4 μmol/kg (for 1.3-1.9 μmol/kg phosphate), and dissolved Ba to ±19 nmol/kg (for 41-82 nmol/kg Basw). Carbonate ion concentration derived from U/Ca has an uncertainty of ±31μmol/kg (for ). The effect of microskeletal variability on P/Ca, Ba/Ca, and U/Ca was also assessed, with emphasis on centers of calcification, Fe-Mn phases, and external contaminants. Overall, the results show strong potential for reconstructing aspects of water mass mixing and biogeochemical processes in intermediate and deep waters using fossil deep-sea corals.  相似文献   

15.
Three experimental techniques – ion exchange, liquid–liquid extraction with competitive ligand exchange, and solid-phase extraction with competitive ligand exchange (CLE–SPE) – were evaluated as methods for determining conditional stability constants (K) for the binding of mercury (Hg2+) to dissolved organic matter (DOM). To determine the utility of a given method to measure stability constants at environmentally relevant experimental conditions, experimental results should meet three criteria: (1) the data must be experimentally valid, in that they were acquired under conditions that meet all the requirements of the experimental method, (2) the Hg:DOM ratio should be determined and it should fall within levels that are consistent with environmental conditions, and (3) the stability constants must fall within the detection window of the method. The ion exchange method was found to be limited by its detection window, which constrains the method to stability constants with log K values less than about 14. The liquid–liquid extraction method was found to be complicated by the ability of Hg–DOM complexes to partition into the organic phase. The CLE–SPE method was found to be the most suitable of these methods for the measurement of Hg–DOM stability constants. Stability constants for DOM isolates measured using the CLE–SPE method at environmentally relevant Hg:DOM ratios were log K = 25–30 (M−1). These values are consistent with the strong Hg2+ binding expected for reduced S-containing binding sites.  相似文献   

16.
The hexa-aqua complexes [Fe(H2O)6−mn(OH)n](2−n)+n = 0 → 3, m = 0 → 6 − n; [Fe(H2O)6−mn(OH)n](3−n)+n = 0 → 4, m = 0 → 6 − n were investigated by ab-initio methods with the aim of determining their ground-state geometries, total energies and vibrational properties by treating their inner solvation shell as part of their gaseous precursor1 (or “hybrid approach”). After a gas-phase energy optimization within the Density Functional Theory (DFT), the molecules were surrounded by a dielectric representing the Reaction Field through an implicit Polarized Continuum Model (PCM). The exploration of several structural ligand arrangements allowed us to quantify the relative stabilities of the various ionic species and the role of the various forms of energy (solute-solvent electronic interaction, cavitation, dispersion, repulsion, liberation free energy) that contribute to stabilize the aqueous complexes. A comparison with experimental thermochemistries showed that ab-initio gas-phase + solvation energies are quite consistent with experimental evidence and allow the depiction of the most stable form in solution and the eventual configurational disorder of water/hydroxyl species around central cations. A vibrational analysis performed on the 54Fe, 56Fe, 57Fe and 58Fe isotopomers indicated important separative effects systematically affected by the extent of deprotonation. The role of the system’s redox state (fO2) and acidity (pH) on the isotopic imprinting of the aqueous species in solution was investigated by coupling the separative effects with speciation calculations. The observed systematics provided a tool of general utility in the interpretation of the iron isotopic signature of natural waters. Applications to the interpretation of isotopic fractionation in solution dictated by redox equilibria and to the significance of the Fe-isotopic imprinting of Banded Iron Formations are given.  相似文献   

17.
The distribution and speciation of mercury (Hg) in the water column, the inputs (wet deposition and tributaries) and the outputs (atmospheric evasion and outlet) of an artificial partially anoxic tropical lake (Petit-Saut reservoir, French Guiana) were investigated on a seasonal basis in order to appraise the cycling and transformations of this metal. The total mercury (HgT) concentrations in the oxygenated epilimnetic waters averaged 5 ± 3 pmol L−1 in the unfiltered samples (HgTUNF) and 4 ± 2 pmol L−1 in the dissolved (HgTD) phase (<0.45 μm). On average, the monomethylmercury (MMHg) constituted 8%, 40% and 18% of the HgT in the dissolved phase, the particulate suspended matter and in the unfiltered samples, respectively. Covariant elevated concentrations of particulate MMHg and chlorophyll a in the epilimnion suggest that phytoplankton is an active component for the MMHg transfer in the lake. In the anoxic hypolimnion the HgTUNF averages 13 ± 6 pmol L−1 and the HgTD 8 ± 4 pmol L−1. The averages of MMHgP and MMHgD in hypolimnetic waters were two and three times the corresponding values of the epilimnion, 170 ± 90 pmol g−1 and 0.9 ± 0.5 pmol L−1, respectively. In the long dry and wet seasons, at the flooded forest and upstream dam sampling stations, the vertical profiles of MMHgD concentrations accounted for two distinct maxima: one just below the oxycline and the other near the benthic interface. Direct wet atmospheric deposition accounted for 14 moles yr−1 HgTUNF, with 0.7 moles yr−1 as MMHgUNF, while circa 76 moles yr−1 of HgTUNF, with 4.7 moles yr−1 as MMHgUNF, coming from tributaries. Circa 78 moles (∼17% as MMHg) are annually exported through the dam, while 23 moles yr−1 of Hg0 evolve in the atmosphere. A mass balance calculation suggests that the endogenic production of MMHgUNF attained 8.1 moles yr−1, corresponding to a methylation rate of 0.06% d−1. As a result, the Petit-Saut reservoir is a large man-made reactor that has extensively altered mercury speciation in favor of methylated species.  相似文献   

18.
The solubility of baddeleyite (ZrO2) and the speciation of zirconium have been investigated in HF-bearing aqueous solutions at temperatures up to 400 °C and pressures up to 700 bar. The data obtained suggest that in HF-bearing solutions zirconium is transported mainly in the form of the hydroxyfluoride species ZrF(OH)3° and ZrF2(OH)2°. Formation constants determined for these species (Zr4+ + nF + mOH = ZrFn(OH)m°) range from 43.7 at 100 °C to 46.41 at 400 °C for ZrF(OH)3°, and from 37.25 at 100 °C to 43.88 at 400 °C for ZrF2(OH)2°.Although the solubility of ZrO2 is retrograde with respect to temperature, the measured concentrations of Zr are orders of magnitude higher than those predicted from theoretical extrapolations based on simple fluoride species (ZrF3+-ZrF62−). Model calculations performed for zircon show that zirconium can be transported by aqueous fluids in concentrations sufficient to account for the concentration of this metal at conditions commonly encountered in fluoride-rich natural hydrothermal systems.  相似文献   

19.
The subsurface behaviour of 99Tc, a contaminant resulting from nuclear fuels reprocessing, is dependent on its valence (e.g., IV or VII). Abiotic reduction of soluble Tc(VII) by Fe(II)(aq) in pH 6-8 solutions was investigated under strictly anoxic conditions using an oxygen trap (<7.5 × 10−9 atm O2). The reduction kinetics were strongly pH dependent. Complete and rapid reduction of Tc(VII) to a precipitated Fe/Tc(IV) form was observed when 11 μmol/L of Tc(VII) was reacted with 0.4 mmol/L Fe(II) at pH 7.0 and 8.0, while no significant reduction was observed over 1 month at pH 6.0. Experiments conducted at pH 7.0 with Fe(II)(aq) = 0.05-0.8 mmol/L further revealed that Tc(VII) reduction was a combination of homogeneous and heterogeneous reaction. Heterogeneous reduction predominated after approximately 0.01 mmol/L of Fe(II) was oxidized. The heterogeneous reaction was more rapid, and was catalyzed by Fe(II) that adsorbed to the Fe/Tc(IV) redox product. Wet chemical and Fe-X-ray absorption near edge spectroscopy measurements (XANES) showed that Fe(II) and Fe(III) were present in the Fe/Tc(IV) redox products after reaction termination. 57Fe-Mössbauer, extended X-ray adsorption fine structure (EXAFS), and transmission electron microscopy (TEM) measurements revealed that the Fe/Tc(IV) solid phase was poorly ordered and dominated by Fe(II)-containing ferrihydrite with minor magnetite. Tc(IV) exhibited homogeneous spatial distribution within the precipitates. According to Tc-EXAFS measurements and structural modeling, its molecular environment was consistent with an octahedral Tc(IV) dimer bound in bidentate edge-sharing mode to octahedral Fe(III) associated with surface or vacancy sites in ferrihydrite. The precipitate maintained Tc(IV)aq concentrations that were slightly below those in equilibrium with amorphous Tc(IV)O2·nH2O(s). The oxidation rate of sorbed Tc(IV) in the Fe/Tc precipitate was considerably slower than Tc(IV)O2·nH2O(s) as a result of its intraparticle/intragrain residence. Precipitates of this nature may form in anoxic sediments or groundwaters, and the intraparticle residence of sorbed/precipitated Tc(IV) may limit 99Tc remobilization upon the return of oxidizing conditions.  相似文献   

20.
Sulfur K-edge X-ray absorption near edge structure (XANES) spectra were recorded for experimental glasses of various compositions prepared at different oxygen fugacities (fO2) in one-atmosphere gas-mixing experiments at 1400 °C. This sample preparation method only results in measurable S concentrations under either relatively reduced (log fO2 < −9) or oxidised (log fO2 > −2) conditions. The XANES spectra of the reduced samples are characterised by an absorption edge crest at 2476.4 eV, typical of S2−. In addition, spectra of Fe-bearing compositions exhibit a pronounced absorption edge shoulder. Spectra for all the Fe-free samples are essentially identical, as are the spectra for the Fe-bearing compositions, despite significant compositional variability within each group. The presence of a sulfide phase, such as might exsolve on cooling, can be inferred from a pre-edge feature at 2470.5 eV.The XANES spectra of the oxidised samples are characterised by an intense transition at 2482.1 eV, typical of the sulfate anion SO42−. Sulfite (SO32−) has negligible solubility in silicate melts at low pressures. The previous identification of sulfite species in natural glass samples is attributed to an artefact of the analysis (photoreduction of S6+). S4+ does, however, occur unambiguously with S6+ in Fe-free and Fe-poor compositions prepared in equilibrium with CaSO4 at 4-16 kbar, and when buffered with Re/ReO2 at 10 kbar. Solubility of S4+ thus requires partial pressures of SO2 considerably in excess of 1 bar. A number of experiments were undertaken in an attempt to access intermediate fO2s more applicable to terrestrial volcanism. Although these were largely unsuccessful, S2− and S6+ were found to coexist in some samples that were not in equilibrium with the imposed fO2.The XANES spectra of natural olivine-hosted melt inclusions and submarine glasses representative of basalts at, or close to, sulfide saturation show mainly dissolved S2−, but with minor sulfate, and additionally a peak at 2469.5 eV, which, although presumably due to immiscible sulfide, is 1 eV lower than that typical of FeS. These sulfate and sulfide-related peaks disappear with homogenisation of the inclusions by heating to 1200 °C followed by rapid quenching, suggesting that both these features are a result of cooling under natural conditions. The presence of small amounts of sulfate in otherwise reduced basaltic magmas may be explained by the electron exchange reaction: S2− + 8Fe3+ = S6+ + 8Fe2+, which is expected to proceed strongly to the right with decreasing temperature. This reaction would explain why S2− and S6+ are frequently found together despite the very limited fO2 range over which they are thermodynamically predicted to coexist. The S XANES spectra of water-rich, highly oxidised, basaltic inclusions hosted in olivine from Etna and Stromboli confirm that nearly all S is dissolved as sulfate, explaining their relatively high S contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号