首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We have carried out a Pb double-spike and Lu-Hf isotope study of clinopyroxenes from spinel-facies mantle xenoliths entrained in Cenozoic intraplate continental volcanism of the French Massif Central (FMC). U-Th-Pb and Lu-Hf isotope systematics verify the existence of different lithospheric domains beneath the northern and southern FMC. Northern FMC clinopyroxenes have extreme Lu/Hf ratios and ultra-radiogenic Hf (εHf = +39.6 to +2586) that reflect ∼15-25% partial melting in Variscan times (depleted mantle model ages ∼360 Ma). Zr, Hf and Th abundances in these clinopyroxenes are low and unaffected by hydrous/carbonatitic metasomatism that overprinted LILE and light REE abundances and caused decoupling of Lu/Hf-Sm/Nd ratios and Nd-Hf isotopes (εNd = +2.1 to +91.2). Pb isotopes of northern FMC clinopyroxenes are radiogenic (206Pb/204Pb > 19), and typically more so than the host intraplate volcanic rocks. 238U/204Pb ratios range from 17 to 68, and most samples have distinctively low 232Th/238U (<1) and 232Th/204Pb (3-22). Clinopyroxenes from southern FMC lherzolites are generally marked by overall incompatible trace element enrichment including Zr, Hf and Th abundances, and have Pb isotopes that are similar to or less radiogenic than the host volcanic rocks. Hf isotope ratios are less radiogenic (εHf = +5.4 to +41.5) than northern FMC mantle and have been overprinted by silicate-melt-dominated metasomatism that affected this part of FMC mantle. Major element and Lu concentrations of clinopyroxenes from southern FMC harzburgites are broadly similar to northern FMC clinopyroxenes and suggest they experienced similar degrees of melt extraction as northern FMC mantle. 238U/204Pb (53-111) and 232Th/204Pb ratios (157-355) of enriched clinopyroxenes from the southern FMC are extreme and significantly higher than the intraplate volcanic rocks. In summary, mantle peridotites from different parts of the FMC record depletion at ∼360 Ma during Variscan subduction, followed by differing styles of enrichment. Northern FMC mantle was overprinted by a fluid/carbonatitic metasomatic agent that carried elements like U, Pb, Sr and light REE. In contrast, much of the southern FMC mantle was metasomatised by a small-degree partial silicate melt resulting in enrichment of all incompatible trace elements. The extreme mantle 238U/204Pb (northern and southern FMC), 232Th/238U (northern FMC) and 232Th/204Pb ratios (southern FMC), coupled with unremarkable present-day Pb isotope ratios, constrain the timing of enrichment. Mantle metasomatism is a young feature related to melting of the upwelling mantle responsible for Cenozoic FMC volcanism, rather than subduction-related metasomatism intimately associated with mantle depletion during the Variscan orogeny. The varying metasomatic styles relate to pre-existing variations in the thickness of the continental lithospheric lid, which controlled the extent to which upwelling mantle could ascend and melt. In the northern FMC, a thicker and more refractory lithospheric lid (?80 km) only allowed incipient degrees of melting resulting in fluid/carbonatitic metasomatism of the overlying sub-continental lithospheric mantle. The thinner lithospheric lid of the southern FMC (?70 km) allowed larger degrees of melting and resulted in silicate-melt-dominated metasomatism, and also focused the location of the volcanic fields of the FMC above this region.  相似文献   

2.
Minerals from peridotites are known to be affected by trace element contamination on their grain boundaries. In this contribution we investigate the extent and origin of exogenous contamination associated with mantle clinopyroxenes from various localities (Middle Atlas, Beni Bousera [Morocco], Pyrenean Massif, Massif Central [France]) and test the efficacy of different leaching methodologies used to remove this contamination. In doing so we present new U-Th-Pb (double-spike) isotope and trace elemental data of clinopyroxenes and their leachates from spinel-facies sub-continental lithospheric mantle (SCLM, n = 18).Sequential leaching and dissolution of one clinopyroxene separate shows that multiple and short leaching attacks with dilute HCl at moderate temperatures (e.g., 120 °C) interspersed with rigorous ultra-pure water washes do not induce elemental fractionation and are sufficient to remove grain-boundary contamination. Short attacks with very dilute mixtures of HF and HCl induced strong parent/daughter elemental fractionation and significant elemental loss prior to the clinopyroxene digestion with HF/HNO3. Such leaching is not suitable for studies investigating parent/daughter elemental or isotope ratios of mantle clinopyroxenes. Fluoride co-precipitates that formed in the presence of moderately dilute HF, used during leaching and typical HF/HNO3 digestions, are an important sink for all trace elements studied here and lock up at least 60% of the trace elements considered.A suite of clinopyroxene-leachate pairs from Moroccan peridotites confirm extreme grain-boundary contamination and show that up to 65% of U, 82% of Th and 91% of Pb, respectively, are of exogenous origin. Pb isotopes of all leachates considered and nearly all reconstructed unleached clinopyroxenes have highly positive Δ7/4 and 207Pb/204Pb-206Pb/204Pb systematics reminiscent of enriched mantle (particularly EM II), whereas the corresponding extensively leached clinopyroxenes have very different Pb isotope systematics (verified by replicate digestions). Furthermore, the leachates are often marked by remarkably high 232Th/238U (leachate ? bulk silicate Earth) in addition to 238U/204Pb and 232Th/204Pb that are seemingly consistent with depleted mantle (DM) and high 238U/204Pb (HIMU) mantle mixing. After leaching, clinopyroxenes may have highly elevated 238U/204Pb and 232Th/204Pb that are distinct from typical DM- and HIMU mantle, whereas corresponding leachates bear strong resemblance to anthropogenic Pb recovered from rainwater, snow and aerosols.In the light of the great potential of Pb isotope contamination associated with mantle clinopyroxene we have compiled literature data of mantle peridotites. These data seem to suggest that the SCLM is nearly devoid of HIMU signatures but ostensibly represents an important repository for enriched mantle signatures. However, the dominance of enriched mantle is not verified when 87Sr/86Sr and 208Pb/204Pb ratios for the same database are considered. We highlight that the scarcity of HIMU-like SCLM and the alleged dominance of EM in continental roots may be reconciled if the current Pb isotope database of SCLM contains samples that were insufficiently leached prior to digestion and thus are contaminated by anthropogenic Pb. We stress the importance of replicate digestions, adequate leaching and leachate analysis to verify the U-Th-Pb elemental and isotope systematics of any given mantle (-derived) sample.  相似文献   

3.
Precise measurements of 238U-230Th-226Ra disequilibria in lavas erupted within the last 100 yr on Mt. Cameroon are presented, together with major and trace elements, and Sr-Nd-Pb isotope ratios, to unravel the source and processes of basaltic magmatism at intraplate tectonic settings. All samples possess 238U-230Th-226Ra disequilibria with 230Th (18-24%) and 226Ra (9-21%) excesses, and there exists a positive correlation in a (226Ra/230Th)-(230Th/238U) diagram. The extent of 238U-230Th-226Ra disequilibria is markedly different in lavas of individual eruption ages, although the (230Th/232Th) ratio is constant irrespective of eruption age. When U-series results are combined with Pb isotope ratios, negative correlations are observed in the (230Th/238U)-(206Pb/204Pb) and (226Ra/230Th)-(206Pb/204Pb) diagrams. Shallow magma chamber processes like magma mixing, fractional crystallization and wall rock assimilation do not account for the correlations. Crustal contamination is not the cause of the observed isotopic variations because continental crust is considered to have extremely different Pb isotope compositions and U/Th ratios. Melting of a chemically heterogeneous mantle might explain the Mt. Cameroon data, but dynamic melting under conditions of high DU and DU/DTh, long magma ascent time, or disequilibrium mineral/melt partitioning, is required. The most plausible scenario to produce the geochemical characteristics of Mt. Cameroon samples is the interaction of melt derived from the asthenospheric mantle with overlying sub-continental lithospheric mantle which has elevated U/Pb (>0.75) and Pb isotope ratios (206Pb/204Pb > 20.47) due to late Mesozoic metasomatism.  相似文献   

4.
Measurements of 238U-230Th-226Ra disequilibria, Sr-Nd-Pb-Hf isotopes and major-trace elements have been conducted for lavas erupted in the last quarter-millennium at Hekla volcano, Iceland. The volcanic rocks range from basalt to dacite. Most of the lavas (excluding dacitic samples) display limited compositional variations in radiogenic Sr-Nd-Pb-Hf isotopes (87Sr/86Sr = 0.70319-0.70322; 143Nd/144Nd = 0.51302-0.51305; 206Pb/204Pb = 19.04-19.06; 207Pb/204Pb = 15.53-15.54; 208Pb/204Pb = 38.61-38.65; 176Hf/177Hf = 0.28311-0.28312). All the samples possess (230Th/238U) disequilibrium with 230Th excesses, and they show systematic variations in (230Th/232Th) and (238U/232Th) ratios. The highest 226Ra excesses occur in the basalt and most differentiated andesite lavas, while some basaltic-andesite lavas have (226Ra/230Th) ratio that are close to equilibrium. The 238U-230Th-226Ra disequilibria variations cannot be produced by simple closed-system fractional crystallization with radioactive decay of 230Th and 226Ra in a magma chamber. A closed-system fractional crystallization model and assimilation and fractional crystallization (AFC) model indicate that the least differentiated basaltic andesites were derived from basalt by fractional crystallization with a differentiation age of ∼24 ± 11 kyr, whereas the andesites were formed by assimilation of crustal material and fractionation of the basaltic-andesites within 2 kyr. Apatite is inferred to play a key role in fractionating the parent-daughter nuclides in 230Th-238U and 226Ra-230Th to make the observed variations. Our proposed model is that several batches of basaltic-andesite magmas that formed by fractional crystallization of a basaltic melt from a deeper reservoir, were periodically injected into the shallow crust to form individual magma pockets, and subsequently modifying the original magma compositions via simultaneous assimilation and fractional crystallization. The assimilant is the dacitic melt, which formed by partial melting of the crust.  相似文献   

5.
This work addresses the isotopic heterogeneity of the Archean lithospheric mantle by the example of high-Mg, moderate-alkali, LILE and LREE-enriched Panozero sanukitoid massif, which is located in the Central Karelia, southeastern Baltic Shield. Initial Nd and Sr isotope characteristics were determined for mantle source of the massif. ?Nd(T) in the source are plotted below DM line, varying from + 0.7 to + 1.4 (+1.1, on average). The 87Sr/86Sr(T) ~ 0.7017 significantly exceeds that of depleted mantle and reflects change of Rb/Sr ratio in the source due to metasomatic reworking of mantle. Data on Pb isotope composition of potassium feldspars indicate that source of monzonites of the Panozero Massif had lower μ (238U/204Pb) = 8 and higher (238Th/232U) = 4.05 relative to primitive mantle.  相似文献   

6.
28 samples of Cenozoic volcanic rocks collected from Shandong Province have been dated by K-Ar method. They are mainly Neogene with an age range of 4–19 m. y. The basalts from Linqu and Yishui in west Shandong Province are Miocene and those from Penglai and Qixia in east Shandong Province are Miocene and Pliocene in age. The basalts from Wudi in north Shandong Province are Middle-Early Pleistocene in age. In each area the duration of volcanic eruption was estimated at about 2–3 m. y. Pb and Sr isotopic compositions and U, Th, Pb, Rb, Sr, and major elements in most of the samples were determined. The isotopic compositions are:206Pb/204Pb—16.92-18.48,207Pb/204Pb—15.30-15.59,208Pb/204Pb—37.83-38.54, and (87Sr/86Sr)i—0.70327-0.70632. There are some positive or negative linear correlations between206Pb/204Pb and207Pb/204Pb, Pb isotopes and Pb content, Pb isotopes and Sr isotopes, and Sr isotopes and other elements. The basaltic rocks from east and west Shandong Province have somewhat differences in isotopic composition and element content. The basalts probably are products of multi-stage evolution of the mantle. They have preserved the primary features of the source, although they were influenced, to some extent, by the contamination of crustal materials.  相似文献   

7.
Extreme U and Pb isotope variations produced by disequilibrium in decay chains of 238U and 232Th are found in calcite, opal/chalcedony, and Mn-oxides occurring as secondary mineral coatings in the unsaturated zone at Yucca Mountain, Nevada. These very slowly growing minerals (mm my−1) contain excess 206Pb and 208Pb formed from excesses of intermediate daughter isotopes and cannot be used as reliable 206Pb/238U geochronometers. The presence of excess intermediate daughter isotopes does not appreciably affect 207Pb/235U ages of U-enriched opal/chalcedony, which are interpreted as mineral formation ages.Opal and calcite from outer (younger) portions of coatings have 230Th/U ages from 94.6 ± 3.7 to 361.3 ± 9.8 ka and initial 234U/238U activity ratios (AR) from 4.351 ± 0.070 to 7.02 ± 0.12, which indicate 234U enrichment from percolating water. Present-day 234U/238U AR is ∼1 in opal/chalcedony from older portions of the coatings. The 207Pb/235U ages of opal/chalcedony samples range from 0.1329 ± 0.0080 to 9.10 ± 0.21 Ma, increase with microstratigraphic depth, and define slow long-term average growth rates of about 1.2-2.0 mm my−1, in good agreement with previous results. Measured 234U/238U AR in Mn-oxides, which pre-date the oldest calcite and opal/chalcedony, range from 0.939 ± 0.006 to 2.091 ± 0.006 and are >1 in most samples. The range of 87Sr/86Sr ratios (0.71156-0.71280) in Mn-oxides overlaps that in the late calcite. These data indicate that Mn-oxides exchange U and Sr with percolating water and cannot be used as a reliable dating tool.In the U-poor calcite samples, measured 206Pb/207Pb ratios have a wide range, do not correlate with Ba concentration as would be expected if excess Ra was present, and reach a value of about 1400, the highest ever reported for natural Pb. Calcite intergrown with opal contains excesses of both 206Pb and 207Pb derived from Rn diffusion and from direct α-recoil from U-rich opal. Calcite from coatings devoid of opal/chalcedony contains 206Pb and 208Pb excesses, but no appreciable 207Pb excesses. Observed Pb isotope anomalies in calcite are explained by Rn-produced excess Pb. The Rn emanation may strongly affect 206Pb-238U ages of slow-growing U-poor calcite, but should be negligible for dating fast-growing U-enriched speleothem calcite.  相似文献   

8.
9.
To examine the petrogenesis and sources of basalts from the Kolbeinsey Ridge, one of the shallowest locations along the global ridge system, we present new measurements of Nd, Sr, Hf, and Pb isotopes and U-series disequilibria on 32 axial basalts. Young Kolbeinsey basalts (full-spreading rate = 1.8 cm/yr; 67°05′-70°26′N) display (230Th/238U) < 1 and (230Th/238U) > 1 with (230Th/238U) from 0.95 to 1.30 and have low U (11.3-65.6 ppb) and Th (33.0 ppb-2.40 ppm) concentrations. Except for characteristic isotopic enrichment near the Jan Mayen region, the otherwise depleted Kolbeinsey basalts (e.g. 87Sr/86Sr = 0.70272-0.70301, εNd = 8.4-10.5, εHf = 15.4-19.6 (La/Yb)N = 0.28-0.84) encompass a narrow range of (230Th/232Th) (1.20-1.32) over a large range in (238U/232Th) (0.94-1.32), producing a horizontal array on a (230Th/232Th) vs. (238U/232Th) diagram and a large variation in (230Th/238U). However, the (230Th/238U) of the Kolbeinsey Ridge basalts (0.96-1.30) are inversely correlated with (234U/238U) (1.001-1.031). Samples with low (230Th/238U) and elevated (234U/238U) reflect alteration by seawater or seawater-derived materials. The unaltered Kolbeinsey lavas with equilibrium 234U/238U have high (230Th/238U) values (?1.2), which are consistent with melting in the presence of garnet. This is in keeping with the thick crust and anomalously shallow axial depth for the Kolbeinsey Ridge, which is thought to be the product of large degrees of melting in a long melt column. A time-dependent, dynamic melting scenario involving a long, slowly upwelling melting column that initiates well within the garnet peridotite stability zone can, in general, reproduce the (230Th/238U) and (231Pa/235U) ratios in uncontaminated Kolbeinsey lavas, but low (231Pa/235U) ratios in Eggvin Bank samples suggest eclogite involvement in the source for that ridge segment.  相似文献   

10.
We present U-series, Sr-Nd-Pb isotope, and trace element data from the two principal volcanic chains on Luzon Island, developed over oppositely dipping subduction zones, to explore melting and mass transfer processes beneath arcs. The Bataan (western) and Bicol (eastern) arcs are currently subducting terrigenous and pelagic sediments, respectively, which have different trace element and isotopic compositions. The range of (230Th/238U) disequilibria for both arcs is 0.85-1.15; only lavas from Mt. Mayon (Bicol arc) have 230Th activity excesses. Bataan lavas have higher 87Sr/86Sr and lower 143Nd/144Nd than Bicol lavas (87Sr/86Sr = 0.7042-0.7046, 143Nd/144Nd = 0.51281-0.51290 vs. 87Sr/86Sr = 0.70371-0.70391, 143Nd/144Nd = 0.51295-0.51301) and both arcs show steep linear arrays towards sediment values on 207Pb/204Pb vs. 206Pb/204Pb diagrams. Analysis of incompatible element and isotopic data allows identification of a sediment component that, at least in part, was transferred as a partial melt to the mantle wedge peridotite. Between 1% and 5% sediment melt addition can explain the isotopic and trace element variability in the rocks from both arcs despite the differences in sediment supply. We therefore propose that sediment transfer to the mantle wedge is likely mechanically or thermally limited. It follows that most sediments are either accreted, reside in the sub-arc lithosphere, or are recycled into the convecting mantle. However, whole-sale sediment recycling into the upper mantle is unlikely in light of the global mid-ocean ridge basalt data. Fluid involvement is more difficult to characterize, but overall the Bicol arc appears to have more fluid influence than the Bataan arc. Rock suites from each arc can be related by a dynamic melting process that allows for 230Th ingrowth, either by dynamic or continuous flux melting, provided the initial (230Th/232Th) of the source is ∼0.6-0.7. The implication of either model is that inclined arrays on the U-Th equiline diagram may not have chronologic significance. Modeling also suggests that U-series disequilibria are influenced by the tectonic convergence rate, which dictates mantle matrix flow. Thus with slower matrix flow there is a greater degree of 230Th ingrowth. While other factors such as prior mantle depletion and addition of a subducted component may explain some aspects of U-series data, an overall global correlation between tectonic convergence rate and the extent of U-Th disequilibria may originate from melting processes.  相似文献   

11.
We have investigated the potential of hübnerite for U-Pb dating. Hübnerite forms typically at medium to low-temperatures in a wide range of pneumatolytic-hydrothermal mineral deposits, particularly porphyry molybdenum and Sn-specialized granites. Hübnerite from the Sweet Home Mine (Alma, Colorado) formed in a Pb-rich, U-poor environment, but still developed relatively radiogenic Pb isotopic compositions. The low Pbcommon contents in hübnerite (0.075 to 0.155 ppm) demonstrate that Pb is efficiently excluded from the crystal lattice. In contrast, U may substitute for Mn. The U-Pb data of hübnerite scatter. Most of the scatter originates from samples with 206Pb/204Pb values below 50, where Pbblank contributes up to 30% to Pbtotal. Using the least radiogenic galena Pb, samples with 206Pb/204Pb values above 70 have overlapping 206Pb∗/238U and 207Pb∗/235U values and yield a 206Pb/238U age of 25.7 ± 0.3 Ma (2σ). Late stage apatite from the Sweet Home Mine yields a 206Pb/204Pb-238U/204Pb isochron corresponding to an age of 24.8 ± 0.5 Ma (2σ). A comparison of the U-Pb hübnerite ages with literature 40Ar/39Ar ages on earlier sericite and the U-Pb age on later apatite suggests that (i) hübnerite yields accurate U-Pb ages and (ii) the evolution of the Sweet Home mineralization from greisen-type mineralization to medium-temperature hydrothermal vein mineralization took place in a few hundred thousand years at most. Aqueous low-N2-bearing and aqueous inclusions in the dated hübnerite have homogenization temperatures between 325 and 356 °C and moderate salinity (up to 6.7 wt% NaCl equiv.). Thus, hübnerite represents one of the rare examples of a mineral that can be dated accurately and carries petrological information.  相似文献   

12.
The Davis Lake pluton (DLP, ~800 km2) of southwestern Nova Scotia, Canada, part of the large peraluminous South Mountain batholith of ca. 380 Ma (U/Pb zircon, Ar/Ar mica), consists of granite and subordinate topaz–muscovite leucogranite that hosts greisen tin-base metal mineralization. A new Pb–Pb isochron age for leucogranite from the most evolved part of the DLP indicates a crystallization age of 378±3.6 Ma, coincident with other radiometric ages of the DLP (Rb–Sr, Re–Os, Pb–Pb). The intrusion displays a compositional zonation defined by lead and strontium isotopic ratios, as well as some major elements (e.g., Si, F), incompatible trace elements (e.g., Li, Rb, Ta, U, Sn), and elemental ratios (e.g., K/Rb and Nb/Ta). The greisens and the leucogranites that host them are characterized by extreme radiogenic compositions for Pb and Sr, and their chemical-isotopic trends are extensions of the trends displayed by the less evolved granites. The covariations of the isotopic ratios with several major and trace elements and elemental ratios as well as the Pb–Pb and Rb–Sr isochrones indicate that all phases of the intrusion originated from a homogeneous parental magma. The granitoid magma underwent extensive fractional crystallization of feldspars, minor biotite and accessory minerals (monazite, apatite and zircon) in a compositionally zoned magma chamber that was subsequently accompanied by fluid fractionation, during which time the internally derived fluorine-rich fluids modified the Rb/Sr, U/Pb and Th/Pb ratios, leading to distinct variations of 87Sr/86Sr, 206Pb/204Pb, 238U/204Pb and 232Th/204Pb isotopic ratios. These data therefore document the evolution of a granitic magma through magmatic (i.e., crystal fractionation), orthomagmatic (i.e., crystal-fluid fractionation) and hydrothermal (i.e., fluid fractionation) stages that culminated in the formation of a tin-base metal deposit. The Pb isotope data also constrain the source region for the DLP as being Avalonian basement that, by inference, must underlie much of the Meguma Terrane.Editorial responsibility: T.L. Grove  相似文献   

13.
The isotopic composition of Pb in pyrite of the Mindyak orogenic gold deposit located in the Main Ural Fault Zone, the Southern Urals, has been studied by the high-precision MC-ICP-MS method. Orebodies at the deposit are composed of early pyrite and late polysulfide–carbonate–quartz mineral assemblages. The orebodies are localized in olistostrome with carbonaceous clayey-cherty cement. Pyrites from early and late mineral assemblages are close in Pb isotope ratios. For early pyrite 206Pb/204Pb = 18.250–18.336, 207Pb/204Pb = 15.645–15.653, 208Pb/204Pb = 38.179–38.461; while for late pyrite 206Pb/204Pb = 18.102–18.378, 207Pb/204Pb = 15.635–15.646, 208Pb/204Pb = 38.149–38.320. The model parameters μ2 (238U/204Pb = 9.91 ± 2), ω2 (232Th/204Pb = 38.5 ± 4), and 232Th/238U = 3.88 ± 3 indicate that an upper crustal Pb source played a leading role in ore formation. Carbonaceous shale as an olistostrome cement and syngenetic sulfide mineralization are considered to be the main Pb sources of both early and late mineral assemblages. An additional recept in apparently magmatic lead is suggested for the late veinlet mineralization. The involvement of lead from several sources in ore formation is consistent with the genetic model, which assumes a two-stage formation of orebodies at the Mindyak deposit.  相似文献   

14.
The results of our combined U-Pb, Rb-Sr, and Sm-Nd isotope study of mare basalt 10017 contribute to the understanding of the petrogenetic processes involved in the origin of geochemical diversity in lunar mare basalt sources, as well as the U-Pb isotope systematics of the Moon. The Rb-Sr, Sm-Nd, and 238U-206Pb isotope systems yield concordant crystallization ages of 3.633 ± 0.057 Ga, 3.678 ± 0.069 Ga, and 3.616 ± 0.098 Ga, respectively. The 235U-207Pb isochron yields an older, though still concordant, age of 3.80 ± 0.12 Ga. Neither the 206Pb-207Pb system nor U-Pb concordia system yields an age for 10017 that is concordant with the age determined from the Sm-Nd, Rb-Sr, and 238U-206Pb systems. The initial 87Sr/86Sr of 10017 is 0.69941 ± 7 and the initial εNd is +3.2 ± 0.4. Initial Pb isotopic compositions, determined from the U-Pb isochrons, are 206Pb/204Pbi = 31 ± 11 and 207Pb/204Pbi = 34 ± 15. Together, these initial Pb compositions constrain the μ value of the 10017 source to be 70 ± 30, assuming a single-stage Pb growth model. This is considerably lower than μ values typically estimated for mare basalt sources (∼100-600). Regardless, the μ values calculated for the sources of mare basalts, as well as other lunar samples, show a range that is larger than can be explained by fractionation of U from Pb solely by crystallization of silicate phases and ilmenite during magma ocean solidification and formation of lunar mantle sources. The U-Pb isotope systematics may reflect late-stage formation of a sulfide phase, which strongly fractionates Pb from U but has minimal effect on Rb/Sr or Sm/Nd compositions, during crystallization of the lunar magma ocean.  相似文献   

15.
The Lovozero alkaline massif—an agpaitic nepheline syenite layered intrusion—is located in the central part of the Kola Peninsula, Russia, and belongs to the Kola ultramafic alkaline and carbonatitic province (KACP) of Devonian age. Associated loparite and eudialyte deposits, which contain immense resources of REE, Nb, Ta, and Zr, constitute a world class mineral district. Previous Sr, Nd, and Hf isotope investigations demonstrated that these rocks and mineral deposits were derived from a depleted mantle source. However, because the Sr, Nd, and Hf abundances in the Kola alkaline rocks are significantly elevated, their isotopic compositions were relatively insensitive to contamination by the underlying crustal rocks through which the intruding magmas passed. Pb occurring in relatively lower abundance in the KACP rocks, by contrast, would have been a more sensitive indicator of an acquired crustal component. Here, we investigate the lead isotopic signature of representative types of Lovozero rocks in order to further characterize their sources. The measured Pb isotopic composition was corrected using the determined U and Th concentrations to the age of the crystallization of the intrusion (376?±?28 Ma, based on a 206Pb/204Pb versus 238U/204Pb isochron and 373?±?9 Ma, from a 208Pb/204Pb versus 232Th/204Pb isochron). Unlike the previously investigated Sr, Nd, and Hf isotopes, the lead isotopic composition plot was well outside the FOZO field. The 206Pb/204Pb values fall within the depleted MORB field, with some rocks having lower 207Pb/204Pb but higher 208Pb/204Pb values. Together with other related carbonatites having both lower and higher 206Pb/204Pb values, the combined KACP rocks form an extended linear array defining either a?~2.5-Ga secondary isochron or a mixing line. The projection of this isotopic array toward the very unradiogenic composition of underlying 2.4–2.5-Ga basaltic rocks of the Matachewan superplume and associated Archean granulite facies country rock provides strong evidence that this old lower crust was the contaminant responsible for the deviation of the Lovozero rocks from a presumed original FOZO lead isotopic composition. Evaluating the presence of such a lower crustal component in the Lovozero rock samples suggests a 5–10% contamination by such rocks. Contamination by upper crustal rock is limited to only a negligible amount.  相似文献   

16.
An investigation of the Pb isotopic compositions of plagioclase and sulfide in a stratigraphic interval including the UG2 chromitite of the eastern Bushveld Complex has been conducted to determine the Pb isotopic composition(s) of the magma(s) that crystallized to form this part of the intrusion, gain a better understanding of why coexisting plagioclase and sulfide commonly exhibit widely different Pb isotopic compositions, and explore the use of Pb isotopes in deducing post-accumulation history. Analyses were obtained in situ with a NuPlasma multicollector ICP-MS coupled with 193 nm Excimer or 213 nm lasers.Most plagioclase compositions fall on the 207Pb/204Pb vs 206Pb/204Pb geochron of 2.06 Ga, which is the solidification age of the intrusion. The measured ratios have not been affected by radiogenic ingrowth, and plagioclase generally remained closed to Pb exchange after initial cooling. The array of plagioclase compositions on the geochron is significantly larger than that defined by analytical error. This indicates that in terms of Pb at least two different magma compositions were present. The composition of the least radiogenic magma was approximated by that of the contemporaneous BSE with μ (238U/204Pb) and ω (232Th/204Pb) values of ≈9.0 and 35, respectively, suggesting a mantle derivation with little or no involvement of the continental crust, while the second magma possessed a Pb isotopic composition similar to the upper crust with μ ≈ 9.6.Compared to plagioclase, sulfides generally possess slightly higher 206Pb/204Pb ratios for equivalent 207Pb/204Pb ratios such that their compositions fall between the 2.06 and 1.86 Ga geochrons. The latter age is much younger than the cooling age. The data are interpreted to mean that the Bushveld Complex remained buried in the crust at temperatures of several hundred °C for about 200 Ma after solidification, and that any sulfides accessible to fluid continued to re-equilibrated during this time with more radiogenic Pb. The sulfide Pb may have been transported into the Bushveld Complex by fluids from an external reservoir when the rocks were still partially molten and thus permeable. Alternatively, the sulfide Pb may have originated mainly from radiogenic decay of U and Th present in minerals other than the sulfides in the immediately surrounding Bushveld rocks, followed by local redistribution of Pb by whatever fluid was present. Indeed, some sulfides are characterized by 208Pb/204Pb ratios sufficiently high that an external source is unlikely. This observation and the fact that the sulfides display small-scale heterogeneity suggest that most, if not all, of the radiogenic sulfide Pb was locally derived. It also implies that during the post-solidification, re-equilibration period there was no large-scale fluid-flow through the microfracture network because otherwise the isotopic heterogeneities would not have been preserved. The minerals in 2 of the 19 samples studied contain young Pb, presumably introduced by meteoric waters that permeated the macrofracture network.  相似文献   

17.
In order to unravel magma processes and the geochemical evolution of shallow plumbing systems beneath active volcanoes, we investigated U-series disequilibria of rocks erupted over the past 500 years (1469-2000 AD) from Miyakejima volcano, Izu arc, Japan. Miyakejima volcanic rocks show 238U-230Th-226Ra disequilibria with excess 238U and 226Ra, due to the addition of slab-derived fluids to the mantle wedge. Basaltic bombs of the 2000 AD eruption have the lowest (230Th/232Th) ratio compared to older Miyakejima eruptives, yielding the youngest 238U-230Th model age of 2 kyr. This reinforces our previous model that fluid release from the slab and subsequent magma generation in the mantle wedge beneath Miyakejima occur episodically on a several-kyr timescale. In the last 500 years, Miyakejima eruptives show: (1) a vertical trend in a (230Th/232Th)-(238U/232Th) diagram and (2) a positive linear correlation in a (226Ra/230Th)0 − 1/230Th diagram, which is also observed in lavas from some of the single eruptions (e.g., 1940, 1962, and 1983 AD). The variations cannot be produced by simple fractional crystallization in a magma chamber with radioactive decay of 230Th and 226Ra, but it is possibly produced by synchronous generation of melts in the mantle wedge with different upwelling rate or addition of multiple slab-derived fluids. A much more favorable scenario is that some basaltic magmas were intermittently supplied from deep in the mantle and injected into the crust, subsequently modifying the original magma composition and producing variations in (230Th/232Th) and (226Ra/230Th)0 ratios via assimilation and fractional crystallization (AFC). The assimilant of the AFC process would be a volcanic edifice of previous Miyakejima magmatism. Due to the relatively short timescales involved, the interaction between the assimilant and recent Miyakejima magmatism has not been recorded by the Sr-Nd-Pb isotopic systems. In such cases, Th isotopes and (226Ra/230Th) ratio are excellent geochemical tracers of magmatic evolution.  相似文献   

18.
Summary We present a detailed isotopic study of volcanic rocks emitted from Somma–Vesuvius volcano during three periods of interplinian activity: Protohistoric (3550 y B.P. to 79 A.D.), Ancient Historic (79 to 472 A.D.) and Medieval (472 to 1631 A.D.). Pb isotopic compositions of two acid leached fractions and whole rock residues of 37 whole rock samples (determined by Somma et al., 2001) show that each of the three interplinian periods is distinguished by small, systematic, and unique uranogenic and thorogenic Pb isotopic trends. This key and novel feature is compatible with the notion that the Pb isotopic data reflect small-scale source heterogeneity operating over relatively short periods of time. From this representative group of samples, a selected set of nine whole rocks were analysed for Th isotopes. 232Th/238U ratios in the source can be obtained independently from Pb and from Th isotopes. Those obtained from Pb isotopes represent source ratios, time-integrated over the whole age of the Earth; they range from 3.9 to 4.1. 232Th/238U obtained from Th isotopes are those of the present source. They are lower, and cluster around 3.5; this difference probably indicates recent U enrichment of the present source.The behaviour of Pb, as inferred by its isotopic ratios, is quite distinct from that of Sr and Nd isotopes: Pb isotope variations are not correlated to Sr or Nd isotope variations. The isotopic contrast is compatible with the idea that the isotopes were decoupled during magmatic production, evolution, and ascent through the crust. Thus, the Pb isotopes do not reflect the effects of the same processes as in the case of the Sr and Nd isotopes, or, as we also favor, they do not necessarily reflect the same source contributions into the magmas. Moreover, the Pb isotopic evolution of the interplinian rocks chiefly reflects mixing, driven by processes that are superimposed on, and independent of, other source contributions that determine the isotopic compositions of Sr and Nd. We suggest that reactions between magmas and fluids transported Pb and U, but not Sr. These data show that isotope mixing in the mantle is active at different times and scales.  相似文献   

19.
Lead isotope ratios of galena from the carbonate-hosted massive sulphide deposits of Kabwe (Pb-Zn) and Tsumeb (Pb-Zn-Cu) in Zambia and Namibia, respectively, have been measured and found to be homogeneous and characteristic of upper crustal source rocks. Kabwe galena has average isotope ratios of 206/204Pb = 17.997 ± 0.007, 207/204Pb = 15.713 ± 0.010 and 208/204Pb = 38.410 ± 0.033. Tsumeb galena has slightly higher 206/204Pb (18.112 ± 0.035) and slightly lower 207/204Pb (15.674 ± 0.016) and 208/204Pb (38.276 ± 0.073) ratios than Kabwe galena. The isotopic differences are attributed to local differences in the age and composition of the respective source rocks for Kabwe and Tsumeb. The homogeneity of the ore lead in the two epigenetic deposits suggests lead sources of uniform isotopic composition or, alternatively, thorough mixing of lead derived from sources with relatively similar isotopic compositions. Both deposits have relatively high 238U/204Pb ratios of 10.31 and 10.09 for Kabwe and Tsumeb galenas, respectively. These isotope ratios are considered to be typical of the upper continental crust in the Damaran-Lufilian orogenic belt, as also indicated by basement rocks and Cu-Co sulphides in stratiform Katangan metasediments which have a mean μ-value of 10.25 ± 0.12 in the Copperbelt region of Zambia and the Democratic Republic of Congo (formerly Zaire). The 232Th/204Pb isotope ratios of 43.08 and 40.42 for Kabwe and Tsumeb suggest Th-enriched source regions with 232Th/235U (κ-values) of 4.18 and 4.01, respectively. Model isotopic ages determined for the Kabwe (680 Ma) and Tsumeb (530 Ma) deposits indicate that the timing of the mineralisation was probably related to phases of orogenic activity associated with the Pan-African Lufilian and Damaran orogenies, respectively. Galena from the carbonate-hosted Kipushi Cu-Pb-Zn massive sulphide deposit in the Congo also has homogeneous lead isotope ratios, but its isotopic composition is comparable to that of the average global lead evolution curve for conformable massive sulphide deposits. The μ (9.84) and κ (3.69) values indicate a significant mantle component, and the isotopic age of the Kipushi deposit (456 Ma) suggests that the emplacement of the mineralisation was related to a post-tectonic phase of igneous activity in the Lufilian belt. The isotope ratios (206/204Pb, 207/204Pb, 208/204Pb) of the three deposits are markedly different from the heterogeneous lead ratios of the Katangan Cu-Co stratiform mineralisation of the Copperbelt as well as those of the volcanogenic Nampundwe massive pyrite deposit in the Zambezi belt which typically define radiogenic linear trends on lead-lead plots. The host-rock dolomite of the Kabwe deposit also has homogeneous lead isotope ratios identical to the ore galena. This observation indicates contamination of the Kabwe Dolomite Formation with ore lead during mineralisation. Received: 8 September 1997 / Accepted: 21 August 1998  相似文献   

20.
Uranium-lead ratios (commonly represented as 238U/204Pb = μ) calculated for the sources of martian basalts preserve a record of petrogenetic processes that were active during early planetary differentiation and formation of martian geochemical reservoirs. To better define the range of μ values represented by the source regions of martian basalts, we completed U-Pb elemental and isotopic analyses on whole rock, mineral and leachate fractions from the martian meteorite Queen Alexandra Range 94201 (QUE 94201). The whole rock and silicate mineral fractions have unradiogenic Pb isotopic compositions that define a narrow range (206Pb/204Pb = 11.16-11.61). In contrast, the Pb isotopic compositions of weak HCl leachates are more variable and radiogenic. The intersection of the QUE 94201 data array with terrestrial Pb in 206Pb/204Pb-207Pb/204Pb-208Pb/204Pb compositional space is consistent with varying amounts of terrestrial contamination in these fractions. We calculate that only 1-7% contamination is present in the purified silicate mineral and whole rock fractions, whereas the HCl leachates contain up to 86% terrestrial Pb. This terrestrial Pb contamination generated a 206Pb-207Pb array in the QUE fractions that appears to represent an ancient age, which contrasts with a much younger crystallization age of 327 ± 10 Ma derived from Rb-Sr and Sm-Nd isochrons (Borg L. E., Nyquist L. E., Taylor L. A., Wiesmann H. and Shih C. -Y. (1997) Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochim. Cosmochim. Acta61, 4915-4931). Despite the contamination, and accepting 327 ± 10 Ma as the crystallization age, we use the U-Pb data to determine the initial 206Pb/204Pb of QUE 94201 to be 11.086 ± 0.008 and to calculate the μ value of its mantle source to be 1.82 ± 0.01. The μ value calculated for the QUE 94201 source is the lowest determined for any martian basalt source, and, when compared to the highest values determined for martian basalt sources, indicates that μ values in martian source reservoirs vary by at least a factor of two. Additionally, the range of source μ values indicates that the μ value of bulk silicate Mars is approximately three. The amount of variation in the μ values of the mantle sources (μ ∼ 2-4) is greater than can be explained by igneous processes involving silicate phases alone. We suggest the possibility that a small amount of sulfide crystallization may generate greater extents of U-Pb fractionation during formation of the mantle sources of martian basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号