首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Humic Ion-Binding Model V, which focuses on metal complexation with humic and fulvic acids, was modified to assess the role of dissolved natural organic matter in the speciation of rare earth elements (REEs) in natural terrestrial waters. Intrinsic equilibrium constants for cation-proton exchange with humic substances (i.e., pKMHA for type A sites, consisting mainly of carboxylic acids), required by the model for each REE, were initially estimated using linear free-energy relationships between the first hydrolysis constants and stability constants for REE metal complexation with lactic and acetic acid. pKMHA values were further refined by comparison of calculated Model V “fits” to published data sets describing complexation of Eu, Tb, and Dy with humic substances. A subroutine that allows for the simultaneous evaluation of REE complexation with inorganic ligands (e.g., Cl, F, OH, SO42−, CO32−, PO43−), incorporating recently determined stability constants for REE complexes with these ligands, was also linked to Model V. Humic Ion-Binding Model V’s ability to predict REE speciation with natural organic matter in natural waters was evaluated by comparing model results to “speciation” data determined previously with ultrafiltration techniques (i.e., organic acid-rich waters of the Nsimi-Zoetele catchment, Cameroon; dilute, circumneutral-pH waters of the Tamagawa River, Japan, and the Kalix River, northern Sweden). The model predictions compare well with the ultrafiltration studies, especially for the heavy REEs in circumneutral-pH river waters. Subsequent application of the model to world average river water predicts that organic matter complexes are the dominant form of dissolved REEs in bulk river waters draining the continents. Holding major solute, minor solute, and REE concentrations of world average river water constant while varying pH, the model suggests that organic matter complexes would dominate La, Eu, and Lu speciation within the pH ranges of 5.4 to 7.9, 4.8 to 7.3, and 4.9 to 6.9, respectively. For acidic waters, the model predicts that the free metal ion (Ln3+) and sulfate complexes (LnSO4+) dominate, whereas in alkaline waters, carbonate complexes (LnCO3+ + Ln[CO3]2) are predicted to out-compete humic substances for dissolved REEs. Application of the modified Model V to a “model” groundwater suggests that natural organic matter complexes of REEs are insignificant. However, groundwaters with higher dissolved organic carbon concentrations than the “model” groundwater (i.e., >0.7 mg/L) would exhibit greater fractions of each REE complexed with organic matter. Sensitively analysis indicates that increasing ionic strength can weaken humate-REE interactions, and increasing the concentration of competitive cations such as Fe(III) and Al can lead to a decrease in the amount of REEs bound to dissolved organic matter.  相似文献   

2.
The aquatic chemistry of rare earth elements in rivers and estuaries   总被引:17,自引:0,他引:17  
Laboratory experiments were carried out to determine how pH, colloids and salinity control the fractionation of rare earth elements (REEs) in river and estuarine waters. By using natural waters as the reaction media (river water from the Connecticut, Hudson and Mississippi Rivers) geochemical reactions can be studied in isolation from the large temporal and spatial variability inherent in river and estuarine chemistry. Experiments, field studies and chemical models form a consistent picture whereby REE fractionation is controlled by surface/solution reactions. The concentration and fractionation of REEs dissolved in river waters are highly pH dependent. Higher pH results in lower concentrations and more fractionated composition relative to the crustal abundance. With increasing pH the order of REE adsorption onto river particle surfaces is LREEs > MREEs > HREEs. With decreasing pH, REEs are released from surfaces in the same order. Within the dissolved (<0.22 µm) pool of river waters, Fe-organic colloids are major carriers of REEs. Filtration through filters and ultrafilters with progressively finer pore sizes results in filtrates which are lower in absolute concentrations and more fractionated. The order of fractionation with respect to shale, HREEs > MREEs > LREEs, is most pronounced in the solution pool, defined here as <5K and <50K ultrafiltrates. Colloidal particles have shale-like REE compositions and are highly LREE enriched relative to the REE composition of the dissolved and solution pools. The addition of sea water to river water causes the coagulation of colloidal REEs within the dissolved pool. Fractionation accompanies coagulation with the order of sea water-induced removal being LREEs > MREEs > HREEs. While the large scale removal of dissolved river REEs in estuaries is well established, the release of dissolved REEs off river particles is a less studied process. Laboratory experiments show that there is both release and fractionation of REEs when river particles are leached with seawater. The order of sea water-induced release of dissolved REE(III) (LREEs > MREEs > HREEs) from Connecticut River particles is the same as that associated with lowering the pH and the same as that associated with colloidal particles. River waters, stripped of their colloidal particles by coagulation in estuaries, have highly evolved REE composition. That is, the solution pool of REEs in river waters are strongly HREE-enriched and are fractionated to the same extent as that of Atlantic surface seawater. This strengthens the conclusions of previous studies that the evolved REE composition of sea water is coupled to chemical weathering on the continents and reactions in estuaries. Moreover, the release of dissolved Nd from river particles to sea water may help to reconcile the incompatibility between the long oceanic residence times of Nd (7100 yr) and the inter-ocean variations of the Nd isotopic composition of sea water. Using new data on dissolved and particle phases of the Amazon and Mississippi Rivers, a comparison of field and laboratory experiments highlights key features of REE fractionation in major river systems. The dissolved pool of both rivers is highly fractionated (HREE enriched) with respect to the REE composition of their suspended particles. In addition, the dissolved pool of the Mississippi River has a large negative Ce-anomaly suggesting in-situ oxidation of Ce(III). One intriguing feature is the well developed maximum in the middle REE sector of the shale normalized patterns for the dissolved pool of Amazon River water. This feature might reflect competition between surface adsorption and solution complexation with carbonate and phosphate anions.  相似文献   

3.
Dissolved rare earth elements (REEs) were determined in a four-year time series at the outlet of Loch Vale. The Loch Vale watershed is a seasonally snow-covered alpine/subalpine basin in Rocky Mountain National Park, USA. The time series was mainly distinguished by an annual early spring peak in the concentrations of all REEs. REE concentrations at this time were as much as 8-fold greater than at other times of the year. This annual peak was coincident with an early spring peak in dissolved organic carbon (DOC) which results from flushing of soils at the beginning of spring snow melting. The REE/DOC peak occurs as discharge starts to increase from wintertime lows but well before the spring peak in discharge. Speciation considerations suggest complexation of the REEs by DOC. The Ce anomaly also increases (i.e., is less fractionated) during the spring flush indicating that the most reducing (or least oxidizing) REE sources in the system are comparatively more important at that time. Mn data and the La/Yb ratio also support this. The behavior of REEs in the Loch Vale system has additionally been compared with metal and DOC behavior in other systems. Hydrologic and climatic differences can be important especially with regard to timing and duration of the spring flush peak. Damping of hydrologic events in the lower floodplain of major rivers may also partially result in the differences observed between Loch Vale and the lower Mississippi River. However, comparison with the Amazon River system additionally suggests that seasonal flooding of wetlands may be an important regulator of REE concentrations. Chemical differences are also important for these systems. This includes pH and suspended matter concentrations which affect the balance between adsorption and complexation. Additionally, the relative complexing ability of DOC in different systems is a factor needing further consideration.  相似文献   

4.
This work, which was done within the Swedish nuclear waste management program, was carried out in order to increase the understanding of the mobility and fate of rare earth elements (REEs) in natural boreal waters in granitoidic terrain. Two areas were studied, Forsmark and Simpevarp, one of which will be selected as a site for spent nuclear fuel. The highest REE concentrations were found in the overburden groundwaters, in Simpevarp in particular (median ∑REE 52 μg/L), but also in Forsmark (median ∑REE 6.7 μg/L). The fractionation patterns in these waters were characterised by light REE (LREE) enrichment and negative Ce and Eu anomalies. In contrast, the surface waters had relatively low REE concentrations. They were characterised either by an increase in relative concentrations throughout the lanthanide series (Forsmark which has a carbonate-rich till) or flat patterns (Simpevarp with carbonate-poor till), and had negative Ce and Eu anomalies. In the bedrock groundwaters, the concentrations and fractionation patterns of REEs were entirely different from those in the overburden groundwaters. The median La concentrations were low (just above 0.1 μg/L in both areas), only in a few samples were the concentrations of several REEs (and in a couple of rare cases all REEs) above the detection limit, and there was an increase in the relative concentrations throughout the lanthanide series. In contrast to these large spatial variations, the temporal trends were characterised by small (or non existent) variations in REE-fractionation patterns but rather large variations in concentrations. The Visual MINTEQ speciation calculations predicted that all REEs in all waters were closely associated with dissolved organic matter, and not with carbonate. In the hydrochemical data for the overburden groundwater in particular, there was however a strong indication of association with inorganic colloids, which were not included in the speciation model. Overall the results showed that within a typical boreal granitoidic setting, overburden groundwaters are enriched in REEs, organic complexes are much more important than carbonate complexes, there is little evidence of significant mixing of REEs between different water types (surface, overburden, bedrock) and spatial variations are more extensive than temporal ones.  相似文献   

5.
The Stockholm Humic Model (SHM) and Humic Ion-Binding Models V and VI were compared for their ability to predict the role of dissolved organic matter (DOM) in the speciation of rare earth elements (REE) in natural waters. Unlike Models V and VI, SHM is part of a speciation code that also allows us to consider dissolution/precipitation, sorption/desorption and oxidation/reduction reactions. In this context, it is particularly interesting to test the performance of SHM. The REE specific equilibrium constants required by the speciation models were estimated using linear free-energy relationships (LFER) between the first hydrolysis constants and the stability constants for REE complexation with lactic and acetic acid. Three datasets were used for the purpose of comparison: (i) World Average River Water (Dissolved Organic Carbon (DOC) = 5 mg L−1), previously investigated using Model V, was reinvestigated using SHM and Model VI; (ii) two natural organic-rich waters (DOC = 18-24 mg L−1), whose REE speciation has already been determined with both Model V and ultrafiltration studies, were also reinvestigated using SHM and Model VI; finally, (iii) new ultrafiltration experiments were carried out on samples of circumneutral-pH (pH 6.2-7.1), organic-rich (DOC = 7-20 mg L−1) groundwaters from the Kervidy-Naizin and Petit-Hermitage catchments, western France. The results were then compared with speciation predictions provided by Model VI and SHM, successively. When applied to World Average River Water, both Model VI and SHM yield comparable results, confirming the earlier finding that a large fraction of the dissolved REE in rivers occurs as organic complexes This implies that the two models are equally valid for calculating REE speciation in low-DOC waters at circumneutral-pH. The two models also successfully reproduced ultrafiltration results obtained for DOC-rich acidic groundwaters and river waters. By contrast, the two models yielded different results when compared to newly obtained ultrafiltration results for DOC-rich (DOC > 7 mg L−1) groundwaters at circumneutral-pH, with Model VI predictions being closer to the ultrafiltration data than SHM. Sensitivity analysis indicates that the “active DOM parameter” (i.e., the proportion of DOC that can effectively complex with REE) is a key parameter for both Model VI and SHM. However, a survey of ultrafiltration results allows the “active DOM parameter” to be precisely determined for the newly ultrafiltered waters studied here. Thus, the observed discrepancy between SHM predictions and ultrafiltration results cannot be explained by the use of inappropriate “active DOM parameter” values in this model. Save this unexplained discrepancy, the results presented in this study demonstrate that both Model VI and SHM can provide reliable estimates of REE speciation in organic-rich waters. However, it is essential to know the proportion of DOM that can actively complex REE before running these two speciation models.  相似文献   

6.
Winter seasonal concentrations of dissolved rare earth elements (REE) of two major river systems (the Wujiang River system and the Yuanjiang River system) in karst-dominated regions in winter were measured by using a method involving solvent extraction and back-extraction and subsequent ICP-MS measurements. The dissolved REE concentrations in the rivers and their tributaries are lower than those in most of the large rivers in the world. High pH and high cation (i.e., Na+ + Ca2+) concentrations of the rivers are the most important factors controlling the concentrations of dissolved REE in the river water. The dissolved load (<0.22 μm) REE distribution patterns of high-pH river waters are very different from those of low-pH river waters. The shale (PAAS)-normalized REE patterns for the dissolved loads are characterized by light REE-enrichment and heavy REE-enrichment. Water in the upper reaches of the Wujiang River generally shows light REE-enriched patterns, while that in the middle and lower reaches generally shows heavy REE-enriched patterns. The Yuanjiang River is heavy REE enriched with respect to the light REE in the same samples. Water of the Wuyanghe River draining dolomite-dominated terrains has the highest heavy REE-enrichment. Most river water samples show the shale-normalized REE patterns with negative Ce and Eu anomalies, especially water from Wuyanghe River. Y/Ho ratios show that the water/particle interaction might have played an important role in fractionation between HREE and LREE.  相似文献   

7.
The fractionation of rare earth elements (REE) was evaluated under the conditions of natural acidic water mixing with fresh and sea waters using the example of unique objects on Kunashir Island (the Kislaya and Lesnaya rivers). It was shown that the concentrations and fractionation of REE in the water types considered are diverse and controlled by a number of factors. The concentrations of dissolved REE normalized to the North American Shale Composite show an increase from the light to the heavy REE, which reflects both the character of the REE input with the thermal waters and the more active sorption of the light REE and their preferential removal to suspended solids. This is supported by the similar REE patterns in the suspended matter of the Kislaya River. The mixing of the waters of the Kislaya and Lesnaya rivers, which are assigned to different chemical types, is accompanied by active REE coprecipitation with Fe, Al, and Mn oxides and the more extensive removal of the light REE compared with the heavy REE. During acidic water mixing with seawater, more than 80% of the REE were precipitated at a salinity of 8‰.  相似文献   

8.
《Applied Geochemistry》1998,13(4):451-462
Water, suspended matter, and sediment samples were taken from 8 locations along the Yangtze River in 1992. The concentration and speciation (exchangeable, bound to carbonates, bound to Fe–Mn oxides, bound to organic matter, and residual forms) of rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb, and Lu) were determined by instrumental neutron activation analysis (INAA).The contents of the soluble fraction of REEs in the river are low, and REEs mainly reside in particulate form. In the particles, the chondrite-normalized distribution patterns show significant LREE enrichment and Eu-depletion. While normalized to shales, both sediments and suspended matter samples show relative LREE enrichment and HREE depletion. REEs are relatively enriched in fine-grained fractions of the sediments.The speciation characteristics of REEs in the sediments and suspended matter are very similar. The amount of the five forms follows the order: residual>>bound to organic matter∼bound to Fe–Mn oxides>bound to carbonates>>exchangeable. About 65 to 85% of REEs in the particles exist in the residual form, and the exchangeable form is very low. High proportions of residual REEs reveal that REEs in sediments and suspended matter are controlled by their abundances in the earth's crust. Carbonate, Fe–Mn oxide and organic fractions of REEs in sediments account for 2.4–6.9%, 5.2–11.1%, and 7.3–14.0% of the total contents respectively. They are similar to those in the suspended matter. This shows that carbonates, Fe–Mn oxides and organic matter play important roles during the particle-water interaction processes. By normalization to shales, the 3 forms of REEs follow convex shapes according to atomic number with middle REE (Sm, Eu, and Tb) enrichment, while light REE and heavy REE are depleted.  相似文献   

9.
Zhifang Xu  Guilin Han   《Applied Geochemistry》2009,24(9):1803-1816
The Xijiang River is the main channel of the Zhujiang (Pearl River), the second largest river in China in terms of water discharge, and flows through one of the largest carbonate provinces in the world. The rare earth element (REE) concentrations of the dissolved load and the suspended particulate matter (SPM) load were measured in the Xijiang River system during the high-flow season. The low dissolved REE concentration in the Xijiang River is attributed to the interaction of high pH and low DOC concentration. The PAAS-normalized REE patterns for the dissolved load show some common features: negative Ce anomaly, progressively heavy REE (HREE) enrichment relative to light REE (LREE). Similar to the world’s major rivers the absolute concentration of the dissolved REE in the Xijiang River are mainly pH controlled. The degree of REE partitioning between the dissolved load and SPM load is also strongly pH dependent. The negative Ce anomaly is progressively developed with increasing pH, being consistent with the oxidation of Ce (III) to Ce (IV) in the alkaline river waters, and the lack of Ce anomalies in several DOC-rich waters is presumably due to both Ce (III) and Ce (IV) being strongly bound by organic matter. The PAAS-normalized REE patterns for the dissolved load and the SPM load in rivers draining the carbonate rock area exhibit middle REE (MREE) enrichment and a distinct maximum at Eu, indicating the preferential dissolution of phosphatic minerals during weathering of host lithologies. Compared to the Xijiang River waters, the MREE enrichment with a maximum at Eu disappeared and light REE were more depleted in the South China Sea (SCS) waters, suggesting that the REE sourced from the Xijiang River must be further fractionated and modified on entering the SCS. The river fluxes of individual dissolved REE introduced by the Xijiang River into the SCS vary from 0.04 to 4.36 × 104 mol a−1.  相似文献   

10.
Two organic rich sediments, an oxic muddy sand and a silty mud containing sulphate reducing and methane producing metabolic zones, were sampled from Loch Duich, a fjord type estuary in the N.W. coast of Scotland. Dissolved organic carbon (DOC), as measured by dry combustion and UV absorption, remained constant (8.3–15.8 mg C/l) with depth in the oxic pore waters at a concentration at least twice that of the overlying seawater. DOC in the anoxic pore waters increased linearly with depth from 13.6 at the surface to 55.9–70.5 mg C/l at 80cm. Most of the DOC was present in the high molecular weight (HMW) fraction as separated by ultrafiltration; the low molecular weight (LMW) fraction remained constant (10.0 mg C/l) in both oxic and anoxic pore waters. Spectroscopic data showed the ‘humic’ fraction of the HMW dissolved organic matter was mainly fulvic acid, a small proportion (approx 1%) of humic acid, and a third fraction, possibly melanoidins, which increased relative to fulvic acid with depth. These data confirm the pathway of humification (NissenBaum et al, 1971; nissenbaum and Kaplan, 1972) where HMW organic matter accumulates in pore waters as condensation products of LMW organic substances.  相似文献   

11.
Rare earth element (REE) adsorption onto sand from a well characterized aquifer, the Carrizo Sand aquifer of Texas, has been investigated in the laboratory using a batch method. The aim was to improve our understanding of REE adsorption behavior across the REE series and to develop a surface complexation model for the REEs, which can be applied to real aquifer-groundwater systems. Our batch experiments show that REE adsorption onto Carrizo sand increases with increasing atomic number across the REE series. For each REE, adsorption increases with increasing pH, such that when pH >6.0, >98% of each REE is adsorbed onto Carrizo sand for all experimental solutions, including when actual groundwaters from the Carrizo Sand aquifer are used in the experiments. Rare earth element adsorption was not sensitive to ionic strength and total initial REE concentrations in our batch experiments. It is possible that the differences in experimental ionic strength conditions (i.e., 0.002-0.01 M NaCl) chosen were insufficient to affect REE adsorption behavior. However, cation competition (e.g., Ca, Mg, and Zn) did affect REE adsorption onto Carrizo sand, especially for light rare earth elements (LREEs) at low pH. Rare earth element adsorption onto Carrizo sand can be successfully modeled using a generalized two-layer surface complexation model. Our model calculations suggest that REE complexation with strong surface sites of Carrizo sand exceeds the stability of the aqueous complexes LnOH2+, LnSO4+, and LnCO3+, but not that of Ln(CO3)2- or LnPO4o in Carrizo groundwaters. Thus, at low pH (<7.3), where major inorganic ligands did not effectively compete with surface sites for dissolved REEs, free metal ion (Ln3+) adsorption was sufficient to describe REE adsorption behavior. However, at higher pH (>7.3) where solution complexation of the dissolved REEs was strong, REEs were adsorbed not only as free metal ion (Ln3+) but also as aqueous complexes (e.g., as Ln(CO3)2- in Carrizo groundwaters). Because heavy rare earth elements (HREEs) were preferentially adsorbed onto Carrizo sand compared to LREEs, original HREE-enriched fractionation patterns in Carrizo groundwaters from the recharge area flattened along the groundwater flow path in the Carrizo Sand aquifer due to adsorption of free- and solution-complexed REEs.  相似文献   

12.
《Applied Geochemistry》2004,19(8):1339-1354
Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH.  相似文献   

13.
This study deals with the weathering processes operating at the scale of a small catchment (Nsimi-Zoetele, Cameroon) and is focused on the role of organic colloids on mineral weathering and transport of elements in natural waters. Samples of river, spring and groundwaters from Nsimi-Zoetele were filtered through membranes of decreasing pore size (0.22 μm, 0.025 μm, or: 300,000 Da, 5000 Da) to separate colloidal fractions from the truly dissolved one. Major and trace elements and dissolved organic carbon (DOC) were analysed in each fraction. Two kinds of waters can be distinguished in the catchment: clear and coloured waters. Clear waters exhibit low concentrations of major and trace elements and DOC. Elements are carried in these solutions in a true dissolved form except Al and rare earth elements (REEs). By contrast, the higher abundances of Al, Fe and trace elements in coloured waters are controlled by the colloidal fraction. Thermodynamic equilibrium calculations show that clear waters are in equilibrium with kaolinite and iron oxi-hydroxide which are major minerals in the weathered soil. For coloured waters, the aqueous speciation of Ca, Mg, Cu, Fe, Al, La and Th was calculated taking into account the complexes with humic acids. Speciation calculations for Cu, Fe, Al, La, Th show a strong complexation with humic acids, in good agreement with the results of the filtration experiments. By contrast, although filtration experiments show a strong control of major cations by organic matter (for example 75% for Ca), speciation calculations reveal that their complexes with humic ligands do not exceed a few percent of total dissolved elements. This discrepancy is explained as an artefact induced by the organic colloids and occurring during the filtration procedure. Finally, both filtration experiments and speciation calculations show that organic matter plays an important role in natural DOC-rich waters. Organic acids increase significantly the dissolution rates of silicates and oxi-hydroxides and thus the amounts of solutes and of complexed elements leaving the catchment.  相似文献   

14.
巢湖的稀土元素地球化学特征   总被引:2,自引:1,他引:1  
采用液-液萃取法和ICP-MS测试技术对巢湖的溶解态稀土元素进行了分析。结果表明,巢湖的溶解态稀土的含量与世界淡水相当,丰水期的样品含量高于其他季节。pH值和悬浮物、胶体是控制巢湖水体中溶解态稀土含量的主要因素。巢湖的溶解态稀土的分布模式以平坦型为主,少数呈现重稀土富集。丰水期和枯水期的溶解态稀土的(La/Yb)N值从西半湖区到东半湖区呈现有规律性的逐渐增大,并且丰水期的(La/Yb)N值低于枯水期。在富营养化湖泊中,胶体和水生生物可能是造成这一现象的主要原因。  相似文献   

15.
The adsorption characteristics of natural organic matter (NOM) were investigated on the basis of fluorescence excitation emission matrix (EEM) by using four different coal-based activated carbons (ACs). For each AC, batch adsorption isotherms were analyzed using a modified Freundlich isotherm model on the basis of the fluorescence intensity of three major fluorescence peaks appeared in the fluorescence EEM reported to be reflective of the humic acid-like (P1), fulvic acid-like (P2) and aromatic protein-like (P3) substances, respectively, together with the well-used overall quality indices of dissolved organic carbon (DOC) and ultraviolet absorbance at the wavelength of 260 nm (UV260). It was found that, for all five quality indices, the adsorption capacity differed with the ACs used, and the modified Freundlich isotherm constant K estimated for P1, P2 and P3 was in close correlation with that of the total organic matter evaluated by DOC. Moreover, no matter which AC was concerned, the magnitude of the estimated K and the removal rate over a broader range of AC dose for P3 were apparently smaller than those for P1 and P2, suggesting the adsorbability of aromatic protein-like substances was lower than that of the humic acid-like and fulvic acid-like substances. The dependency of the adsorption capacity of NOM on the volume of pores in some specific size ranges of the ACs was also revealed.  相似文献   

16.
Rare earth element (REE) concentrations in alkaline lakes, circumneutral pH groundwaters, and an acidic freshwater lake were determined along with the free carbonate, free phosphate, and free sulfate ion concentrations. These parameters were used to evaluate the saturation state of these waters with respect to REE phosphate and carbonate precipitates. Our activity product estimates indicate that the alkaline lake waters and groundwaters are approximately saturated with respect to the REE phosphate precipitates but are significantly undersaturated with respect to REE carbonate and sulfate precipitates. On the other hand, the acidic lake waters are undersaturated with respect to REE sulfate, carbonate, and phosphate precipitates. Although carbonate complexes tend to dominate the speciation of the REEs in neutral and alkaline waters, our results indicate that REE phosphate precipitates are also important in controlling REE behavior. More specifically, elevated carbonate ion concentrations in neutral to alkaline natural waters tend to enhance dissolved REE concentrations through the formation of stable REE-carbonate complexes whereas phosphate ions tend to lead to the removal of the REEs from solution in these waters by the formation of REE-phosphate salts. Removal of REEs by precipitation as phosphate phases in the acid lake (pH=3.6) is inconsequential, however, due to extremely low [PO 4 3– ] F concentrations (i.e., 10–23 mol/kg).  相似文献   

17.
The stability and structure of aqueous complexes formed by trivalent antimony (SbIII) with carboxylic acids (acetic, adipic, malonic, lactic, oxalic, tartaric, and citric acid), phenols (catechol), and amino acids (glycine) having O- and N-functional groups (carboxyl, alcoholic hydroxyl, phenolic hydroxyl and amine) typical of natural organic matter, were determined at 20 and 60 °C from solubility and X-ray absorption fine structure (XAFS) spectroscopy measurements. In organic-free aqueous solutions and in the presence of acetic, adipic, malonic acids and glycine, both spectroscopic and solubility data are consistent with the dominant formation of SbIII hydroxide species, , at strongly acid, acid-to-neutral and basic pH, respectively, demonstrating negligible complexing with mono-functional organic ligands (acetic) or those having non adjacent carboxylic groups (adipic, malonic). In contrast, in the presence of poly-functional carboxylic and hydroxy-carboxylic acids and catechol, SbIII forms stable 1:1 and 1:2 complexes with the studied organic ligands over a wide pH range typical of natural waters (3 < pH < 9). XAFS spectroscopy measurements show that in these species the central SbIII atom has a distorted pseudo-trigonal pyramidal geometry composed of the lone pair of 5s2 electrons of Sb and four oxygen atoms from two adjacent functional groups of the ligand (OC-OH and/or COH), forming a five-membered bidendate chelate cycle. Stability constants for these species, generated from Sb2O3 (rhomb.) solubility experiments, were used to model Sb complexing with natural humic acids possessing the same functional groups as those investigated in this study. Our predictions show that in an aqueous solution of pH between 2 and 10, containing 1 μg/L of Sb and 5 mg/L of dissolved organic carbon (DOC), up to 35% of total dissolved Sb binds to aqueous organic matter via carboxylic and hydroxy-carboxylic groups. This amount of complexed Sb for typical natural DOC concentrations is in agreement with that estimated from dialysis experiments performed with commercial humic acid in our work and those available in the literature for a range of standardized IHSS humic acids. Our results imply that a significant part of Sb is likely to be bound with humic acids via hydroxy-carboxylic moieties, in the form of bidendate complexes. However, following the strong chemical affinity of SbIII for reduced sulfur, some undefined fraction of SbIII might also be bound to the minor thiol-bearing moieties of humic acids; further studies are required to check this hypothesis.  相似文献   

18.
The range of observed chemical compositions of natural terrestrial waters varies greatly especially when compared to the essentially constant global composition of the oceans.The concentrations of the REEs in natural terrestrial waters also exhibit more variation than what was reported in seawater,In terrestrial waters ,pH values span the range from acid up to alkaline,In addition,terrestrial waters can range from very dilute waters through to highly concentrated brines.The REE concentrations and their behavior in natural terrestrial waters reflect these compositional ranges,Chemical weathering of rocks represents the source of the REEs to natural terrestrial waters and ,consequently,the REE signature of rocks can impart their REE signature to associated waters,In addition,Because of the typical low solubilities of the REEs both surface and solution complexation can be important in fractionating REEs in aqueous solution.Both of these processes are important in all natural terrestrial waters,however,their relative importance varies as a function of the overall solution composition,In alkaline waters,for example,Solution complexation of the REEs with carbonate ions appears to control their aqueous distributions whereas in acid waters,the REE signature of the labile fraction of the REEs is readily leached from the rocks.In circumneutral pH waters,both processes appear to be important and their relative significance has not yet been determined.  相似文献   

19.
The role of organic ligands in metal complexing in natural waters has received little attention because of uncertainties regarding both the abundance and nature of dissolved organic carbon compounds. Recent data show that the bulk of dissolved organic matter in natural waters consists of highly oxidized and chemically and biologically stable polymeric compounds closely resembling soil humic substances. Average molar concentrations of these aquatic humics in major U.S. rivers range from 5 × 10?6to 3 × 10?5 moles 1?1. Fractional elution of soil organic matter by meteoric waters may be considered to be the main process contributing to the presence of humic matter in rivers. The aquatic humic polymers participate in complex formation through ionizable functional groups with a range of differential acidities. The stabilities of metal-humic complexes in natural waters are higher than those of the corresponding inorganic metal complexes. Quantitative evaluation of the metal-organic interactions can be approached by applying variable equilibrium functions which take into account the differential physico-chemical characteristics of the active complexing sites on the polymer molecule. Assuming an average humic concentration of 10 mg 1?1, complexation of trace metals can be significant even in the presence of excess concentrations of major cations.  相似文献   

20.
Acid mine drainage is a major source of water pollution in the Sarcheshmeh porphyry copper mine area. The concentrations of heavy metals and rare earth elements (REEs) in the host rocks, natural waters and acid mine drainage (AMD) associated with mining and tailing impoundments are determined. Contrary to the solid samples, AMDs and impacted stream waters are enriched in middle rare earth elements (MREEs) and heavy rare earth elements (HREEs) relative to light rare earth elements (LREEs). This behavior suggests that REE probably fractionate during sulfide oxidation and acid generation and subsequent transport, so that MREE and HREE are preferentially enriched. Speciation modeling predict that the dominant dissolved REE inorganic species are Ln3+, Ln(SO4)2, LnSO4+, LnHCO32+, Ln(CO3)2 and LnCO3+. Compared to natural waters, Sarcheshmeh AMD is enriched in REEs and SO42−. High concentrations of SO42− lead to the formation of stable LnSO4+, thereby resulting in higher concentrations of REEs in AMD samples. The model indicates that LnSO4+ is the dissolved form of REE in acid waters, while carbonate and dicarbonate complexes are the most abundant dissolved REE species in alkaline waters. The speciation calculations indicate that other factors besides complexation of the REE's, such as release of MREE from dissolution and/or desorption processes in soluble salts and poorly crystalline iron oxyhydroxy sulfates as well as dissolution of host rock MREE-bearing minerals control the dissolved REE concentrations and, hence, the MREE-enriched patterns of acid mine waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号