首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
We performed a series of experiments at high pressures and temperatures to determine the partitioning of a wide range of trace elements between ilmenite (Ilm), armalcolite (Arm) and anhydrous lunar silicate melt, to constrain geochemical models of the formation of titanium-rich melts in the Moon. Experiments were performed in graphite-lined platinum capsules at pressures and temperatures ranging from 1.1 to 2.3 GPa and 1300-1400 °C using a synthetic Ti-enriched Apollo ‘black glass’ composition in the CaO-FeO-MgO-Al2O3-TiO2-SiO2 system. Ilmenite-melt and armalcolite-melt partition coefficients (D) show highly incompatible values for the rare earth elements (REE) with the light REE more incompatible compared to the heavy REE ( 0.0020 ± 0.0010 to 0.069 ± 0.010 for ilmenite; 0.0048 ± 0.0023 to 0.041 ± 0.008 for armalcolite). D values for the high field strength elements vary from highly incompatible for Th, U and to a lesser extent W (for ilmenite: 0.0013 ± 0.0008, 0.0035 ± 0.0015 and 0.039 ± 0.005, and for armalcolite 0.008 ± 0.003, 0.0048 ± 0.0022 and 0.062 ± 0.03), to mildly incompatible for Nb, Ta, Zr, and Hf (e.g. 0.28 ± 0.05 and : 0.76 ± 0.07). Both minerals fractionate the high field strength elements with DTa/DNb and DHf/DZr between 1.3 and 1.6 for ilmenite and 1.3 and 1.4 for armalcolite. Armalcolite is slightly more efficient at fractionating Hf from W during lunar magma ocean crystallisation, with DHf/DW = 12-13 compared to 6.7-7.5 for ilmenite. The transition metals vary from mildly incompatible to compatible, with the highest compatibilities for Cr in ilmenite (D ∼ 7.5) and V in armalcolite (D ∼ 8.1). D values show no clear variation with pressure in the small range covered.Crystal lattice strain modelling of D values for di-, tri- and tetravalent trace elements shows that in ilmenite, divalent elements prefer to substitute for Fe while armalcolite data suggest REE replacing Mg. Tetravalent cations appear to preferentially substitute for Ti in both minerals, with the exception of Th and U that likely substitute for the larger Fe or Mg cations. Crystal lattice strain modelling is also used to identify and correct for very small (∼0.3 wt.%) melt contamination of trace element concentration determinations in crystals.Our results are used to model the Lu-Hf-Ti concentrations of lunar high-Ti mare basalts. The combination of their subchondritic Lu/Hf ratios and high TiO2 contents requires preferential dissolution of ilmenite or armalcolite from late-stage, lunar magma ocean cumulates into low-Ti partial melts of deeper pyroxene-rich cumulates.  相似文献   

2.
Several studies have shown that there is a strong relationship between the distribution of crenarchaeotal isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) and sea surface temperature (SST). Based on this, a ratio of certain GDGTs, called TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms), was developed as a SST proxy. In this study, we determined the distribution of crenarchaeotal isoprenoid GDGTs in 116 core-top sediments mostly from (sub)polar oceans and combined these data with previously published core-top data. Using this extended global core-top dataset (n = 426), we re-assessed the relationship of crenarchaeal isoprenoid GDGTs with SST. We excluded data from the Red Sea from the global core-top dataset to define new indices and calibration models, as the Red Sea with its elevated salinity appeared to behave differently compared to other parts of the oceans. We tested our new indices and calibration models on three different paleo datasets, representing different temperature ranges. Our results indicate that the crenarchaeol regio-isomer plays a more important role for temperature adaptation in (sub)tropical oceans than in (sub)polar oceans, suggesting that there may be differences in membrane adaptation of the resident crenarchaeotal communities at different temperatures. We, therefore, suggest to apply two different calibration models. For the whole calibration temperature range (−3 to 30 °C), a modified version of TEX86 with a logarithmic function which does not include the crenarchaeol regio-isomer, called , is shown to correlate best with SST: (r= 0.86, n=396, p <0.0001). Application of on sediments from the subpolar Southern Ocean results in realistic absolute SST estimates and a similar SST trend compared to a diatom SST record from the same core. , which is defined as the logarithmic function of TEX86, yields the best correlation with SST, when the data from the (sub)polar oceans are removed: (r= 00.87, n = 255, p < 0.0001). Furthermore, gives the best correlation for mescosm data with temperatures ranging between 10 and 46 °C. For Quaternary sediments from the tropical Arabian Sea, both and yield similar trends and SST estimates. However, the extrapolation of calibration on a sediment record from a greenhouse world ocean predicts more reliable absolute SST estimates and relative SST changes in agreement with estimates based on the δ18O of planktonic foraminifera. Based on the comparison of and derived SSTs using the core top data, we recommend applying above 15 °C and below 15 °C. In cases where paleorecords encompass temperatures both below and above 15 °C, we suggest to use .  相似文献   

3.
Although the stable oxygen isotope fractionation between dissolved sulfate ion and H2O (hereafter ) is of physico-chemical and biogeochemical significance, no experimental value has been established until present. The primary reason being that uncatalyzed oxygen exchange between and H2O is extremely slow, taking 105 years at room temperature. For lack of a better approach, values of 16‰ and 31‰ at 25 °C have been assumed in the past, based on theoretical ‘gas-phase’ calculations and extrapolation of laboratory results obtained at temperatures >75 °C that actually pertain to the bisulfate system. Here I use novel quantum-chemistry calculations, which take into account detailed solute-water interactions to establish a new value for of 23‰ at 25 °C. The results of the corresponding calculations for the bisulfate ion are in agreement with observations. The new theoretical values show that sediment -data, which reflect oxygen isotope equilibration between sulfate and ambient water during microbial sulfate reduction, are consistent with the abiotic equilibrium between and water.  相似文献   

4.
The effect of sulfur dissolved as sulfide (S2−) in silicate melts on the activity coefficients of NiO and some other oxides of divalent cations (Ca, Cr, Mn, Fe and Co) has been determined from olivine/melt partitioning experiments at 1400 °C in six melt compositions in the system CaO-MgO-Al2O3-SiO2 (CMAS), and in derivatives of these compositions at 1370 °C, obtained from the six CMAS compositions by substituting Fe for Mg (FeCMAS). Amounts of S2− were varied from zero to sulfide saturation, reaching 4100 μg g−1 S in the most sulfur-rich silicate melt. The sulfide solubilities compare reasonably well with those predicted from the parameterization of the sulfide capacity of silicate melts at 1400 °C of O’Neill and Mavrogenes (2002), although in detail systematic deviations indicate that a more sophisticated model may improve the prediction of sulfide capacities.The results show a barely discernible effect of S2− in the silicate melt on Fe, Co and Ni partition coefficients, and also surprisingly, a tiny but resolvable effect on Ca partitioning, but no detectable effect on Cr, Mn or some other lithophile incompatible elements (Sc, Ti, V, Y, Zr and Hf). Decreasing Mg# of olivine (reflecting increasing FeO in the system) has a significant influence on the partitioning of several of the divalent cations, particularly Ca and Ni. We find a remarkably systematic correlation between and the ionic radius of M2+, where M = Ca, Cr, Mn, Fe, Co or Ni, which is attributable to a simple relationship between size mismatch and excess free energies of mixing in Mg-rich olivine solid solutions.Neither the effect of S2− nor of Mg#ol is large enough by an order of magnitude to account for the reported variations of obtained from electron microprobe analyses of olivine/glass pairs from mid-ocean ridge basalts (MORBs). Comparing these MORB glass analyses with the Ni-MgO systematics of MORB from other studies in the literature, which were obtained using a variety of analytical techniques, shows that these electron microprobe analyses are anomalous. We suggest that the reported variation of with S content in MORB is an analytical artifact.Mass balance of melt and olivine compositions with the starting compositions shows that dissolved S2− depresses the olivine liquidus of haplobasaltic silicate melts by 5.8 × 10−3 (±1.3 × 10−3) K per μg g−1 of S2−, which is negligible in most contexts. We also present data for the partitioning of some incompatible trace elements (Sc, Ti, Y, Zr and Hf) between olivine and melt. The data for Sc and Y confirm previous results showing that and decrease with increasing SiO2 content of the melt. Values of average 0.01 with most falling in the range 0.005-0.015. Zr and Hf are considerably more incompatible than Ti in olivine, with and about 10−3. The ratio / is well constrained at 0.611 ± 0.016.  相似文献   

5.
Comparative concentrations of carbonate and hydroxide complexes in natural solutions can be expressed in terms of reactions with bicarbonate that have no explicit pH dependence (). Stability constants for this reaction with n = 1 were determined using conventional formation constant data expressed in terms of hydroxide and carbonate. Available data indicate that stability constants appropriate to seawater at 25 °C expressed in the form are on the order of 104.2 for a wide range of cations (Mz+) with z = +1, +2 and +3. Φ1 is sufficiently large that species appear to substantially dominate MOHz−1 species in seawater. Evaluations of comparative stepwise carbonate and hydroxide stability constant behavior leading to the formation of n = 2 and n = 3 complexes suggest that carbonate complexes generally dominate hydroxide complexes in seawater, even for cations whose inorganic speciation schemes in seawater are currently presumed to be strongly dominated by hydrolyzed forms (). Calculated stability constants, and , indicate that the importance of carbonate complexation is sufficiently large that carbonate and hydroxide complexes would be generally comparable even if calculated Φ2 and Φ3 values are overestimated by two or more orders of magnitude. Inclusion of mixed ligand species in carbonate-hydroxide speciation models allows cation complexation intensities (MT/[Mz+]) to be expressed in the following form:
  相似文献   

6.
Ammonium fixed in micas of metamorphic rocks is a sensitive indicator both of organic-inorganic interactions during diagenesis as well as of the devolatilization history and fluid/rock interaction during metamorphism. In this study, a collection of geochemically well-characterized biotite separates from a series of graphite-bearing Paleozoic greenschist- to upper amphibolite-facies metapelites, western Maine, USA, were analyzed for ammonium nitrogen () contents and isotopic composition (δ15NNH4) using the HF-digestion distillation technique followed by the EA-IRMS technique. Biotite separates, sampled from 9 individual metamorphic zones, contain 3000 to 100 ppm with a wide range in δ15N from +1.6‰ to +9.1‰. Average contents in biotite show a distinct decrease from about 2750 ppm for the lowest metamorphic grade (∼500 °C) down to 218 ppm for the highest metamorphic grade (∼685 °C). Decreasing abundances in are inversely correlated in a linear fashion with increasing K+ in biotite as a function of metamorphic grade and are interpreted as a devolatilization effect. Despite expected increasing δ15NNH4 values in biotite with nitrogen loss, a significant decrease from the Garnet Zones to the Staurolite Zones was found, followed by an increase to the Sillimanite Zones. This pattern for δ15NNH4 values in biotite inversely correlates with Mg/(Mg + Fe) ratios in biotite and is discussed in the framework of isotopic fractionation due to different exchange processes between or , reflecting devolatilization history and redox conditions during metamorphism.  相似文献   

7.
Partition coefficients for a range of Rare Earth Elements (REEs), Y, Sc, Al and Zr were determined between forsteritic olivine (nearly end-member Mg2SiO4) and ten melt compositions in the system CaO-MgO-Al2O3-SiO2 (CMAS) at 1 bar and 1400 °C, with concentrations of the trace elements in the olivine and the melt measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The REEs and Sc were added at levels sufficient to ensure that concentrations in the olivine were well above the detection limits. The REE partition coefficients decrease with increasing silica in the melt, indicating strong bonding between REEO1.5 and SiO2 in the melt. The variation of as a function of ionic radius is well described by the Brice equation for each composition, although a small proportion of this variation is due to the increase in the strength of the REEO1.5-SiO2 interactions in the melt with ionic radius. Scandium behaves very similarly to the REEs, but a global fit of the data from all ten melt compositions suggests that deviates somewhat from the parabolas established by the REE and Y, implying that Sc may substitute into olivine differently to that of the REEs. In contrast to the behaviour of the large trivalent cations, the concentration of Al in olivine is proportional to the square root of its concentration in the melt, indicating a coupled substitution in olivine with a high degree of short-range order. The lack of any correlation of REE partition coefficients with Al in olivine or melt suggests that the REE substitution in olivine is charge-balanced by cation vacancies. The partition coefficient of the tetravalent trace element Zr, which is highly incompatible in olivine, depends on the CaO content of the melt.  相似文献   

8.
The terrestrial mantle has a well defined Sb depletion of ∼7 ± 1 (Jochum and Hofmann, 1997), and the lunar mantle is depleted relative to the Earth by a factor of ∼50 ± 5 (Wolf and Anders, 1980). Despite these well defined depletions, there are few data upon which to evaluate their origin—whether due to volatility or core formation. We have carried out a series of experiments to isolate several variables such as oxygen fugacity, temperature, pressure, and silicate and metallic melt compositions, on the magnitude of . The activity of Sb in FeNi metal is strongly composition dependent such that solubility of Sb as a function of fO2 must be corrected for the metal composition. When the correction is applied, Sb solubility is consistent with 3+ valence. Temperature series (at 1.5 GPa) shows that decreases by a factor of 100 over 400 °C, and a pressure series exhibits an additional decrease between ambient pressure (100 MPa) and 13 GPa. A strong dependence upon silicate melt composition is evident from a factor of 100 decrease in between nbo/t values of 0.3 and 1.7. Consideration of all these variables indicates that the small Sb depletion for the Earth’s mantle can be explained by high PT equilibrium partitioning between metal and silicate melt . The relatively large lunar Sb depletion can also be explained by segregation of a small metallic core, at lower pressure conditions where is much higher (2500).  相似文献   

9.
Elemental and isotopic abundances of lithium in chondrule constituents in the Allende CV3 meteorite were determined using secondary ion mass spectrometry. Olivines and mesostasis dominated by a feldspathic phase are depleted in Li ( and , respectively). In contrast, low-Ca pyroxenes and mesostasis dominated by a Na-rich phase are enriched in Li ( and , respectively) and the interchondrule matrix is generally enriched in Li ( on average). The Li isotopic abundance of olivine ranges from to 21. The spatial distributions of elemental and isotopic abundances of Li in olivines within individual chondrules exhibit no systematic pattern. This suggests that the distribution of Li in olivine was not disturbed during aqueous alteration or thermal metamorphism on the Allende meteorite parent body. Although mesostasis is the last crystallizing phase from a chondrule melt and is expected to be enriched in Li, in the Allende meteorite it is generally depleted in Li. We suggest that during aqueous alteration on the CV asteroid, Li in mesostasis was leached out by aqueous fluids. The Li-enriched Na-rich mesostasis was probably produced later by infiltration of Na-rich fluids. It seems likely that aqueous fluids sequestered alkali elements from the Allende-chondrite region in the CV parent asteroid, although significant amounts of Li are preserved in ferrous olivine in the interchondrule matrix.  相似文献   

10.
The effect of metal loading on the binding of rare earth elements (REE) to humic acid (HA) was studied by combining ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. REE-HA complexation experiments were performed at pH 3 for REE/C molar ratios ranging from ca 4 × 10−4 to 2.7 × 10−2. Results show that the relative amount of REE bound to HA strongly increases with decreasing REE/C. A middle-REE (MREE) downward concavity is shown by patterns at high metal loading, whereas patterns at low metal loading display a regular increase from La to Lu. Humic Ion Model VI modelling are close to the experimental data variations, provided that (i) the ΔLK2 parameter (i.e. the Model VI parameter taken into account the presence of strong but low density binding sites) is allowed to increase regularly from La to Lu (from 1.1 to 2.1) and (ii) the published log KMA values (i.e. the REE-HA binding constants specific to Model VI) are slightly modified, in particular with respect to heavy REE. Modelling approach provided evidence that patterns with varying REE/C likely arises because REE binding to HA occurs through two types of binding sites in different density: (i) a few strong sites that preferentially complex the heavy REE and thus control the atterns at low REE/C; (ii) a larger amount of weaker binding sites that preferentially complex the middle-REE and thus control the pattern at high REE/C. Hence, metal loading exerts a major effect on HA-mediated REE binding, which could explain the diversity of published conditional constants for REE binding with HA. A literature survey suggests that the few strong sites activated at low REE/C could be multidentate carboxylic sites, or perhaps N-, or P-functional groups. Finally, an examination of the literature field data proposed that the described loading effect could account for much of the variation in REE patterns observed in natural organic-rich waters (DOC > 5 mg L−1 and 4 ? pH ? 7).  相似文献   

11.
Chloride complexation of Cu+ controls the solubility of copper(I) oxide and sulfide ore minerals in hydrothermal and diagenetic fluids. Solubility measurements and optical spectra of high temperature CuCl solutions have been interpreted as indicating the formation of CuCl, , and complexes. However, no other monovalent cation forms tri- and tetrachloro complexes. EXAFS spectra of high temperature Cu-Cl solutions, moreover, appear to show only CuCl and complexes at T > 100 °C. To reconcile these results, I investigated the nature and stability of Cu-Cl complexes using ab initio cluster calculations and ab initio (Car-Parrinello) molecular dynamics simulations for CuCl-NaCl-H2O systems at 25 to 450 °C. Ab initio molecular dynamic simulations of 1 m CuCl in a 4 m Cl solution give a stable complex at 25 °C over 4 ps but show that the third Cl is weakly bound. When the temperature is increased along the liquid-vapour saturation curve to 125 °C, the complex dissociates into and Cl; only forms at 325 °C and 1 kbar. Even in a 15.6 m Cl brine at 450 °C, only the complex forms over a 4 ps simulation run.Cluster calculations with a static dielectric continuum solvation field (COSMO) were used in an attempt directly estimate free energies of complex formation in aqueous solution. Consistent with the MD simulations, the complex is slightly stable at 25 °C but decreases in stability with decreasing dielectric constant (ε). The complex is predicted to be unstable at 25 °C and becomes increasingly unstable with decreasing dielectric constant. In hydrothermal fluids (ε < 30) both the and complexes are unstable to dissociation into and Cl.The results obtained here are at odds with recent equations of state that predict and complexes are the predominant species in hydrothermal brines. In contrast, I predict that only complexes will be significant at T > 125 °C, even in NaCl-saturated brines. The high-temperature (T > 125 °C) optical spectra of CuCl solutions and solubility measurements of Cu minerals in Cl-brines need to be reinterpreted in terms of only the CuCl and complexes.  相似文献   

12.
13.
14.
We present major and trace element and Sr-Nd-Pb and U-Th-Pa-Ra isotope data for a small sample suite of primarily post-glacial, mildly alkalic volcanic rocks from the Snaefellsjökull central volcano situated off the main rift systems in western Iceland. The volcanic rocks are crystal-poor and range from olivine alkali basalt to trachyte and show tight correlations of major and trace elements that are explained by fractional crystallization involving removal of olivine, plagioclase, clinopyroxene, Fe-Ti oxide and apatite. Sr-Nd-Pb isotopes are practically invariant, consistent with derivation from the same source region. During fractionation from primitive basalt to evolved trachyte, (230Th/232Th), (230Th/238U) and (231Pa/235U) decrease progressively at broadly constant (238U/232Th). A continuous closed-system fractionation model that assumes constant initial (230Th/232Th) in the basaltic precursor melt indicates that hawaiite was derived from olivine basalt by ∼50% fractional crystallization within and trachyte by ∼80% fractionation within . An overrepresentation of evolved basalts and hawaiites with young inferred magma ages in the dataset is consistent with the parental precursor to these magmas intruded into the sub-volcanic magma plumbing system as a consequence of lithospheric rebound caused by deglaciation. Lavas affected by apatite removal have higher (231Pa/235U) than predicted for simple radioactive decay, suggesting apatite significantly fractionates U from Pa. The proposed fractionation model consistently explains our U-series data assuming and and . If applicable, these D values would indicate that the effect of apatite fractionation must be adequately considered when assessing differentiation time scales using (231Pa/235U) disequilibria data.  相似文献   

15.
The influence of solution complexation on the sorption of yttrium and the rare earth elements (YREEs) by amorphous ferric hydroxide was investigated at 25 °C over a range of pH (4.0-7.1) and carbonate concentrations . Distribution coefficients, defined as , where [MSi]T is the total concentration of sorbed YREE, MT is the total YREE concentration in solution, and [Si] is the concentration of amorphous ferric hydroxide, initially increased in magnitude with increasing carbonate concentration, and then decreased. The initial increase of is due to sorption of YREE carbonate complexes , in addition to sorption of free YREE ions (M3+). The subsequent decrease of , which is more extensive for the heavy REEs, is due to the increasing intensity of YREE solution complexation by carbonate ions. The competition for YREEs between solution complexation and surface complexation was modeled via the equation:
  相似文献   

16.
The influence on olivine/melt transition metal (Mn, Co, Ni) partitioning of substitution in the tetrahedral network of silicate melt structure has been examined at ambient pressure in the 1450-1550 °C temperature range. Experiments were conducted in the systems NaAlSiO4-Mg2SiO4- SiO2 and CaAl2Si2O8-Mg2SiO4-SiO2 with about 1 wt% each of MnO, CoO, and NiO added. These compositions were used to evaluate how, in silicate melts, substitution and ionization potential of charge-balancing cations affect activity-composition relations in silicate melts and mineral/melt partitioning.The exchange equilibrium coefficient, , is a positive and linear function of melt Al/(Al + Si) at constant degree of melt polymerization, NBO/T. The is negatively correlated with the ionic radius, r, of the M-cation and also with the ionization potential (Z/r2, Z = electrical charge) of the cation that serves to charge-balance Al3+ in tetrahedral coordination in the melts. The activity coefficient ratio, (γM/γMg)melt, is therefore similarly correlated.These melt composition relationships are governed by the distribution of Al3+ among coexisting Q-species in the peralkaline (depolymerized) melts coexisting with olivine. This distribution controls Q-speciation abundance, which, in turn, controls (γM/γMg)melt and . The relations between melt structure and olivine/melt partitioning behavior lead to the suggestion that in natural magmatic systems mineral/melt partition coefficients are more dependent on melt composition and, therefore, melt structure the more alkali-rich and the more felsic the melt. Moreover, mineral/melt partition coefficients are more sensitive to melt composition the more highly charged or the smaller the ionic radius of the cation of interest.  相似文献   

17.
Four or five sets of ab initio models, including Unrestricted Hartree Fock (UHF) and hybrid Density Functional Theory (DFT) are calculated for each species in a series of aqueous ferric aquo-chloro complexes: , , , FeCl3(H2O)3, FeCl3(H2O)2, , FeCl5H2O2−, , ) in order to determine the relative isotopic fractionation among the complexes, to compare the results of different models for the same complexes, to examine factors that influence the magnitude of the isotopic fractionation, and to compare bond-partner-driven fractionation with redox-driven fractionation.Relative to , all models show a nearly linear decrease in 56Fe/54Fe as the number of Cl ions per Fe3+ ion increases, with slopes of −0.8‰ to −1.0‰ per Cl at 20 °C. At 20 °C, 1000 ln β (β = 56Fe/54Fe reduced partition function ratio relative to a dissociated Fe atom) values range from 8.93‰ to 9.73‰ for , 8.04-9.12‰ for , 7.61-8.73‰ for , 7.14-8.25‰ for , and 3.09-4.41‰ for . The fractionation between and ranges from 1.5‰ to 2.6‰, depending on the model; this is comparable in magnitude to fractionation effects due to Fe3+/Fe2+ redox reactions. β values from the UHF models are consistently higher than those from the hybrid DFT models.Isotopic fractionation is shown to be sensitive to differences in ligand bond stiffness (above), coordination number, bond length, and the frequency of the asymmetric Fe-X stretching vibrational mode, as predicted by previous theoretical studies. Complexes with smaller coordination numbers have higher 1000 ln β (7.46‰, 5.25‰, and 3.48‰ for , ,, respectively, from the B3LYP/6-31G(d) model). Species with the same number of chlorides but fewer waters also show the effect of coordination number on 1000 ln β: (7.46‰ vs. 7.05‰ for FeCl3(H2O)2 vs. FeCl3(H2O)3 and 5.25‰ vs. 4.94‰ for vs. FeCl5H2O2− with the B3LYP/6-31G(d) model). As more Fe-Cl bonds substitute for Fe-OH2 bonds (with a resulting decrease in β), the lengths of the Fe-Cl bonds and the Fe-O bonds increase.Preliminary modeling of shows an Fe3+/Fe2+ fractionation of 3.2‰ for the B3LYP/6-31G(d) model, in agreement with previous studies. The addition of an explicit outer hydration sphere of 12 H2O molecules to models of improves agreement with measured vibrational frequencies and bond lengths; 1000 ln β increases by 0.8-1.0‰. An additional hydration sphere around increases 1000 ln β by only 0.1‰.Isotopic fractionations predicted for this simple system imply that ligands present in an aqueous iron environment are potentially important drivers of fractionation, and suggest that significant fractionation effects are likely in other aqueous systems containing sulfides or organic ligands. Fractionation effects due to both speciation and redox must be considered when interpreting iron isotope fractionations in the geological record.  相似文献   

18.
We performed a series of synthesis experiments at 1 atm pressure to investigate the substitution mechanisms of 1+ and 3+ ions into olivine. Forsterite crystals were grown from bulk compositions that contained the element of interest (e.g. Li) and different amounts of additional single trace elements. By working at constant (major element) liquid composition and temperature we eliminated all compositional effects other than those due to the trace elements. Mineral-melt pairs were then analysed to determine the compositional-dependence of the partition coefficient (D), which corresponds to , and where [element] refers to weight concentration of the element in the respective phase.We find that Li forms a stable coupled substitution with Sc and, at above ∼500 ppm Sc in the crystal, Li+ and Sc3+ ions form an ordered neutral complex ([LiSc]). This complex dissociates at lower trace element concentrations and a second, concentration-independent, mechanism begins to dominate. This second solution mechanism is most likely 2Li+ ⇔ Mg2+ where one of the Li atoms is in an interstitial position in the crystal lattice. Natural olivines show Li contents slightly greater than Sc (on an atomic basis), indicating that both substitution mechanisms are significant. Unlike Sc, Al does not appear to form a stable complex with Li in the olivine structure.Sodium is highly incompatible in olivine with of ∼0.00015-0.03. Olivine-liquid partitioning of Na+ is independent of Sc3+ or Al3+ concentration. This indicates that the coupled substitution of Na+ with any 3+ ions is unlikely. Instead, the relevant substitution mechanism appears to be 2Na+ ⇔ Mg2+. Although independent of 3+ ion concentration, is inversely correlated with the Li concentration of both melts and crystals, implying that Na competes (unsuccessfully) with Li to replace Mg in the olivine structure.Aluminium is highly incompatible in forsterite . Values of are similar for all phase pairs synthesised from starting materials containing between 10 and 100,000 ppm Al. This suggests that Al is principally incorporated in forsterite by replacing one Mg and one Si atom , where the Al atoms on octahedral (Mg) and tetrahedral (Si) sites are dissociated from one another.The incorporation of gallium into forsterite is influenced by the presence of Li. Where Li concentration in the crystal is much greater than that of Ga (on an atomic basis) we find an excellent correlation between and melt Li content. This relationship indicates that Ga3+ and Li+ replace 2Mg2+ on octahedral sites and that the Ga and Li atoms are, like Sc and Li, strongly associated in the crystal structure.The mechanism by which scandium is incorporated into forsterite is strongly governed by the presence Li. As discussed above, ordered complexes form readily in forsterite in Li-rich experiments. Under Li-absent but Sc-rich conditions (Sc in the crystal >∼500 ppm), is proportional to the concentration of Sc in the melt. This indicates that Sc incorporation is charge-balanced by the formation of magnesium vacancies , and that both species are associated . At lower Sc concentrations (<500 ppm in the crystal), the concentration-dependence of partitioning indicates that the complexes dissociate.Our results demonstrate that partitioning of 1+ and 3+ ions into olivine is complex and involves a range of point defects which yield strongly composition-dependent crystal-melt partition coefficients. Since physical and chemical properties of natural olivine, such as diffusion of 6Li and 7Li and H2O solubility, depend on the concentrations of the defects identified in this study, our results provide an important insight into how determining substitution mechanisms can improve our understanding of large-scale mantle processes and properties.  相似文献   

19.
The concentration and distribution of Pt and Au in a fluid-melt system has been investigated by reacting the metals with S-free, single-phase aqueous brines (20, 50, 70 wt% eq. NaCl) ± peraluminous melt at a confining pressure of 1.5 kbar and temperatures of 600 to 800 °C, trapping the fluid in synthetic fluid inclusions (quartz-hosted) and vesicles (silicate melt-hosted), and quantifying the metal content of the trapped fluid and glass by laser ablation ICP-MS. HCl concentration was buffered using the assemblage albite-andalusite-quartz and fO2 was buffered using the assemblage Ni-NiO. Over the range of experimental conditions, measured concentrations of Pt and Au in the brines (, ) are on on the order of 1-103 ppm. Concentrations of Pt and Au in the melt (, ) are ∼35-100 ppb and ∼400-1200 ppb, respectively. Nernst partition coefficients (, ) are on the order of 102-103 and vary as a function of (non-Henry’s Law behavior). Trapped fluids show a significant range of metal concentrations within populations of inclusions from single experiments (∼ 1 log unit variability for Au; ∼2-3 log unit variability for Pt). Variability in metal concentration within single inclusion groups is attributed to premature brine entrapment (prior to metal-fluid-melt equilibrium being reached); this allows us to make only minimum estimates of metal solubility using metal concentrations from primary inclusions. The data show two trends: (i) maximum and average values of and in inclusions decrease ∼2 orders of magnitude as fluid salinity () increases from ∼4 to 40 molal (20 to 70 wt % eq. NaCl) at a constant temperature; (ii) maximum and average values of increase approximately 1 order of magnitude for every 100°C increase temperature at a fixed . The observed behavior may be described by the general expression:
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号