首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 953 毫秒
1.
为解决Hotine积分计算低空扰动引力径向分量时的奇异性问题,本文从Hotine积分公式入手,分析了产生奇异性的原因及其影响;并在此基础上根据分区原理推导出Hotine积分的无奇异公式,本文算法将内区视为扰动重力值相等的微小平面,直接进行数学积分以消除奇异性,最后从理论上阐述了本文算法的优势。数值试验结果表明,相较于传统方法,改进后的Hotine积分在整个积分区域内连续,地表附近扰动引力径向分量的计算结果奇异性消除,而且高度越低,精度越好。此外,经过改化,Hotine积分核函数变为边界面上扰动重力差分形式,这减弱了远区地面数据对计算结果的影响,改进后的Hotine积分对地面数据的需求量相比于传统算法降低了近20倍,而且高度越低,对积分半径的要求越低。本文算法适用于低空外部重力场计算,而且效能较高。  相似文献   

2.
利用Poisson积分推导Hotine函数及Hotine公式应用问题   总被引:2,自引:0,他引:2  
给出一种直接利用改进的Poisson积分确定Hotine函数的推导 ,其中不包括函数的零阶和一阶项。讨论了Hotine公式在陆地和海洋局部重力场逼近中的应用问题。  相似文献   

3.
随着GNSS、航空重力等技术的发展,扰动重力数据的获取变得越来越便捷。然而目前利用Hotine积分与扰动重力数据确定区域大地水准面的研究比较少。本文主要研究了Hotine积分中央区改正方法和Hotine积分核函数改进方法;利用改进的Hotine积分核函数结合扰动重力数据构建了区域大地水准面。实验表明,本文提出的中央区改正方法可以解决Hotine积分中央区奇异的问题;改进核函数的方法可以有效地削弱远区截断误差的影响并且可以提高数据的利用率。  相似文献   

4.
Hotine积分能综合应用重力和卫星测高资料确定高精度海洋重力大地水准面。本文应用一种与传统方法不同的处理Hotine积分的技术,使得计算公式得到明显简化,并就加速远区域级数收敛问题作了探讨。计算表明,用改进后的公式计算的海洋大地水准面的精度优于1米,它和Seasat卫星测高大地水准面间存在约0.2米的系统差。  相似文献   

5.
美国海洋卫星测高仪的出现,使应用Hotine积分确定海洋大地水准面成为现实。本文通过对Hotine积分及垂线偏差的计算公式进行改进,较好地改善了求和项的收敛性,减小了截断误差影响,并提出了利用Hotine函数和重力异常确定海洋大地水准面的方法。 实际计算表明:海洋重力大地水准面的精度在1米以内;卫星测高大地水准面间存在0.5米系统差;它和海底地形有一定的相关性,能较好地反映出海底地形的宏观特性。  相似文献   

6.
提出了一种用于Stokes积分和Hotine积分直接离散求和的快速算法。该算法将积分核表达为计算点纬度、流动点纬度和两点间经度差的函数,充分利用核函数的对称性,相同纬度的所有计算点只需计算一组核函数,计算次数远少于普通离散求和。基于EGM2008地球重力位模型的模拟实验表明,快速算法的计算效率远高于普通算法,有效解决了离散求和计算速度太慢的数值问题,且保留了球面积分的特性,可取代一维FFT用于计算Stokes积分和Hotine积分。  相似文献   

7.
蒋涛 《测绘学报》2013,42(1):152
论文系统研究了利用航空重力数据以及联合航空重力与地面重力数据确定高精度区域大地水准面的理论模型、实用算法和关键技术,细致分析了其中存在的关键问题,提出了多项思路、模型和方法以突破关键性难点.论文的主要工作和创新之处体现在: (1)提出一种用于Stokes和Hotine积分等球面积分直接离散求和的快速算法,解决球面积分离散求和计算效率太低的数值问题.对于10°×10°范围共计57 600个点的2.5'×2.5'格网重力数据,积分球冠区半径取3°时,新算法用于基于解析核的Stokes和Hotine积分时计算速度比普通算法快约48倍,用于基于级数核的Stokes和Hotine积分时分别比普通算法快约276倍和294倍.  相似文献   

8.
本文给出了Hotine 函数法的椭球面积分解,以应用于计算精确的大地水准面起伏。计算表明,当积分半径为20°时,我国近海的椭球改正只有10cm,远比stokes公式的椭球改正要小。  相似文献   

9.
借助以地心参考椭球面为边界面的第二大地边值问题的理论,基于Helmert空间的Neumann边值条件,给定Helmert扰动位的椭球解表达式,并详细推导第二类勒让德函数及其导数的递推关系、Helmert扰动位函数的椭球积分解以及类椭球Hotine积分核函数的实用计算公式,便于后续椭球域第二大地边值问题的实际研究。  相似文献   

10.
本文利用Topex/Poseidon卫星测高资料,从快速Hartley变换(FHT)基本概念入手,给出了Hotine公式在平面近似、球面近似、Molodenskii近似下,反演中国近海海洋重力的数学模型。另对FHT处理中所需的坐标转换以及边缘效应等问题进行了讨论。同时,为了改善长波特性的重力场信息,引入了M阶次的OSU91A参考重力场对上述Molodenskii模型进行了改化。  相似文献   

11.
Geoid and quasigeoid modelling from gravity anomalies by the method of least squares modification of Stokes’s formula with additive corrections is adapted for the usage with gravity disturbances and Hotine’s formula. The biased, unbiased and optimum versions of least squares modification are considered. Equations are presented for the four additive corrections that account for the combined (direct plus indirect) effect of downward continuation (DWC), topographic, atmospheric and ellipsoidal corrections in geoid or quasigeoid modelling. The geoid or quasigeoid modelling scheme by the least squares modified Hotine formula is numerically verified, analysed and compared to the Stokes counterpart in a heterogeneous study area. The resulting geoid models and the additive corrections computed both for use with Stokes’s or Hotine’s formula differ most in high topography areas. Over the study area (reaching almost 2 km in altitude), the approximate geoid models (before the additive corrections) differ by 7 mm on average with a 3 mm standard deviation (SD) and a maximum of 1.3 cm. The additive corrections, out of which only the DWC correction has a numerically significant difference, improve the agreement between respective geoid or quasigeoid models to an average difference of 5 mm with a 1 mm SD and a maximum of 8 mm.  相似文献   

12.
On the accurate numerical evaluation of geodetic convolution integrals   总被引:3,自引:2,他引:1  
In the numerical evaluation of geodetic convolution integrals, whether by quadrature or discrete/fast Fourier transform (D/FFT) techniques, the integration kernel is sometimes computed at the centre of the discretised grid cells. For singular kernels—a common case in physical geodesy—this approximation produces significant errors near the computation point, where the kernel changes rapidly across the cell. Rigorously, mean kernels across each whole cell are required. We present one numerical and one analytical method capable of providing estimates of mean kernels for convolution integrals. The numerical method is based on Gauss-Legendre quadrature (GLQ) as efficient integration technique. The analytical approach is based on kernel weighting factors, computed in planar approximation close to the computation point, and used to convert non-planar kernels from point to mean representation. A numerical study exemplifies the benefits of using mean kernels in Stokes’s integral. The method is validated using closed-loop tests based on the EGM2008 global gravity model, revealing that using mean kernels instead of point kernels reduces numerical integration errors by a factor of ~5 (at a grid-resolution of 10 arc min). Analytical mean kernel solutions are then derived for 14 other commonly used geodetic convolution integrals: Hotine, Eötvös, Green-Molodensky, tidal displacement, ocean tide loading, deflection-geoid, Vening-Meinesz, inverse Vening-Meinesz, inverse Stokes, inverse Hotine, terrain correction, primary indirect effect, Molodensky’s G1 term and the Poisson integral. We recommend that mean kernels be used to accurately evaluate geodetic convolution integrals, and the two methods presented here are effective and easy to implement.  相似文献   

13.
Two modifications of the Hotine formula using the truncation theory and marine gravity disturbances with altimetry data are developed and used to compute a marine gravimetric geoid in the Gulf Stream area. The purpose of the geoid computation from marine gravity information is to derive the absolute dynamic ocean topography based on the best estimate of the mean surface height from recent altimetry missions such as Geosat, ERS-1, and Topex. This paper also tries to overcome difficulties of using Fast Fourier Transformation (FFT) techniques to the geoid computation when the Hotine kernel is modified according to the truncation theory. The derived absolute dynamic ocean topography is compared with that from global circulation models such as POCM4B and POP96. The RMS difference between altimetry-derived and global circulation model dynamic ocean topography is at the level of 25cm. The corresponding mean difference for POCM4B and POP96 is only a few centimeters. This study also shows that the POP96 model is in slightly better agreement with the results derived from the Hotine formula and altimetry data than POCM4B in the Gulf Stream area. In addition, Hotine formula with modification (II) gives the better agreement with the results from the two global circulation models than the other techniques discussed in this paper. Received: 10 October 1996 / Accepted: 16 January 1998  相似文献   

14.
Global Navigation Satellite System positioning of gravity surveys permits geoid computation via Hotine’s integral. A suite of modifications is presented so that the user can tune the relative contributions of truncation and data errors in a combined solution for a regional geoid model from gravity disturbances.  相似文献   

15.
The geoid gradient over the Darling Fault in Western Australia is extremely high, rising by as much as 38 cm over only 2 km. This poses problems for gravimetric-only geoid models of the area, whose frequency content is limited by the spatial distribution of the gravity data. The gravimetric-only version of AUSGeoid98, for instance, is only able to resolve 46% of the gradient across the fault. Hence, the ability of GPS surveys to obtain accurate orthometric heights is reduced. It is described how further gravity data were collected over the Darling Fault, augmenting the existing gravity observations at key locations so as to obtain a more representative geoid gradient. As many of the gravity observations were collected at stations with a well-known GRS80 ellipsoidal height, the opportunity arose to compute a geoid model via both the Stokes and the Hotine approaches. A scheme was devised to convert free-air anomaly data to gravity disturbances using existing geoid models, followed by a Hotine integration to geoid heights. Interestingly, these results depended very weakly upon the choice of input geoid model. The extra gravity data did indeed improve the fit of the computed geoid to local GPS/Australian Height Datum (AHD) observations by 58% over the gravimetric-only AUSGeoid98. While the conventional Stokesian approach to geoid determination proved to be slightly better than the Hotine method, the latter still improved upon the gravimetric-only AUSGeoid98 solution, supporting the viability of conducting gravity surveys with GPS control for the purposes of geoid determination. AcknowledgementsThe author would like to thank Will Featherstone, Ron Gower, Ron Hackney, Linda Morgan, Geoscience Australia, Scripps Oceanographic Institute and the three anonymous reviewers of this paper. This research was funded by the Australian Research Council.  相似文献   

16.
A gravimetric geoid computed using different techniques has been compared to a geoid derived from Geos-3 altimeter data in two 30°×30° areas: one in the Tonga Trench area and one in the Indian Ocean. The specific techniques used were the usual Stokes integration (using 1°×1° mean anomalies) with the Molodenskii truncation procedure; a modified Stokes integration with a modified truncation method; and computations using three sets of potential coefficients including one complete to degree 180. In the Tonga Trench area the standard deviation of the difference between the modified Stokes’ procedure and the altimeter geoid was ±1.1 m while in the Indian Ocean area the difference was ±0.6 m. Similar results were found from the 180×180 potential coefficient field. However, the differences in using the usual Stokes integration procedure were about a factor of two greater as was predicted from an error analysis. We conclude that there is good agreement at the ±1 m level between the two types of geoids. In addition, systematic differences are at the half-meter level. The modified Stokes procedure clearly is superior to the usual Stokes method although the 180×180 solution is of comparable accuracy with the computational effort six times less than the integration procedures.  相似文献   

17.
Various formulations of the geodetic fixed and free boundary value problem are presented, depending upon the type of boundary data. For the free problem, boundary data of type astronomical latitude, astronomical longitude and a pair of the triplet potential, zero and first-order vertical gradient of gravity are presupposed. For the fixed problem, either the potential or gravity or the vertical gradient of gravity is assumed to be given on the boundary. The potential and its derivatives on the boundary surface are linearized with respect to a reference potential and a reference surface by Taylor expansion. The Eulerian and Lagrangean concepts of a perturbation theory of the nonlinear geodetic boundary value problem are reviewed. Finally the boundary value problems are solved by Hilbert space techniques leading to new generalized Stokes and Hotine functions. Reduced Stokes and Hotine functions are recommended for numerical reasons. For the case of a boundary surface representing the topography a base representation of the solution is achieved by solving an infinite dimensional system of equations. This system of equations is obtained by means of the product-sum-formula for scalar surface spherical harmonics with Wigner 3j-coefficients.  相似文献   

18.
Various formulations of the geodetic fixed and free boundary value problem are presented, depending upon the type of boundary data. For the free problem, boundary data of type astronomical latitude, astronomical longitude and a pair of the triplet potential, zero and first-order vertical gradient of gravity are presupposed. For the fixed problem, either the potential or gravity or the vertical gradient of gravity is assumed to be given on the boundary. The potential and its derivatives on the boundary surface are linearized with respect to a reference potential and a reference surface by Taylor expansion. The Eulerian and Lagrangean concepts of a perturbation theory of the nonlinear geodetic boundary value problem are reviewed. Finally the boundary value problems are solved by Hilbert space techniques leading to new generalized Stokes and Hotine functions. Reduced Stokes and Hotine functions are recommended for numerical reasons. For the case of a boundary surface representing the topography a base representation of the solution is achieved by solving an infinite dimensional system of equations. This system of equations is obtained by means of the product-sum-formula for scalar surface spherical harmonics with Wigner 3j-coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号