首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The Dexing deposit is located in a NE‐trending magmatic belt along the southeastern margin of the Yangtze Craton. It is the largest porphyry copper deposit in China, consisting of three porphyry copper orebodies of Zhushahong, Tongchang and Fujiawu from northwest to southeast. It contains 1168 Mt of ores with 0.5% Cu and 0.01% Mo. The Dexing deposit is hosted by Middle Jurassic granodiorite porphyries and pelitic schist of Proterozoic age. The Tongchang granodiorite porphyry has a medium K cal‐alkaline series, with medium K2O content (1.94–2.07 wt%), and low K2O/(Na2O + K2O) (0.33–0.84) ratios. They have high large‐ion lithophile elements, high light rare‐earth elements, and low high‐field‐strength elements. The hydrothermal alteration at Tongchang is divided into four alteration mineral assemblages and related vein systems. They are early K‐feldspar alteration and A vein; transitional (chlorite + illite) alteration and B vein; late phyllic (quartz + muscovite) alteration and D vein; and latest carbonate, sulfate and oxide alteration and hematite veins. Primary fluid inclusions in quartz from phyllic alteration assemblage include liquid‐rich (type 1), vapor‐rich (type 2) and halite‐bearing ones (type 3). These provide trapping pressures of 20–400 ´ 105 Pa of fluids responsible for the formation of D veins. Igneous biotite from least altered granochiorite porphyry and hydrothermal muscovite in mineralized granodiorite porphyry possess δ18O and δD values of 4.6‰ and ?87‰ for biotite and 7.1–8.9‰, ?71 to ?73‰ for muscovite. Stable isotopic composition of the hydrothermal water suggests a magmatic origin. The carbon and oxygen isotope for hydrothermal calcite are ?4.8 to ?6.2‰ and 6.8–18.8‰, respectively. The δ34S of pyrite in quartz vein ranges from ?0.1 to 3‰, whereas δ34S for chalcopyrite in calcite veins ranges from 4 to 5‰. These are similar to the results of previous studies, and suggest a magmatic origin for sulfur. Results from alteration assemblages and vein system observation, as well as geochemical, fluid inclusion, stable isotope studies indicate that the involvement of hydrothermal fluids exsolved from a crystallizing melt are responsible for the formation of Tongchang porphyry Cu‐Mo orebodies in Dexing porphyry deposit.  相似文献   

2.
The basement of the central Qilian fold belt exposed along the Minhe-Ledu highway consists of psammitic schists, metabasitic rocks, and crystalline limestone. Migmatitic rocks occur sporadically among psammitic schist and metabasitic rocks. The mineral assemblage of psammitic schist is muscovite + biotite + feldspar + quartz ± tourmaline ± titanite ± sillimanite and that of metabasitic rocks is amphibole + plagioclase + biotite ± apatite ± magnetite ± pyroxene ± garnet ± quartz. The migmatitic rock consists of leucosome and restite of various volume proportions; the former consists of muscovite + alkaline feldspar + quartz ± garnet ± plagioclase while the latter is either fragments of psammitic schist or those of metabasitic rock. The crystalline limestone consists of calcite that has been partly replaced by olivine. The olivine was subsequently altered to serpentine. Weak deformations as indicated by cleavages and fractures were imposed prominently on the psammitic schists, occasionally on me  相似文献   

3.
The Chatree deposit is located in the Loei‐Phetchabun‐Nakhon Nayok volcanic belt that extends from Laos in the north through central and eastern Thailand into Cambodia. Gold‐bearing quartz veins at the Q prospect of the Chatree deposit are hosted within polymictic andesitic breccia and volcanic sedimentary breccia. The orebodies of the Chatree deposit consist of veins, veinlets and stockwork. Gold‐bearing quartz veins are composed mainly of quartz, calcite and illite with small amounts of adularia, chlorite and sulfide minerals. The gold‐bearing quartz veins were divided into five stages based on the cross‐cutting relationship and mineral assemblage. Intense gold mineralization occurred in Stages I and IV. The mineral assemblage of Stages I and IV is characterized by quartz–calcite–illite–laumontite–adularia–chlorite–sulfide minerals and electrum. Quartz textures of Stages I and IV are also characterized by microcrystalline and flamboyant textures, respectively. Coexistence of laumontite, illite and chlorite in the gold‐bearing quartz vein of Stage IV suggests that the gold‐bearing quartz veins were formed at approximately 200°C. The flamboyant and brecciated textures of the gold‐bearing quartz vein of Stage IV suggest that gold precipitated with silica minerals from a hydrothermal solution that was supersaturated by boiling. The δ18O values of quartz in Stages I to V range from +10.4 to +11.6‰ except for the δ18O value of quartz in Stage IV (+15.0‰). The increase in δ18O values of quartz at Stage IV is explained by boiling. PH2O is estimated to be 16 bars at 200°C. The fCO2 value is estimated to be 1 bar based on the presence of calcite in the mineral assemblage of Stage IV. The total pressure of the hydrothermal solution is approximately 20 bars at 200°C, suggesting that the gold‐bearing quartz veins of the Q prospect formed about 200 m below the paleosurface.  相似文献   

4.
The Benjamin River apatite prospect in northern New Brunswick, Canada, is hosted by the Late Silurian Dickie Brook plutonic complex, which is made up of intrusive units represented by monzogranite, diorite and gabbro. The IOA ores, composed mainly of apatite, augite, and magnetite at Benjamin River form pegmatitic pods and lenses in the host igneous rocks, the largest of which is 100 m long and 10–20 m wide in the diorite and gabbro units. In this study, 28 IOA ore and rock samples were collected from the diorite and gabbro units. Mineralogical observations show that the apatite–augite–magnetite ores are variable in the amounts of apatite, augite, and magnetite and are associated with minor amounts of epidote‐group minerals (allanite, REE‐rich epidote and epidte) and trace amounts of albite, titanite, ilmenite, titanomagnetite, pyrite, chlorite, calcite, and quartz. Apatite and augite grains contain small anhydrite inclusions. This suggests that the magma that crystallized apatite and augite had high oxygen fugacity. In back scattered electron (BSE) images, apatite grains in the ores have two zones of different appearance: (i) primary REE‐rich zone; and (ii) porous REE‐poor zone. The porous REE‐poor zones mainly appear in rims and/or inside of the apatite grains, in addition to the presence of apatite grains which totally consist of a porous REE‐poor apatite. This porous REE‐poor apatite is characterized by low REE (<0.84 wt%), Si (<0.28 wt%), and Cl (<0.17 wt%) contents. Epidote‐group minerals mainly occur in grain boundary between the porous REE‐poor apatite and augite. These indicate that REE leached from primary REE‐rich apatite crystallized as allanite and REE‐rich epidote. Magnetite in the ores often occurs as veinlets that cut apatite grains or as anhedral grains that replace a part of augite. These textures suggest that magnetite crystallized in the late stage. Pyrite veins occur in the ores, including a large amount of quartz and calcite veins. Pyrite veins mainly occur with quartz veins in augite. These textures indicate pyrite veins are the latest phase. Apatite–augite–magnetite ore, gabbro–quartz diorite and feldspar dike collected from the Benjamin River prospect contain dirty pure albite (Ab98Or2–Ab100) under the microscope. The feldspar dikes mainly consist of dirty pure albite. Occurrences of the dirty pure albite suggest remarkable albitization (sodic alteration) of original plagioclase (An25.3–An60 in Pilote et al., 2012) associating with intrusion of monzogranite into gabbro and diorite. SO42? bearing magma crystallized primary REE‐rich apatite, augite and anhydrite reacted with Fe in the sodic fluids, which result in oxidation of Fe2+ and release of S2? into the sodic fluids. REE, Ca and Fe from primary REE‐rich apatite, augite and plagioclase altered by the sodic fluids were released into the fluids. Then Fe3+ in the sodic fluids precipitated as Fe oxides and epidote‐group minerals in apatite–augite–magnetite ores. Finally, residual S2? in sodic fluids crystallized as latest pyrite veins. In conclusion, mineralization in Benjamin River IOA prospect are divided into four stages: (1) oxidized magmatic stage that crystallized apatite, augite and anhydrite; (2) sodic metasomatic stage accompanying alteration of magmatic minerals; (3) oxidized fluid stage (magnetite–epidote group minerals mineralization); and (4) reduced fluid stage (pyrite mineralization).  相似文献   

5.
The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ~(13)C values of the calcite samples range from-2.5‰ to 2.3‰, the δ~(18)O_(H2 O) and δD_(VSMOW) values of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ~(13)C, δ~(18)O_(H2 O) and δD_(V-SMOW) values of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ~(34)S_(V-CDT) values of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.  相似文献   

6.
Whole‐rock geochemistry, zircon U–Pb and molybdenite Re–Os geochronology, and Sr–Nd–Hf isotopes analyses were performed on ore‐related dacite porphyry and quartz porphyry at the Yongping Cu–Mo deposit in Southeast China. The geochemical results show that these porphyry stocks have similar REE patterns, and primitive mantle‐normalized spectra show LILE‐enrichment (Ba, Rb, K) and HFSE (Th, Nb, Ta, Ti) depletion. The zircon SHRIMP U–Pb geochronologic results show that the ore‐related porphyries were emplaced at 162–156 Ma. Hydrothermal muscovite of the quartz porphyry yields a plateau age of 162.1 ± 1.4 Ma (2σ). Two hydrothermal biotite samples of the dacite porphyry show plateau ages of 164 ± 1.3 and 163.8 ± 1.3 Ma. Two molybdenite samples from quartz+molybdenite veins contained in the quartz porphyry yield Re–Os ages of 156.7 ± 2.8 Ma and 155.7 ± 3.6 Ma. The ages of molybdenite coeval to zircon and biotite and muscovite ages of the porphyries within the errors suggest that the Mo mineralization was genetically related to the magmatic emplacement. The whole rocks Nd–Sr isotopic data obtained from both the dacite and quartz porphyries suggest partial melting of the Meso‐Proterozoic crust in contribution to the magma process. The zircon Hf isotopic data also indicate the crustal component is the dominated during the magma generation.  相似文献   

7.
The unidirectional solidification textures (UST) quartz is generally thought to form from fluids exsolved from shallow intrusions and/or magma chambers, but such an idea is still poorly constrained from the evidence of stable isotopes. In this study, we report for the first time the δ18O of quartz that shows UST from the Qulong Cu–Mo and the Yechangping Mo porphyry deposits in China. The analysis results show that the UST quartz samples from the Qulong deposit have δ18O values ranging from +6.2 ‰ to +7.6 ‰, which are similar to that of quartz phenocrysts (+6.7 ‰ to +7.8 ‰). In contrast, the UST quartz samples from the Yechangping porphyry Mo deposit yield a high δ18O value (+10.0 ‰). The δ18Owater value of Yechangping UST quartz (+8.5 ‰) is also higher than that of Qulong (+4.6 ‰ to +5.8 ‰). Hydrothermal biotite from potassic alteration and sericite from early phyllic alteration at Qulong have similar δ18O values to UST quartz, suggesting the involvement of magmatic fluids during this stage of deposit evolution.  相似文献   

8.
The South Dehgolan pluton, in NW Iran was emplaced into the Sanandaj–Sirjan magmatic–metamorphic zone. This composite intrusion comprises three main groups: (1) monzogabbro–monzodiorite rocks, (2) quartz monzonite–syenite rocks, and (3) a granite suite which crops out in most of the area. The granites generally show high SiO2 content from 72.1%–77.6 wt.% with diagnostic mineralogy consisting of biotite and amphibole along the boundaries of feldspar–quartz crystals which implies anhydrous primary magma compositions. The granite suite is metaluminous and distinguished by high FeOt/MgO ratios (av. 9.6 wt.%), typical of ferroan compositions with a pronounced A‐type affinity with high Na2O + K2O contents, high Ga/Al ratios, enrichment in Zr, Nb, REE, and depletion in Eu. The quartz monzonite–syenites show intermediate SiO2 levels (59.8%–64.5 wt.%) with metaluminous, magnesian to ferroan characteristics, intermediate Na2O + K2O contents, enrichment in Zr, Nb, REE, Ga/Al, and depletion in Eu. The monzogabbro–monzodiorites show overall lower SiO2 content (48.5%–55.9 wt.%) with metaluminous and calc‐alkaline compositions, relatively lower Na2O + K2O contents, low Ga/Al ratios, and FeOt/MgO (av. 1.6 wt.%) ratios, low abundances of Zr, Nb, and lower REE element concentrations relative to the granites and quartz monzonite–syenites. These geochemical differences among the three different rocks suites are likely to indicate different melt origins. We suggest that the South Dehgolan pluton resulted from a change in the geodynamic regime, from compression to extension in the Sanandaj–Sirjan zone during Mesozoic subduction of the Neo‐Tethys oceanic crust beneath the Central Iranian microcontinent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The Huai Kham On gold deposit is located in the central part of the Sukhothai Fold Belt, northern Thailand. The Sukhothai Fold Belt represents an accretionary complex formed by subduction and collision between the Indochina and Sibumasu Terranes. There are many small gold deposits in the Sukhothai Fold Belt; however, the styles and formation environments of those gold deposits are not clear. The geology of the Huai Kham On deposit consists of volcanic and volcanosedimentary rocks, limestone, and low‐grade metamorphic rocks of Carboniferous to Triassic age. Gold‐bearing quartz veins are hosted by volcanic and volcanosedimentary rocks. The quartz veins can be divided into four stages. The mineral assemblage of the gold‐bearing quartz veins of Stages I and II comprises quartz, calcite, illite, pyrite, native gold, galena, chalcopyrite, and sphalerite. Quartz veins of Stage III consist of microcrystalline quartz, dolomite, calcite, pyrite, native gold, and chalcopyrite. Veins of Stage IV consist of calcite, dolomite, chlorite, and quartz. Fluid inclusions in quartz veins are classified into liquid‐rich two‐phase (Types IA and IB), carbonic‐aqueous (Type II), and carbonic (Type III) fluid inclusions. The homogenization temperatures of Types IA and II fluid inclusions that are related to the gold‐bearing quartz veins from Stages I to III ranged from 240° to 280°C. The δ18O values of quartz veins of Stages I to III range from +12.9 to +13.4‰, suggesting the presence of a homogeneous hydrothermal solution without temperature variation such as a decrease of temperature during the formation of gold‐bearing quartz veins from Stages I to III in the Huai Kham On gold deposit. Based on the calculated formation temperature of 280°C, the δ18O values of the hydrothermal solution that formed the gold‐bearing quartz veins range from +3.2 to +3.7‰, which falls into the range of metamorphic waters. The gold‐bearing quartz veins of the Huai Kham On deposit are interpreted to be the products of metamorphic water.  相似文献   

10.
Quartz‐rich veins in metapelitic schists of the Sanandaj‐Sirjan belt, Hamadan region, Iran, commonly contain two Al2SiO5 polymorphs, and, more rarely, three coexisting Al2SiO5 polymorphs. In most andalusite and sillimanite schists, the types of polymorphs in veins correlate with Al2SiO5 polymorph(s) in the host rocks, although vein polymorphs are texturally and compositionally distinct from those in adjacent host rocks; e.g. vein andalusite is enriched in Fe2O3 relative to host rock andalusite. Low‐grade rocks contain andalusite + quartz veins, medium‐grade rocks contain andalusite + sillimanite + quartz ± plagioclase veins, and high‐grade rocks contain sillimanite + quartz + plagioclase veins/leucosomes. Although most andalusite and sillimanite‐bearing veins occur in host rocks that also contain Al2SiO5, kyanite‐quartz veins crosscut rocks that lack Al2SiO5 (e.g. staurolite schist, granite). A quartz vein containing andalusite + kyanite + sillimanite + staurolite + muscovite occurs in andalusite–sillimanite host rocks. Textural relationships in this vein indicate the crystallization sequence andalusite to kyanite to sillimanite. This crystallization sequence conflicts with the observation that kyanite‐quartz veins post‐date andalusite–sillimanite veins and at least one intrusive phase of a granite that produced a low‐pressure–high‐temperature contact aureole; these relationships imply a sequence of andalusite to sillimanite to kyanite. Varying crystallization sequences for rocks in a largely coherent metamorphic belt can be explained by P–T paths of different rocks passing near (slightly above, slightly below) the Al2SiO5 triple point, and by overprinting of multiple metamorphic events in a terrane that evolved from a continental arc to a collisional orogen.  相似文献   

11.
The garnet–biotite–muscovite–plagioclase (GBMP) barometer was empirically revised for P–T conditions of 1–14 kbar and 450–840 °C, using 263 metapelitic rock samples from all over the world. This barometer is based on activity models for garnet, biotite and plagioclase identical to those of the well‐calibrated garnet–biotite thermometer and the garnet–aluminosilicate–plagioclase–quartz (GASP) barometer. The GBMP barometer is less temperature dependent than the GASP barometer and can be applied to either Al2SiO5‐absent or Al2SiO5‐bearing metapelites. The total error of the GBMP barometer is estimated to be about ±1.2 kbar on considering input temperature error and analytical errors of chemical compositions of the phases involved. The random error of the GBMP barometer is evenly distributed with respect to pressure, temperature and mineral composition. Simultaneous application of the GBMP barometer and the garnet–biotite thermometer identifies the correct stability field for Al2SiO5‐bearing metapelites. Application of the GBMP barometer to metapelitic rocks within the same geological terranes or thermal contact aureoles yielded similar pressures within error. A spreadsheet for implementing the proposed GBMP geobarometer is supplied on the journal's website.  相似文献   

12.
The distribution of REE minerals in metasedimentary rocks was investigated to gain insight into the stability of allanite, monazite and xenotime in metapelites. Samples were collected in the central Swiss Alps, along a well‐established metamorphic field gradient that record conditions from very low grade metamorphism (250 °C) to the lower amphibolite facies (~600 °C). In the Alpine metapelites investigated, mass balance calculations show that LREE are mainly transferred between monazite and allanite during the course of prograde metamorphism. At very low grade metamorphism, detrital monazite grains (mostly Variscan in age) have two distinct populations in terms of LREE and MREE compositions. Newly formed monazite crystallized during low‐grade metamorphism (<440 °C); these are enriched in La, but depleted in Th and Y, compared with inherited grains. Upon the appearance of chloritoid (~440–450 °C, thermometry based on chlorite–choritoid and carbonaceous material), monazite is consumed, and MREE and LREE are taken up preferentially in two distinct zones of allanite distinguishable by EMPA and X‐ray mapping. Prior to garnet growth, allanite acquires two growth zones of clinozoisite: a first one rich in HREE + Y and a second one containing low REE contents. Following garnet growth, close to the chloritoid–out zone boundary (~556–580 °C, based on phase equilibrium calculations), allanite and its rims are partially to totally replaced by monazite and xenotime, both associated with plagioclase (± biotite ± staurolite ± kyanite ± quartz). In these samples, epidote relics are located in the matrix or as inclusions in garnet, and these preserve their characteristic chemical and textural growth zoning, indicating that they did not experience re‐equilibration following their prograde formation. Hence, the partial breakdown of allanite to monazite offers the attractive possibility to obtain in situ ages, representing two distinct crystallization stages. In addition, the complex REE + Y and Th zoning pattern of allanite and monazite are essential monitors of crystallization conditions at relatively low metamorphic grade.  相似文献   

13.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   

14.
Anatectic aluminous gneisses, some derived from sedimentary rocks of broadly pelitic composition and others from hydrothermally altered felsic volcanic rocks, are exposed in the mid‐P and high‐P segments of the hinterland in the central Grenville Province. These gneisses consist dominantly of garnet, biotite, K‐feldspar, plagioclase and quartz, with sillimanite or kyanite, and display microstructural evidence of anatexis by fluid‐absent reactions consuming muscovite and/or biotite. Melt‐related microstructures, such as inter‐granular films and/or interstitial quartz or feldspar enclosing relict phases, are most abundant in the metasedimentary samples. Despite anatexis at granulite facies conditions, the hydrothermally altered rocks preserve earlier features attributed to the circulation of hydrothermal fluids, such as sillimanite seams, dismembered quartz veins and garnet‐rich aluminous nodules in a K‐feldspar‐dominated matrix. Microstructural and mineral chemical data, integrated with P–T pseudosections calculated with thermocalc for the metasedimentary rocks, permit qualitative constraints on the P–T paths. Data from a high‐P kyanite‐bearing sample are consistent with a steep prograde P–T path up to ~14.5 kbar and 860900 °C, followed by decompression with minor cooling to the solidus at ~11 kbar and 870 °C. This pressure‐dominated P–T path is similar to those inferred in other parts of the high‐P segment in the central Grenville Province. In contrast, the P–T path predicted from a mid‐P sillimanite‐bearing paragneiss has a strong temperature gradient with P–T of ~9.5 kbar and 850 °C at the thermal peak, and a retrograde portion down to ~8 kbar and 820 °C. In a broad sense, these two contrasting P–T patterns are consistent with predictions of thermo‐mechanical modelling of large hot orogens in which P–T paths with strong pressure gradients exhume deeper rocks in the orogenic flanks, whereas P–T paths with strong temperature gradients in the orogenic core reflect protracted lateral transport of ductile crust beneath a plateau.  相似文献   

15.
Concern about security of supply of critical elements used in new technologies, such as the Rare Earth Elements (REE), means that it is increasingly important to understand the processes by which they are enriched in crustal settings. High REE contents are found in syenite-dominated alkaline complexes intruded along the Moine Thrust Zone, a major collisional zone in north-west Scotland. The most northerly of these is the Loch Loyal Syenite Complex, which comprises three separate intrusions. One of these, the Cnoc nan Cuilean intrusion, contains two mappable zones: a Mixed Syenite Zone in which mafic melasyenite is mixed and mingled with leucosyenite and a Massive Leucosyenite Zone. Within the Mixed Syenite Zone, hydrothermal activity is evident in the form of narrow altered veins dominated by biotite and magnetite; these are poorly exposed and their lateral extent is uncertain. The REE mineral allanite is relatively abundant in the melasyenite and is extremely enriched in the biotite–magnetite veins, which have up to 2 % total rare earth oxides in bulk rock analyses. An overall model for development of this intrusion can be divided into three episodes: (1) generation of a Light Rare Earth Element (LREE)-enriched parental magma due to enrichment of the mantle source by subduction of pelagic carbonates; (2) early crystallisation of allanite in melasyenite, due to the saturation of the magma in the LREE; and (3) hydrothermal alteration, in three different episodes identified by petrography and mineral chemistry, generating the intense enrichment of REE in the biotite–magnetite veins. Dating of allanite and titanite in the biotite–magnetite veins gives ages of c. 426 Ma, overlapping with previously published crystallisation ages for zircon in the syenite.  相似文献   

16.
The Xiuwenghala gold deposit is located in the Beishan Orogen of the southern Central Asian Orogenic Belt. The vein/lenticular gold orebodies are controlled by Northeast‐trending faults and are hosted mainly in the brecciated/altered tuff and rhyolite porphyry of the Lower Carboniferous Baishan Formation. Metallic minerals include mainly pyrite and minor chalcopyrite, arsenopyrite, galena, and sphalerite, whilst nonmetallic minerals include quartz, chalcedony, sericite, chlorite, and calcite. Hydrothermal alterations consist of silicic, sericite, chlorite, and carbonate. Alteration/mineralization processes comprise three stages: pre‐ore silicic alteration (Stage I), syn‐ore quartz‐chalcedony‐polymetallic sulfide mineralization (Stage II), and post‐ore quartz‐calcite veining (Stage III). Fluid inclusions (FIs) in quartz and calcite are dominated by L‐type with minor V‐type and lack any daughter mineral‐bearing or CO2‐rich/‐bearing inclusions. From Stages I to III, the FIs homogenized at 240–260°C, 220–250°C, and 150–190°C, with corresponding salinities of 2.9–10.9, 3.2–11.1, and 2.9–11.9 wt.% NaCl eqv., respectively. The mineralization depth at Xiuwenghala is estimated to be relatively shallow (<1 km). FI results indicate that the ore‐forming fluids belong to a low to medium‐temperature, low‐salinity, and low‐density NaCl‐H2O system. The values decrease from Stage I to III (3.7‰, 1.7–2.4‰, and ?1.7 to 0.9‰, respectively), and a similar trend is found for their values (?104 to ?90‰, ?126 to ?86‰, and ?130 to ?106‰, respectively). This indicates that the fluid source gradually evolved from magmatic to meteoric. δ34S values of the hydrothermal pyrites (?3.0 to 0.0‰; avg. ?1.1‰) resemble those of typical magmatic/mantle‐derived sulfides. Pyrite Pb isotopic compositions (206Pb/204Pb = 18.409–18.767, 207Pb/204Pb = 15.600–15.715, 208Pb/204Pb = 38.173–38.654) are similar to those of the (sub)volcanic ore host, indicating that the origin of ore‐forming material was mainly the upper crustal (sub)volcanic rocks. Integrating evidence from geology, FIs, and H–O–S–Pb isotopes, we suggest that Xiuwenghala is best classified as a low‐sulfidation epithermal gold deposit.  相似文献   

17.
Rare earth element (REE) mineralization is hosted within Neoproterozoic alkaline metaigneous rocks in the northwestern part of the Okcheon Metamorphic Belt (OMB), a polymetamorphosed fold-and-thrust belt transecting the Paleoproterozoic Gyeonggi and Yeongnam Massifs in the southern Korean Peninsula. The principal carrier phase of REEs is allanite. Allanite grains can be subdivided into several types based on the texture and mineral assemblage including quartz, K-feldspar, biotite, britholite, apatite, fergusonite, andradite, magnetite, zircon, titanite and fluorite. Electron microprobe analysis of allanite clearly distinguishes sample-to-sample variations in total REEs, Ca, Al, Fe and Y but the textural varieties from each rock sample do not show marked differences in those elements. Sensitive high-resolution ion microprobe dating of allanite and zircon reveals a complex history of multistage mineralization. Allanite grains from REE ores yielded Late Ordovician (444.6 ± 8.0 Ma), Permian to Triassic (ca. 300–220 Ma) and Early Jurassic (199–183 Ma) 208Pb/232Th ages. These multiple age components often coexist in single grains showing slight differences in backscattered electron brightness. The Ordovician components have distinctly higher Th/U than the younger domains in the same rock sample. The cores and rims of zircon from a syenite hosting REE ore bodies yielded Neoproterozoic (858.2 ± 6.3 Ma) and Early Jurassic (ca. 190 Ma) 206Pb/238U ages, respectively. The Early Jurassic ages (194–187 Ma) also obtained from zircon grains from granites taken from dykes occurring close to the ores and a drill core indicate the correspondence between granitic magmatism and REE mineralization. The Neoproterozoic zircon inheritance (weighted mean = 853.9 ± 3.8 Ma) in these granites is in sharp contrast to the dominant Paleoproterozoic inherited zircon from the widespread earliest Middle Jurassic granites enclosing the mineralized zone. The geotectonic significance of the Late Ordovician event recorded in the allanite, as well as in detrital zircon from the OMB, is still unclear but its temporal coincidence with intraplate volcanism and arc-related igneous activity, respectively, reported from the southwestern edge of the adjacent Taebaeksan Basin and the southwestern Gyeonggi Massif is noteworthy. The following Permian–Triassic and Early Jurassic mineralization events are probably linked to the continental suturing between the North and South China blocks and subsequent post-orogenic magmatism, and arc magmatism resulting from the paleo-Pacific plate subduction, respectively. Sub-grain Sm–Nd isotopic analyses of allanite by laser ablation multiple collector ICPMS yielded initial εNd values plotting along the Nd isotopic evolution path of the Neoproterozoic metaigneous rocks, indicating that REEs originating from the host rock have been recycled during multistage mineralization events. The profound differences in inherited zircon ages and Nd isotopic compositions between the Early and Middle Jurassic granites may reflect the presence of a major thrust-bounded crustal structure beneath the OMB.  相似文献   

18.
The Lumwana Cu (± Co ± U) deposits of NW Zambia are large, tabular, disseminated ore bodies, hosted within the Mwombezhi Dome of the Lufilian Arc. The host rocks to the Lumwana deposits are two mineralogically similar but texturally distinct gneisses, a granitic to pegmatitic gneiss and a banded to augen gneiss which both comprise quartz–feldspar ± biotite ± muscovite ± haematite ± amphibole and intervening quartz–feldspar ± biotite schist. The sulphide ore horizons are typically developed within a biotite–muscovite–quartz–kyanite schist, although mineralization locally occurs within internal gneiss units. Contacts between the ore and host rocks are transitional and characterized by a loss of feldspar. Kinematic indicators, such as S-C fabrics and pressure shadows on porphyroblasts, suggest a top to the north shear sense. The sulphides are deformed by a strong shear fabric, enclosed within kyanite or concentrated into low strain zones and pressure shadows around kyanite porphyroblasts. This suggests that the copper mineralization was introduced either syn- or pre-peak metamorphism. In addition to Cu and Co, the ores are also characterized by enrichments in U, V, Ni, Ba and S and small, discrete zones of uranium mineralization, occur adjacent to the hanging wall and footwall of the copper ore bodies or in the immediate footwall to the copper mineralization. Unlike typical Copperbelt mineralization, unmineralized units show very low background copper values. Whole rock geochemical analyses of the interlayered schist and ore schist, compared to the gneiss, show depletions in Ca, Na and Sr and enrichments in Mg and K, consistent with replacement of feldspar by biotite. The mineral chemistry of muscovite, biotite and chlorite reflect changes in the bulk rock chemistry and show consistent increases in X Mg as the schists develop. δ34S for copper sulphides range from +2.3?‰ to +18.5?‰, with pyrite typically restricted to values between +3.9?‰ and +6.2?‰. These values are atypical of sulphides precipitated by bacteriogenic sulphate reduction. δ34S data for Chimiwungo (Cu + Co) show a broader range and increased δ34S values compared to the Malundwe (Cu) mineralization. The Lumwana deposits show many characteristics which distinguish them from classical Copperbelt mineralization and which suggests that they are formed by metasomatic alteration, mineralization and shearing of pre-Katangan basement. Although this style of mineralization is reported elsewhere in the Copperbelt, sometimes associated with the more widely reported stratiform ores of the Lower Roan, none of the previously reported occurrences have so far developed the tonnages of ore reported at Lumwana.  相似文献   

19.
REE mobility during hydrothermal ore-forming processes has been extensively investigated in recent years and the potential of REE to provide information about ore forming processes has commonly been recognized.The Dongping gold deposit,which is located in northwestern Hebei Province,China,occurring in the inner contact zone of the Shuiquangou syenite complex,is spatially,and probably genetically,related to the syenite,the deposit was formed under the moderate to high temperature(220℃ to 320℃),weakly acidic to weakly alkaline,rather high fo2(lgfo2=-30~-34)environment.The REE study of the host rocks,altered wall rocks,ores and gangue minerals from the deposit suggests that the REEs have been mobilized and differentiated during K-feldspathization and silicification.The extremely altered syenite enveloping auriferous quartz vein shows positive Ce anomaly and larger LREE/HREE ratio than that of the unaltered syenite.The REE concentrations and patterns of the ores are determined by the ore types and mineral assemblages,LREE/HREE ratios in the gangue quartz and hydrothermal Kfeldspars are relatively low.The most significant observation is that the gangue quartz shows significant positive Eu anomaly,whereas the hydrothermal K-feldspars show less significant or no positive Eu anomaly at all relative to the primary feldspar in the unaltered syenite. It is evident that the REEs are mobile during K-feldspathization and silicification in the ore forming process.Weak to moderate K-feldspathization caused REE mobility without apparent differentiation with the exception of extreme K-feldspathization and silicification which resulted in significant depletion of HREE and Eu and relative enrichment of Ce.The REE,Y,U,Th and Au contents of the syenite decrease as the degrees of K-feldspathization and silicification of the rocks increase towards the auriferous quartz veins.As the ores were deposited under a rather oxidized environment,Ce^4 predominated over Ce^3 .The precipitation of the former in the form of CeO2 or absorpted onto the secondary mineral assemblage resulted in the inconsistent removal of the REE and the relative Ce enrichment in the strongly altered rocks.in contrast,Eu was present mainly in a low valence state (Eu^2 ).The geochemical differences from the other REE^3 and much less sites in the secondary minerals to accommodate the Eu released form the original minerals resulted in the enrichment of Eu in the fluids.The mobility and differentiation of REE and the coherent mobilities of Y,U,Th and Au also support the argument that the syenite is one of the source rocks for gold mineralization.The REE contents and patterns of the altered rocks enveloping the auriferous quartz vein could be used as a guide for locating ore veins in mineral exploration.  相似文献   

20.
The Dalucao deposit, located in western Sichuan Province, southwestern China, in the western part of the Yangtze Craton, is one of the largest and most extensive rare earth element (REE) deposits in the Himalayan Mianning–Dechang REE belt. Moreover, the Dalucao deposit is the only deposit identified in the southern part of the belt. The Dalucao deposit contains the No. 1, 2, and 3 orebodies; the No. 1 and 3 orebodies are both hosted in two breccia pipes, located in syenite–carbonatite host rocks. Both pipes have elliptical cross-sections at the surface, with long-axis diameters of 200–400 m and short-axis diameters of 180–200 m; the pipes extend downwards for > 450 m. No. 1 and No. 3 have total thickness varying between 55 and 175 m and 14 to 58 m respectively. The REE mineralization is associated with four brecciation events, which are recorded in each of the pipes. The ore grades in the No. 1 and 3 orebodies are similar, and consist of 1.0%–4.5% rare earth oxides (REOs). The No. 1 orebody is characterized by a Type I mineral assemblage (fluorite + barite + celestite + bastnäsite), whereas the No. 3 orebody is characterized by a Type II assemblage (fluorite + celestite + pyrite + muscovite + bastnäsite + strontianite). Argon (40Ar/39Ar) dating of hydrothermal muscovite intergrown with REE minerals in typical ores from the No. 1 and 3 orebodies yielded similar ages of 12.69 ± 0.13 and 12.23 ± 0.21 Ma, respectively, which suggest that both mineral assemblages formed coevally, rather than in paragenetic stages. Both ages are also similar to the timing of intrusion of the syenite–carbonatite complex (12.13 ± 0.19 Ma). The ore-mineral assemblages occur in breccias, veinlets, and in narrow veins. The ore veinlets, which usually show a transition to mineralized breccia or brecciated ores, are commonly enveloped by narrow veins and stringer zones with comparable mineral assemblages. The brecciated ores form 95% of the volume of the deposit, whereas brecciated ores are only a minor constituent of other deposits in the Mianning–Dechang REE belt. The carbonatite in the syenite–carbonatite complexes contains high concentrations of S (0.07–2.32 wt.%), Sr (16,500–20,700 ppm), Ba (3600–8400 ppm), and light REEs (LREE) (2848–10,768 ppm), but is depleted in high-field-strength elements (HFSE) (Nb, Ta, P, Zr, Hf, and Ti). The syenite is moderately enriched in large-ion lithophile elements (LILE), Sr (155–277 ppm), and Ba (440–755 ppm). The mineralized, altered, and fresh syenites and carbonatites exhibit similar trace element compositions and REE patterns. Brecciation events, and the Dalucao Fault and its secondary faults around the deposit, contributed to the REE mineralization by facilitating the circulation of ore-forming fluids and providing space for REE precipitation. Some hydrothermal veins composed of coarse-grained fluorite and quartz are distributed in the syenite–carbonatite complex. The oxygen isotope compositions of ore-forming fluids in equilibrium with quartz at 215 °C are − 4.95‰ to − 7.45‰, and the hydrogen isotope compositions of fluid inclusions in coarse-grained quartz are − 88.4‰ to − 105.1‰. The syenite–carbonatite complex and carbonatite are main contributors to the mineralization in the geological occurrence. Thus, the main components of the ore-forming fluids were magmatic water, meteoric water, and CO2 derived from the decarbonation of carbonatite. According to the petrographic studies, bastnäsite mineralization developed during later stages of hydrothermal evolution and overprinted the formation of the brecciated fluorite–quartz hydrothermal veins. As low-temperature isotope exchange between carbonates of the carbonatite and water-rich magmatic fluids will lead to positive shifts in δ18O values of the carbonates, C–O isotopic compositions from the bulk primary carbonatite to hydrothermal calcite and bastnäsite changed (δ18OV-SMOW from 8.0‰ to 11.6‰, and δ13C V-PDB from − 6.1 to − 8.7‰). According to the chemical composition of syenite and carbonatite, REE chloride species are the primary complexes for the transport of the REEs in the hydrothermal fluids, and the presence of bastnäsite and parisite means the REE were precipitated as fluorocarbonates. High contents of Sr, Ba and S in the syenite–carbonatite complex led to the deposition of large amount of barite and celestite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号