首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Dissolved organic matter(DOM) from freshwater, mid-salinity, and seawater endmember samples in the Jiulong River Estuary, China were fractionated using cross-flow ultrafiltration with a 10-kDa membrane. The colloidal organic matter(COM; 10 kDa–0.22 μm) retentate, low molecular weight(LMW) DOM(10 kDa) permeate, and bulk samples were analyzed using absorption spectroscopy and three-dimensional fluorescence excitation-emission-matrix spectroscopy. The UV-visible spectra of COM were very similar to those obtained for permeate and bulk samples, decreasing monotonically with increasing wavelength. Most of the chromophoric DOM(CDOM, expressed as the absorption coefficient a355) occurred in the LMW fraction, while the percentage of CDOM in the colloidal fraction was substantially higher in the freshwater endmember(13.4% of the total) than in the seawater endmember(6.8%). The bulk CDOM showed a conservative mixing behavior in the estuary, while there was removal of the COM fraction and a concurrent addition of the permeate fraction in the mid-salinity sample, implying that part of the colloidal CDOM was transformed into LMW CDOM. Two humic-like components(C1: 250, 325/402 nm; and C2: 265, 360/458 nm) and one protein-like component(C3: 275/334 nm) were identified using parallel factor analysis. The contributions of the C1, C2, and C3 components of the COM fraction to the bulk sample were 2.5%–8.7%, 4.8%–12.6%, and 7.4%–14.7%, respectively, revealing that fluorescent DOM occurred mainly in the LMW fraction in the Jiulong River Estuary. The C1 and C2 components in the retentate and permeate samples showed conservative mixing behavior, but the intensity ratio of C2/C1 was higher in the retentate than in the permeate fractions for all salinity samples, showing that the humic component was more enriched in the COM than the fulvic component. The intensity ratio of C3/(C1+C2) was much higher in the retentate than in the permeate fraction for mid-salinity and seawater samples, revealing that the protein-like component was relatively more enriched in COM than the humic-like component. The contribution of the protein-like component(C3) to the total fluorescence in the retentate increased from 14% in the freshwater endmember to 72% for the seawater endmember samples, clearly indicating the variation of dominance by the humic-like component compared to the protein-like component during the estuarine mixing process of COM.  相似文献   

2.
A series of experiments was conducted to evaluate the appropriateness of cross-flow ultrafiltration (CFUF) techniques for the determination of the phase speciation of monomethyl mercury (MeHg) in natural waters. Spiral-wound cartridge (Amicon S1Y1) and Miniplate (Amicon) were evaluated for their nominal molecular weight cut-offs of 1 and 10 kDa, respectively. The ultrafiltration behavior of standard macromolecules showed that the permeation of high molecular weight (HMW) organic macromolecules was not significant when a concentration factor (CF)>15 was used. The retention of low molecular weight (LMW) molecules was significant, especially at a low CF<5, suggesting that the use of a high CF (15) will minimize the retention of LMW molecules. Sorptive losses of MeHg in the solution phase to the 1 kDa membrane were negligible, but MeHg bound to HMW macromolecules was still retained (20%), even with a preconditioned membrane. The mass balance recovery of MeHg during ultrafiltration averaged 101±15% (n=7) and 105±14% (n=5) for the 1 and 10 kDa membranes, respectively. Sample storage over 24 h caused significant coagulation (47%) of the <10 kDa MeHg into the 10 kDa–0.45 μm colloidal or the particulate MeHg pool. The 1 kDa–0.45 μm colloidal MeHg in Galveston Bay and the Trinity River water samples accounted for 40–48% of the filter-passing MeHg, although the most abundant fraction (52–60%) of MeHg was the truly dissolved fraction (<1 kDa). The partition coefficient between the colloidal (1 kDa–0.45 μm) and truly dissolved MeHg (average log KC=5.2) was higher than the partition coefficient based on particle/filter-passing (average log KD=4.6) or particle/truly dissolved MeHg (average log KP=4.8), suggesting that MeHg has stronger affinity for natural colloids than macroparticulate materials (>0.45 μm).  相似文献   

3.
The optical characteristics of a black water river estuary from the north coast of Scotland were examined in the filtered (0.4 µm), ultrafiltered (5 kDa) and colloid-enriched fractions of estuarine samples. The samples were collected over the full salinity range during a period when the pH was relatively constant (8.2–8.5) throughout the estuary, allowing the influence of salinity on estuarine colloidal processes to be distinguished. The properties examined in the bulk, the low molecular weight (LMW) and the colloidal fraction (HMW) were UV–visible absorption, 3-D fluorescence excitation–emission matrix (EEM) spectrum, inorganic and organic carbon, mean size (by dynamic light scattering), and size distribution by flow field-flow fractionation analysis (FlFFF). The combined results of these analyses support the view that river-borne, humic-rich colloids underwent two types of transformation upon mixing with the seawater end member. The first one resulted in an apparent increase in the abundance of LMW constituents and may be explained by coiling of the individual humic macromolecules. The second one resulted in an increase in the mean size measured in both the lower and higher colloidal size ranges, and may be explained by aggregation of colloids to form entities that were still mostly colloidal i.e., smaller than 0.4 µm. The LMW contribution to the bulk optical properties increased with increasing salinity. Very similar findings were obtained from simulated mixing experiments using a Nordic Reference NOM extract as a source of freshwater colloids. This indicates that changes in the molecular architecture and molar mass of river-borne colloids—not changes in their chemical nature—were responsible for the observed variations in the spectral characteristics of CDOM in this estuary.  相似文献   

4.
建立了由预过滤装置、蠕动泵、中空纤维超滤膜(AmiconH10P10-20,标称截留分子量10KDa)和连接管组成的错流超滤系统,利用荧光标记的40KDa葡聚糖和已知放射性活度的234Th示踪剂评估了超滤膜的截留和吸附性质,探讨了234Th在超滤过程中的渗透行为,考查了该系统用于实际海水样品时铀、钍、镭同位素和有机碳的质量平衡状况.结果表明,10Kda中空纤维超滤膜对40Kda葡聚糖具有良好的截留效率(85%),而吸附损失率为18%.铀、钍、镭同位素和有机碳在超滤过程中均达到极佳的质量平衡,回收率R=95%~98%,优于大多数文献报道的值.234Th在超滤过程中的渗透行为可以很好地用渗透模型加以描述.研究组分胶体态含量占“溶解”态含量的份额大小顺序如下:钍同位素、有机碳、镭同位素约等于铀同位素,这与钍为强颗粒活性元素、铀和镭为水溶性元素的地球化学性质相吻合.  相似文献   

5.
Tangential-flow ultrafiltration was used to isolate particulate and high-molecular-weight dissolved material from seawater collected at various depths and geographic regions of the Pacific and Atlantic Oceans. Ultrafiltration proved to be a relatively fast and efficient method for the isolation of hundreds of milligrams of material. Optical and electron microscopy of the isolated materials revealed that relatively fragile materials were recovered intact. Depth-weighted results of the size distribution of organic matter in seawater indicated that ˜ 75% of marine organic carbon was low-molecular-weight (LMW) dissolved organic carbon (< 1 nm), ˜ 24% was high-molecular-weight (HMW) dissolved organic carbon (1–100 nm), and ˜ 1% was particulate organic carbon (> 100 nm). The distribution of carbon in surface water was shifted to greater relative abundances of larger size fractions, suggesting a diagenetic sequence from macromolecular material to small refractory molecules. The average C:N ratios of particulate organic matter (POM) and HMW dissolved organic matter (DOM) were 7.7 and 16.7, respectively. Differences in C:N ratios between POM and HMW DOM were large and invariant with depth and geographic region, indicating that the aggregation of HMW DOM to form POM must be of minor significance to overall carbon dynamics. The stable carbon isotope composition (δ13C) of POM averaged −22.7%. in surface water and −25.2%. in subsurface water. Several possible explanations for the observed isotopic shift with depth were explored, but we were unable to discern the cause. The δ13C of HMW DOM samples was relatively constant and averaged −21.7%., indicating a predominantly marine origin for this material. The δ15N values of POM were highly variable (5.8–15.4%.), and the availability of nitrate in surface waters appeared to be the major factor influencing δ15N values in the equatorial Pacific. In the upwelling region nitrate concentrations were relatively high and δ15N values of POM were low, whereas to the north and south of the upwelling nitrate concentrations were low and δ15N values were high. The δ15N values of HMW DOM reflected the same trends observed in the POM fraction and provided the first such evidence for biological cycling of dissolved organic nitrogen (DON). Using the observed δ15N values and an estimate of meridional advection velocity, we estimated a turnover time of 0.3 to 0.5% day−1 for HMW DON. These results suggest a major role for DON in the upper ocean nitrogen cycle.  相似文献   

6.
The distribution of molecular masses of organic ligands for copper(II) in oceanic water was investigated. The bulk dissolved organic matter (DOM) was fractionated by ultrafiltration and organic ligands were extracted from the resultant fractions by using immobilized metal ion affinity chromatography (IMAC). Contributions of total organic ligands were 2.0–4.4% of the bulk DOM in surface waters, as determined by the UV absorbance. In the distribution of molecular masses of organic ligands, relative contribution of the fraction with low molecular masses (<1000 Da) was dominant (49–62%), while 26–33% of the total organic ligands was in the 1000–10,000 Da fraction, leaving 10–19% in the >10,000 Da fraction. The distribution of molecular masses of organic ligands shifted to higher molecular masses, as compared with that of the bulk DOM. The fluorescence intensities of organic ligands were shown to be associated with carboxyl contents, based on peak excitation/emission wavelengths and the pH-dependence of fluorescence. Two ligand classes with different conditional stability constants (log KCuL′≈7 and 9) were determined from fluorescence quenching of ligand fractions during copper(II) titration. Organic ligands in low molecular mass fractions were relatively weak and strong ligands occurred in higher molecular mass fractions. It is suggested that the weaker ligand sites would consist of two or more carboxyl groups (log KHL′=4), whereas carboxyl groups (log =2), which are protonated at lower pH, and primary amine may additionally contribute to the formation of more stable copper(II) complexes of the stronger ligand.  相似文献   

7.
Results from laboratory studies indicated that low molecular weight (LMW) carbonyl compounds, especially formaldehyde, acetaldehyde, acetone and glyoxal, can be formed in seawater by photochemical processes. Once formed, these compounds appear to be readily consumed by biota. These results suggest that concentrations of LMW carbonyl compounds should undergo diurnal variations in the illuminated layer of the sea. In support of this, diurnal fluctuations of LMW carbonyl concentrations were observed in humic-rich surface waters off the west coast of Florida over a three day sampling period using a shipboard HPLC system. Fluctuations in acetaldehyde were particularly strong and reproducible, with steady night-time concentrations of 2–3 nM and day-time concentrations reaching a maximum of 20–30 nM in the early afternoon. In contrast, diurnal fluctuations in formaldehyde were less distinct, ranging from 15 to 50 nM.The laboratory and field results are discussed in terms of biotic/abiotic sources and sinks of LMW carbonyl compounds in surface seawater. It is speculated that photooxidative cleavage of biologically refractory dissolved organic matter (DOM) in seawater to yield LMW organic fragments, such as carbonyl compounds, may be important in the breakdown and geochemical cycling of DOM in the ocean.  相似文献   

8.
The concentrations of carbohydrates, including uronic acids, in dissolved (≤0.45μm) and colloidal (1 kDa—0.45 μm) phases were measured in estuarine waters of Galveston Bay, TX, in order to study their role in heavy metal detoxification. The concentrations of dissolved monosaccharides (MCHO) in Galveston Bay ranged from 13 to 62 μM-C, and those of dissolved polysaccharides (PCHO) ranged from 10 to 42 μM-C. On average, MCHO and PCHO contributed about 11% and 7% to dissolved organic carbon (DOC), respectively. The colloidal carbohydrates (CCHO) in Galveston Bay varied from 7 to 54 μM-C, and accounted for 9% to 24% of the colloidal organic carbon (COC), with an average value of 17%, suggesting that CCHO is abundant in the high molecular weight (HMW) fraction of DOC. The concentration of CCHO is generally significantly higher than that of PCHO. This result is attributed to entrainment of low molecular weight (LMW) carbohydrates into the retentate fraction during ultrafiltration. The concentration of total dissolved uronic acids (DUA) in the same samples varied from 1.0 to 8.3 μM-C, with an average value of 6.1 μM-C, while the colloidal uronic acids (CUA) ranged from 0.8 to 6.4 μM-C, with an average value of 4.8 μM-C. The concentrations of DUA are higher than the previously reported values in coastal waters. Furthermore, CUA represent a dominant component of DUA in Galveston Bay waters. More importantly, significant correlations of PCHO and DUA to dissolved Cu concentrations (≤0.45 μm) were found, suggesting that acid polysaccharides were produced in response to trace metal stressors.  相似文献   

9.
Dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) measured in deep profiles in the N-E Atlantic and in the N-W Mediterranean in the period 1984–2002 are described. After accurate validation, they show close agreement with those previously published.Classic profiles were obtained, with concentrations decreasing in deep waters. In the Mediterranean and in the Atlantic comparable concentrations were found in the 1500–2000 m waters, 44–46 μmol l−1 DOC, 2.6–2.8 μmol l−1 DON and 0.02–0.03 μmol l−1 DOP. In the surface layers, DOC concentrations were higher, but DON and DOP concentrations lower, in the Mediterranean than in the Atlantic, leading to higher element ratios in the Mediterranean. In autumn, values were, respectively, DOC:DON 17 vs. 14, DOC:DOP 950 vs. 500 and DON:DOP 55 vs. 35. The data suggest an increase in DOC and DON in the North Atlantic Central Water over 15 years, which may be linked to the North Atlantic climatic oscillations.Refractory DOM found in the 1500–2000 m layer exhibited C:N:P ratios of 1570:100:1. The labile+semi-labile (=non-refractory) DOM (nrDOM) pool was computed as DOM in excess of the refractory pool. Its contribution to total DOM above the thermocline in the open sea amounted to 25–35% of DOC, 30–35% of DON, and 60–80% of DOP. Element ratios of the nrDOM varied among stations and were lower than those of refractory DOM, except for C:N in the Mediterranean: nrDOC:nrDON 10–19, nrDOC:nrDOP 160–530 and nrDON:nrDOP 15–38. The specific stoichiometry of DOM in the Mediterranean led us to postulate that overconsumption of carbon is probably a main process in that oligotrophic sea.By coupling non-refractory DOM stoichiometry and relationships between the main DOM elements in the water column, the relative mineralization of C, N and P from DOM was studied. Below the thermocline, the preferential removal of phosphorus with regard to carbon from the semi-labile DOM can be confirmed, but not the preferential removal of nitrogen. In the ocean surface layers, processes depend on the oceanic area and can differ from deep waters, so preferential carbon removal seems more frequent. Bacterial growth efficiency data indicate that bacteria are directly responsible for mineralization of a high proportion of DON and DOP in the deep water.  相似文献   

10.
Concurrent distributions of dissolved and suspended particulate organic carbon (DOC and POCsusp), nitrogen (DON and PONsusp) and phosphorus (DOP and POPsusp), and of suspended particulate inorganic phosphorus (PIPsusp), are presented for the open ocean water column. Samples were collected along a three-station transect from the upper continental slope to the abyssal plain in the eastern North Pacific and from a single station in the Southern Ocean. The elemental composition of surface sedimentary organic matter (SOM) was also measured at each location, and sinking particulate organic matter (POMsink) was measured with moored sediment traps over a 110-d period at the abyssal site in the eastern North Pacific only. In addition to elemental compositions, C : N, C : P and N : P ratios were also calculated. Surface and deep ocean concentrations of dissolved organic matter (DOM) and inorganic nutrients between the two sites displayed distinct differences, although suspended POM (POMsusp) concentrations were similar. Concentrations of DOM and POMsusp displayed unique C, N and P distributions, with POMsusp concentrations generally about 1–2 orders of magnitude less than the corresponding DOM concentrations. These differences were likely influenced by different biogeochemical factors: whereas the dissolved constituents may have been influenced more by the physical regime of the study site, suspended particulate matter may have been controlled to a greater extent by biological and chemical alteration. Up to 80% of total particulate P in POMsusp, POMsink and SOM consisted of PIP. For all organic matter pools measured, elemental ratios reveal that organic P is preferentially remineralized over organic C and organic N at both sites. Increases in C : P and N : P ratios with depth were also observed for DOM at both sites, suggesting that DOP is also preferentially degraded over C and N as a function of depth. A simple one-dimensional vertical eddy diffusion model was applied to estimate the contributions of dissolved and suspended particulate organic C, N and P fluxes from the upper mixed layer into the permanent thermocline. Estimated vertical DOM fluxes were 28–63% of the total organic matter fluxes; POMsusp and POMsink fluxes were 8–20 and 28–52% of the total.  相似文献   

11.
This study addresses sources and diagenetic state of early-season dissolved organic matter (DOM) in the Northeast Water Polynya (NEWP) area northeast of Greenland from distributions of humic substance fluorescence (HSfl), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) in the water column inside and outside the NEWP area. The water masses of the polynya area had acquired their spring/summer temperature–salinity characteristics at the time of sampling, and also had individual, different DOM signatures. DOC concentrations were variable within and among water masses in the polynya area, indicating patchy local sources and sinks of DOC. PySW and polynya intermediate water (PyIW) had higher average DON concentrations and average lower C:N ratios than polynya bottom water (PyBW), indicating a larger fraction of fresh DOM in PySW and PyIW than in PyBW. Ice-covered, polynya area surface waters (PySW) had higher DOC concentrations (113±14 μM, n=68) than surface water (SW) outside the polynya area (96±18 μM, n=6). The DOM C:N ratios in a low-salinity, ice-melt subgroup of PySW samples indicate labile material, and these low-salinity surface waters appeared to have a local DOC and DON source. In contrast, HSfl was significantly lower inside than outside the NEWP area. Despite the lower HSfl values within the NEWP area, the PySW values were high when compared to open-ocean water. There were no local terrestrial sources for HSfl to the NEWP area and the East Greenland Current is therefore proposed as a likely source of allochtonous HSfl. When HSfl was used as a conservative tracer, up to 70% of the water in PySW and PyIW was found to be derived from SW, which contains a high fraction of water from the East Greenland Current. Similarly, a mixing model based on HSfl indicated that 80% of early-season DOC and 90–100% of early-season DON in PySW and PyIW were derived from SW, indicating a potentially high fraction of terrestrially-derived, relatively refractory DOM in the early-season NEWP area.  相似文献   

12.
We developed a simple and reliable method which allows simultaneous determination of organic forms of carbon (DOC), nitrogen (DON) and phosphorus (DOP) dissolved in seawater. Conversion of dissolved organic matter (DOM) to inorganic products (carbon dioxide, nitrate+nitrite and soluble reactive phosphate) is performed by a persulfate wet-oxidation in low alkaline condition. After oxidation, the concentration of the inorganic products dissolved in the sample was measured automatically by colorimetry using a 3-channel Technicon AutoAnalyzer system. A number of pure organic compounds were tested in the concentration range encountered in coastal and open ocean, indicating a high efficiency of the digestion procedure. The recovery range is similar to that obtained by other wet-oxidation procedures and by high-temperature catalytic oxidation techniques. Direct comparisons with usual methods used for separate determination of DOC, DON and DOP indicated a high efficiency of the procedure. Reproducibility tests demonstrated a very good precision (around 5%) for lagoonal and coastal waters, while precision was sometimes around 10–25% in oligotrophic oceanic waters, especially for DOP where values approached limits of detection for measuring phosphate. This method is highly suitable for routine analysis and especially appropriate for shipboard work.  相似文献   

13.
The objectives of this study were to investigate the seasonality, abundance, sources and bioreactivity of organic matter in the water column of the western Arctic Ocean. The concentrations of particulate and dissolved amino acids and amino sugars, as well as bulk properties of particulate and dissolved organic matter (DOM), were measured in shelf, slope and basin waters collected during the spring and summer of 2002. Particulate organic matter concentrations in shelf waters increased by a factor of 10 between spring and summer. Dissolved organic carbon (DOC) and nitrogen (DON) concentrations exhibited only minor seasonal variations, whereas dissolved amino acid concentrations doubled between spring and summer, and dissolved amino sugars increased by 31% in shelf waters of the Chukchi and Beaufort Seas. Concentrations of DOC did not exhibit a significant seasonal change in surface waters of the Canada Basin, but dissolved amino acid concentrations increased by 45% between spring and summer. No significant seasonal differences were detected in the concentration or composition of DOM in waters below 100 m in depth. Concentrations of particulate and dissolved amino acids and amino sugars were strongly correlated with chlorophyll-a, indicating a plankton source of freshly produced organic matter. The amino acid and amino sugar compositions of freshly produced DOM indicated that a large portion of this material is bioavailable. While freshly produced DOM was found to be relatively bioreactive, preformed DOM in the Arctic appears to be less bioreactive but similar in degradation state to average DOM in the Atlantic and Pacific. These data demonstrate substantial summer production of POM and DOM on the Chukchi and Beaufort shelves that is available for utilization in shelf waters and export to the Canada Basin.  相似文献   

14.
Marine colloidal material (1 kDa–0.2 μm) was isolated by cross-flow ultrafiltration followed by diafiltration and freeze-drying from surface waters of the Gulf of Mexico and the Middle Atlantic Bight (MAB), as well as from estuarine waters of Galveston Bay. Elemental characterization of isolated colloidal material included organic carbon (OC) and selected trace metal (Cu, Pb, Zn, Cd, Co, Ni, Cr, Be, Fe, Al, Mn, V, Ba, and Ti) determinations. It was found that levels of these metals in marine colloids ranged from <0.1 to 50 μg/g colloidal matter, except for Fe which generally had a concentration >120 μg/g. Most metals (Cu, Pb, Zn, Ni, Al, Mn, V, and Ti) had an average concentration >1 μg/g while concentrations of Cd, Co and Be were usually <1 μg/g. Metal concentrations (μg/g) in isolated colloids were, in general, higher in Galveston Bay than in the Gulf of Mexico, suggesting either high abundance of trace metals in estuarine waters or differences in organic matter composition. Higher colloidal metal concentrations in the MAB than in the Gulf of Mexico might be due to higher terrestrial inputs in the MAB. Colloidal metal concentrations (μg/g) were generally lower than those in average soils, continental crust and suspended particles. However, metal/aluminum ratios (Me/Al) in isolated marine colloids were significantly higher than those for average soils and continental crust. Most importantly, colloids had a metal composition and metal/OC ratio (Me/C) similar to humic substances and marine plankton, suggesting that marine colloids largely originate from planktonic sources and are composed of predominately organic components. The Me/C ratios of Galveston Bay colloids followed the sequence of Cu>Ni, Cr, Zn>Mn>Co>Pb, Cd, which is similar to the Irving–Williams order except for Mn, suggesting that the interaction of metals with marine colloids is determined by the affinity of metals for specific organic ligands.  相似文献   

15.
The release of ammonium from the photochemical degradation of dissolved organic matter (DOM) has been proposed by earlier studies as a potentially important remineralisation pathway for refractory organic nitrogen. In this study the photochemical production of ammonium from Baltic Sea DOM was assessed in the laboratory. Filtered samples from the Bothnian Bay, the Gulf of Finland and the Arkona Sea were exposed to UVA light at environmentally relevant levels, and the developments in ammonium concentrations, light absorption, fluorescence and molecular size distribution were followed. The exposures resulted in a decrease in DOM absorption and loss of the larger sized fraction of DOM. Analysis of the fluorescence properties of DOM using parallel factor analysis (PARAFAC) identified 6 independent components. Five components decreased in intensity as a result of the UVA exposures. One component was produced as a result of the exposures and represents labile photoproducts derived from terrestrial DOM. The characteristics of DOM in samples from the Bothnian Bay and Gulf of Finland were similar and dominated by terrestrially derived material. The DOM from the Arkona Sea was more autochthonous in character. Photoammonification differed depending on the composition of DOM. Calculated photoammonification rates in surface waters varied between 121 and 382 μmol NH4+ L− 1 d− 1. Estimated areal daily production rates ranged between 37 and 237 μmol NH4+ m− 2 d− 1, which are comparable to atmospheric deposition rates and suggest that photochemical remineralisation of organic nitrogen may be a significant source of bioavailable nitrogen to surface waters during summer months with high irradiance and low inorganic nitrogen concentrations.  相似文献   

16.
Chromophoric dissolved organic matter (CDOM), as the light absorbing fraction of bulk dissolved organic matter (DOM), plays a number of important roles in the global and local biogeochemical cycling of dissolved organic carbon (DOC) and in controlling the optical properties of estuarine and coastal waters. Intertidal areas such as salt marshes can contribute significant amounts of the CDOM that is exported to the ocean, but the processes controlling this CDOM source are not well understood. In this study, we investigate the production of DOM and CDOM from the decomposition of two salt marsh cordgrasses, Spartina patens, a C4 grass, and Typha latifolia, a C3 grass, in well-controlled laboratory experiments. During the seven-week incubation period of the salt marsh grasses in oxic and anoxic seawater, changes in dissolved organic carbon (DOC) concentrations, dissolved nitrogen (DN) concentrations, stable carbon isotopic composition of DOC (DOC-δ13C), and CDOM fluorescence demonstrate a significant contribution of DOC and CDOM to estuarine waters from salt marsh plants, such as Spartina and Typha species. In the natural environment, however, the release processes of CDOM from different cordgrass species could be controlled largely by the in situ oxic and anoxic conditions present during degradation which affects both the production and decomposition of DOC and CDOM, as well as the optical properties of CDOM in estuarine and coastal waters.  相似文献   

17.
The presence and nature of high molecular weight organic matter in seawater was critically reviewed and its biogeochemical cycle was discussed.Organic matter that passes through a filter of 0.5–1 μm pore size is called dissolved and that which does not pass through such a filter is defined as particulate. The size of colloidal particles ranges from 0.001 to 1 μm, and therefore, they are included in the dissolved fraction having high molecular weight.High molecular weight organic matter greater than 100,000 molecular weight was found in the seawater of Tokyo Bay. The values ranged from 0.1 to 1.5 mgC/l, and accounted for 8–45% of the total dissolved organic matter.Decomposition experiments on dissolved organic matter showed that macromolecular organic matter is refractory to bacterial attack. However, macromolecular organic materials tend to aggregate or adsorb on small particles to a sufficient size for precipitation. Organic aggregates thus formed sink to the bottom of the sea and bioelements included in them are removed from water column. High molecular weight organic materials are, therefore, considered to play an important role in transportation and distribution of matter in seawater.In order to elucidate the chemical and biological properties of macromolecular organic matter, concentration and isolation of this material are important, using methods such as adsorption on organic adsorbents or ultrafiltration.  相似文献   

18.
Absorption and fluorescence of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) measurements were performed during three oceanographic surveys in 1994 in the southern Baltic Sea (Polish area of the Baltic Proper). DOC was measured both by high-temperature catalytic oxidation (HTCO) and low-temperature oxidation (LTO) conventional persulphate methods. CDOM fluorescence was shown to be highly correlated with absorption, with the same regression parameters, despite the seasonal change in different hydrographic conditions and the fluorescence quantum yield variations (1.23 ± 0.07 in April and 0.97 ± 0.12 in September). The results show a good correlation between the optical parameters and DOC although ˜ 70% of the DOC does not display significant absorption in the UV-visible range (350–750 nm). The non-absorbing DOC measured with HTCO method appears unaffected by seasonal changes. Consequently, total DOC can be predicted by optical methods using remote sensing techniques. The non-absorbing DOC measured by LTO method varies from 62% (April) to 76% (September), which implies that there is requirement for estimates on a seasonal basis.  相似文献   

19.
This study investigated the relationships between dissolved organic matter (DOM) composition and bacterial dynamics on short time scale during spring mesotrophic (March 2003) and summer oligotrophic (June 2003) regimes, in a 0–500 m depth water column with almost no advection, at the DYFAMED site, NW Mediterranean. DOM was characterized by analyzing dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and lipid class biotracers. Bacterial dynamic was assessed through the measurement of in situ bacterial lipase activity, abundance, production and bacterial community structure. We made the assumption that by coupling the ambient concentration of hydrolysable acyl-lipids with the measurement of their in situ bacterial hydrolysis rates (i.e. the free fatty acids release rate) would provide new insights about bacterial response to change in environmental conditions. The seasonal transition from spring to summer was accompanied by a significant accumulation of excess DOC (+5 μM) (ANOVA, p<0.05, n=8) in the upper layer (0–50 m). In this layer, the free fatty acids release rate to the bacterial carbon demand (BCD) ratio increased from 0.6±0.3 in March to 1.3±1.0 in June (ANOVA, p<0.05, n=8) showing that more uncoupling between the hydrolysis of the acyl-lipids and the BCD occurred during the evolution of the season, and that free fatty acids contributed to the excess DOC. The increase of lipolysis index and CDOM absorbance (from 0.24±0.17 to 0.39±0.13 and from 0.076±0.039 to 0.144±0.068; ANOVA, p<0.05, n=8, respectively), and the higher contribution of triglycerides, wax esters and phospholipids (from <5% to 12–31%) to the lipid pool reflected the change in the DOM quality. In addition to a strong increase of bacterial lipase activity per cell (51.4±29.4–418.3±290.6 Ag C cell−1 h−1), a significant percentage of ribotypes (39%) was different between spring and summer in the deep chlorophyll maximum (DCM) layer in particular, suggesting a shift in the bacterial community structure due to the different trophic conditions. At both seasons, in the chlorophyll layers, diel variations of DOM and bacterial parameters reflected a better bioavailability and/or DOM utilization by bacteria at night (the ratio of free fatty acids release rate to bacterial carbon demand decreased), most likely related to the zooplankton trophic behaviour. In mesotrophic conditions, such day/night pattern was driving changes in the bacterial community structure. In more oligotrophic period, diel variations in bacterial community structure were depth dependent in relation to the strong summer stratification.  相似文献   

20.
利用切向超滤(cross-flow ultrafiltration)技术对海水中胶体有机碳(COC)和真溶解有机碳(UOC)进行了分离,并分别用高温燃烧法和紫外/过硫酸钾法对胶体有机碳和真溶解有机碳进行了测定。测定结果表明,切向超滤能定量分离海水中的胶体有机碳,高温燃烧法和紫外/过硫酸钾法对胶体有机碳和真溶解有机碳的测定结果没有明显的系统误差,表明这两种方法的氧化效率基本相同,胶体粒子的存在,对紫外/过硫酸钾法的氧化效率没有显着影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号