首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Cadamosto Seamount is an unusual volcanic centre from Cape Verde, characterised by dominantly evolved volcanics, in contrast to the typically mafic volcanic centres at Cape Verde that exhibit only minor volumes of evolved volcanics. The magmatic evolution of Cadamosto Seamount is investigated to quantify the role of magma-crust interaction and thus provide a perspective on evolved end-member volcanism of Cape Verde. The preservation of mantle source signatures by Nd–Pb isotopes despite extensive magmatic differentiation provides new insights into the spatial distribution of mantle heterogeneity in the Cape Verde archipelago. Magmatic differentiation from nephelinite to phonolite involves fractional crystallisation of clinopyroxene, titanite, apatite, biotite and feldspathoids, with extensive feldspathoid accumulation being recorded in some evolved samples. Clinopyroxene crystallisation pressures of 0.38–0.17 GPa for the nephelinites constrain this extensive fractional crystallisation to the oceanic lithosphere, where no crustal assimilants or rafts of subcontinental lithospheric mantle are available. In turn, magma-crust interaction has influenced the Sr, O and S isotopes of the groundmass and late crystallising feldspathoids, which formed at shallow crustal depths reflecting the availability of oceanic sediments and anhydrite precipitated in the ocean crust. The Nd–Pb isotopes have not been affected by these processes of magma-crust interaction and hence preserve the mantle source signature. The Cadamosto Seamount samples have high 206Pb/204Pb (>19.5), high εNd (+6 to +7) and negative Δ8/4Pb, showing affinity with the northern Cape Verde islands as opposed to the adjacent southern islands. Hence, the Cadamosto Seamount in the west is located spatially beyond the EM1-like component found further east. This heterogeneity is not encountered in the oceanic lithosphere beneath the Cadamosto Seamount despite greater extents of fractional crystallisation at oceanic lithospheric depths than the islands of Fogo and Santiago. Our data provide new evidence for the complex geometry of the chemically zoned Cape Verde mantle source.  相似文献   

2.
The petrology, geochemistry, and isotope ratios of volcanics dredged during the 43rd cruise of R/V Academik Ioffe on the Bathymetrists Seamounts in the eastern equatorial Atlantic have been studied. These are alkaline volcanics of basic and ultramafic compositions. Spider diagrams of the trace elements of volcanic rocks demonstrate strong fractionation, indicating formation of their primary melts from an enriched mantle source at garnet depth facies. Considering the isotope ratio values of 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, and 87Sr/86Sr and the character of their variations, the volcanic mantle source was chemically heterogeneous: for various volcanic rocks it was a mixture of the mantle components HIMU with EM–1 or EM–2. Limestones dredged together with the volcanics yielded microfossils suggesting a Middle Eocene age of their formation in a carbonate platform environment.  相似文献   

3.
The Cape Verde hotspot, like many other Ocean Island Basalt provinces, demonstrates isotopic heterogeneity on a 100–200 km scale. The heterogeneity is represented by the appearance of an EM1-like component at several of the southern islands and with a HIMU-like component present throughout the archipelago. Where the EM1-like component is absent, a local DMM-like component replaces the EM1-like component. Various source lithologies, including peridotite, pyroxenite and eclogite have been suggested to contribute to generation of these heterogeneities; however, attempts to quantify such contributions have been limited. We apply the minor elements in olivine approach (Sobolev et al. in Nature 434:590–597, 2005; Science, doi: 10.1126/science.1138113, 2007), to determine and quantify the contributions of peridotite, pyroxenite and eclogite melts to the mantle heterogeneity observed at Cape Verde. Cores of olivine phenocrysts of the Cape Verde volcanics have low Mn/FeO and low Ni*FeO/MgO that deviate from the negative trend of the global array. The global array is defined by mixing between peridotite and pyroxenite, whereas the Cape Verde volcanics indicate contribution of an additional eclogite source. Eclogite melts escape reaction with peridotite either by efficient extraction in an area of poor mantle flow or by reaction of eclogite melts with peridotite, whereby an abundance of eclogite can seal off the melt from further reaction. Temporal trends of decreasing Mn/FeO indicate that the supply of eclogite melts is increasing. Modelling suggests the local DMM-like end-member is formed from a relatively peridotite-rich melt, while the EM1-like end-member has a closer affinity to a mixed peridotite–pyroxenite–eclogite melt. Notably the HIMU-like component ranges from pyroxenite–peridotite-rich melt to one with up to 77 % eclogite melt as a function of time, implying that sealing of melt pathways is becoming more effective.  相似文献   

4.
The Emeishan flood basalts can be divided into high-Ti (HT) basalt (Ti/Y>500) and low-Ti (LT) basalt (Ti/Y<500). Sr, Nd isotopic characteristics of the lavas indicate that the LT- and the HT-type magmas originated from distinct mantle sources and parental magmas. The LT-type magma was derived from a shallower lithospheric mantle, whereas the HT-type magma was derived from a deeper mantle source that may be possibly a mantle plume. However, few studies on the Emeishan flood basalts involved their Pb isotopes, especially the Ertan basalts. In this paper, the authors investigated basalt samples from the Ertan area in terms of Pb isotopes, in order to constrain the source of the Emeishan flood basalts. The ratios of 206Pb/204Pb (18.31–18.41), 207Pb/204Pb (15.55–15.56) and 208Pb/204Pb (38.81–38.94) are significantly higher than those of the depleted mantle, just lying between EM I and EM II. This indicates that the Emeishan HT basalts (in the Ertan area) are the result of mixing of EMI end-member and EMII end-member.  相似文献   

5.
Lavas from Santiago Island attest to a complex magmatic history, in which heterogeneous mantle source(s) and the interactions of advecting magmas with thick metasomatised oceanic lithosphere played an important role in the observed isotopic and trace element signatures. Young (<3.3 Ma) primitive lavas from Santiago Island are characterised by pronounced negative K anomalies and trace element systematics indicating that during partial melting DK>DCe. These features suggest equilibration with an oceanic lithospheric mantle containing K-rich hydrous mineral assemblages, consistent with the occurrence of amphibole + phlogopite in associated metasomatised lherzolite xenoliths, where orthopyroxene is partially replaced by newly formed olivine + (CO2 + spinel + carbonate inclusion-rich) clinopyroxene. Metasomatism induced a decrease in $ a ^{{{\text{melt}}}}_{{{\text{SiO}}_{{\text{2}}} }} $ and Ti/Eu ratios, as well as an increase in fO 2 , Ca/Sc and Sr/Sm in the Santiago magmas, suggesting a carbonatitic composition for the metasomatic agent. Santiago primitive lavas are highly enriched in incompatible elements and show a moderate range in isotopic compositions (87Sr/86Sr?=?0.70318–0.70391, 143Nd/144Nd?=?0.51261–0.51287, 176Hf/177Hf?=?0.28284–0.28297). Elemental and isotopic signatures suggest the involvement of HIMU and EM1-type mantle end-members, in agreement with the overall isotopic characteristics of the southern Cape Verde Islands. The overall geochemical characteristics of lavas from Santiago Island allow us to consider the EM1-like end-member as resulting from the involvement of subcontinental lithospheric mantle in the genesis of magmas on Santiago.  相似文献   

6.
High-K mafic alkalic lavas (5.4 to 3.2 wt% K2O) from Deep Springs Valley, California define good correlations of increasing incompatible element (e.g., Sr, Zr, Ba, LREE) and compatible element contents (e.g., Ni, Cr) with increasing MgO. Strontium and Nd isotope compositions are also correlated with MgO; 87Sr/86Sr ratios decrease and ɛNd values increase with decreasing MgO. The Sr and Nd isotope compositions of these lavas are extreme compared to most other continental and oceanic rocks; 87Sr/86Sr ratios range from 0.7121 to 0.7105 and ɛNd values range from −16.9 to −15.4. Lead isotope ratios are relatively constant, 206Pb/204Pb ∼17.2, 207Pb/204Pb ∼15.5, and 208Pb/204Pb ∼38.6. Depleted mantle model ages calculated using Sr and Nd isotopes imply that the reservoir these lavas were derived from has been distinct from the depleted mantle reservoir since the early Proterozoic. The Sr-Nd-Pb isotope variations of the Deep Springs Valley lavas are unique because they do not plot along either the EM I or EM II arrays. For example, most basalts that have low ɛNd values and unradiogenic 206Pb/204Pb ratios have relatively low 87Sr/86Sr ratios (the EM I array), whereas basalts with low ɛNd values and high 87Sr/86Sr ratios have radiogenic 206Pb/204Pb ratios (the EM II array). High-K lavas from Deep Springs Valley have EM II-like Sr and Nd isotope compositions, but EM I-like Pb isotope compositions. A simple method for producing the range of isotopic and major- and trace-element variations in the Deep Springs Valley lavas is by two-component mixing between this unusual K-rich mantle source and a more typical depleted mantle basalt. We favor passage of MORB-like magmas that partially fused and were contaminated by potassic magmas derived from melting high-K mantle veins that were stored in the lithospheric mantle. The origin of the anomalously high 87Sr/86Sr and 208Pb/204Pb ratios and low ɛNd values and 206Pb/204Pb ratios requires addition of an old component with high Rb/Sr and Th/Pb ratios but low Sm/Nd and U/Pb ratios into the mantle source region from which these basalts were derived. This old component may be sediments that were introduced into the mantle, either during Proterozoic subduction, or by foundering of Proterozoic age crust into the mantle at some time prior to eruption of the lavas. Received: 28 February 1997 / Accepted: 9 July 1998  相似文献   

7.
Submarine volcanic rocks dredged during RV Meteor cruise M43-1 comprise alkali basalts, basanites, nephelinites and their differentiates representing both basement-shield and young post-shield volcanics of Gran Canaria, Tenerife, La Palma and El Hierro. The primitive lavas vary widely in trace element composition (e.g., Zr/Y=6.6-11.7, (La/Sm)N=2.3-5.4, and Ba/Yb=71-311), and they are characterized by steep, rare-earth element patterns with mean (La/Yb)N=16, and by pronounced, positive primitive mantle-normalized Nb and Ta and negative K anomalies similar to HIMU-type basalts. Rocks from the submarine flanks west and north of Gran Canaria are isotopically and geochemically identical to rocks of the subaerial Miocene shield stage, but they are distinct from rocks of the post-shield stages (Zr/Nb=6.3-8.9, 87Sr/86Sr=0.70327-0.70332, 143Nd/144Nd=0.51289-0.51293, 206Pb/204Pb=19.55-19.88). Most rocks dredged from the submarine flanks of Tenerife are isotopically and geochemically similar to rocks of the adjacent subaerial shield remnants, but a few resemble rocks of the subaerial post-shield stages (total range in Zr/Nb=4.6-6.1, 87Sr/86Sr=0.70300-0.70329, 143Nd/144Nd=0.51281-0.51292, 206Pb/204Pb=19.51-19.96). Rocks from the southern submarine ridge of La Palma cover the entire compositional range of the subaerial rocks of that ridge. Additionally, they comprise a high Zr/Nb group which resembles rocks of the ca. 1-Ma-old Taburiente shield of northern La Palma (total range in Zr/Nb=3.0-6.4, 87Sr/86Sr=0.70297-0.70314, 143Nd/144Nd=0.51288-0.51296, 206Pb/204Pb=19.21-19.79). Rocks from the southern submarine ridge of El Hierro compositionally resemble subaerial rocks of the island (Zr/Nb=4.1-6.2, 87Sr/86Sr=0.70296-0.70314, 143Nd/144Nd=0.51291-0.51297, 206Pb/204Pb=19.25-19.91). The degree of melting in the subcanarian mantle is interpreted to decrease from east to west across the archipelago whereas the proportion of depleted mantle component in the melting anomaly increases, as illustrated by Sr, Nd and Pb isotopes. The isotopic characteristics of the mantle source beneath the Canary Islands represents a mixture of HIMU, DMM and EM I. The overall isotopic signature is intermediate between that of Madeira to the north, which trends towards more depleted compositions, and that of the Cape Verde Islands to the south which shows a pronounced trend towards enriched mantle compositions. A clear trend towards the EM II component is only evident in more evolved rocks dredged from a seamount between Tenerife and Gran Canaria, some of which contain terrigenous sedimentary xenoliths. We propose a genetic model which relates similar mantle source signatures of volcanic archipelagos off West Africa to a common, large-scale lower mantle upwelling which, according to geophysical data, becomes more diffuse in the upper mantle. Narrow plumes or blobs feeding the volcanic centers along the passive margin may rise from this thermal anomaly due to upwelling in small, continent-parallel upper-mantle convection cells.  相似文献   

8.
New high-precision Pb–Sr–Nd isotope, major and traceelement and mineral chemistry data are presented for the submarinestage of ocean island volcanism on Santiago, one of the southernislands of the Cape Verde archipelago. Pillow basalts and hyaloclastitesin the Flamengos Valley are divided into three petrographicand compositional groups; the Flamengos Formation lavas (4·6Ma) dominate the sequence, with the younger Low Si and Coastalgroups (2·8 Ma) found near the shoreline. Olivine andclinopyroxene compositions and isotopic data for minerals andtheir host melts indicate disequilibrium between some crystalsand the melt. Intra-sample disequilibrium suggests homogenisationof liquids but eruption before complete equilibration betweencrystals and melt preserves the heterogeneity. Pressures ofcrystallization for clinopyroxene (0·4–1·1GPa) indicate stalling and crystallization of the magmas overa range of depths in the lithosphere. Major element compositionsindicate melting of a carbonated eclogite source. Sr–Nd–Pbisotope data suggest the involvement of FOZO-like and EM1-likecomponents in the mantle source, which are simultaneously availableat all depths in the melting column. The Flamengos Valley lavasdisplay large compositional variations, often between stratigraphicallyadjacent flows; these frequent abrupt changes of magma compositionsuggest stalling and crystallization of discrete magma batcheson transport through the lithosphere. KEY WORDS: Cape Verde; crystal–melt disequilibrium; submarine volcanism; source heterogeneity; Pb–Sr–Nd isotopes  相似文献   

9.
South Korea separates two mantle source domains for Late Cenozoic intraplate volcanism in East Asia: depleted mid-ocean-ridge basalt (MORB) mantle-enriched mantle type 1 (DMM-EM1) in the north and DMM-EM2 in the south. We determined geochemical compositions, including Sr, Nd, Pb, and Hf isotopes for the Jeongok trachybasalts (∼0.51 to 0.15 Ma K–Ar ages) from northernmost South Korea, to better constrain the origin and distribution of the enriched mantle components. The Jeongok basalts exhibit light rare earth element (LREE)-enriched patterns ([La/Yb]N = 9.2–11.6). The (La/Yb)N ratios are lower than that of typical oceanic island basalt (OIB). On a primitive mantle-normalized incompatible element plot, the Jeongok samples show OIB-like enrichment in highly incompatible elements. However, they are depleted in moderately incompatible elements (e.g., La, Nd, Zr, Hf, etc.) compared with the OIB and exhibit positive anomalies in K and Pb. These anomalies are also prime characteristics of the Wudalianchi basalts, extreme EM1 end-member volcanics in northeast China. We have compared the geochemistry of the Jeongok basalts with those of available Late Cenozoic intraplate volcanic rocks from East Asia (from north to south, Wudalianchi, Mt. Baekdu and Baengnyeong for DMM-EM1, and Jeju for DMM-EM2). The mantle source for the Jeongok volcanics contains an EM1 component. The contribution of the EM1 component to East Asian volcanism increases toward the north, from Baengnyeong through Jeongok to Mt. Baekdu and finally to Wudalianchi. Modeling of trace element data suggests that the Jeongok basalts may have been generated by mixing of a Wudalianchi-like melt (EM1 end-member) and a melt that originated from a depleted mantle source, with some addition of the lithospheric mantle beneath the Jeongok area. In Nd–Hf isotope space, the most enriched EM1-component-bearing Jeongok sample shows elevation of 176Hf/177Hf at a given 143Nd/144Nd compared with OIB. Recycled pelagic sediments may explain the EM1-end-member component of northeastern Asian volcanism, possibly from the mantle transition zone.  相似文献   

10.
The off-rift central volcano of Öræfajökull has very distinctive EM1-like isotopic compositions compared with other Icelandic lavas. New Pb–Nd–Sr isotopic data from Öræfajökull show strong correlations interpreted as a result of mixing. End-members are a depleted mantle source incorporating 0.5 % subduction-processed sediment and a mantle source with an isotopic signature similar to lavas of the Reykjanes Peninsula. Sr–Nd–Pb isotopic correlations of Icelandic Eastern Rift Zone (ERZ) lavas are almost completely distinct from those of the Reykjanes Peninsula and the Western Rift Zone (WRZ) and require a high-207Pb/204Pb, low-143Nd/144Nd end-member that resembles Öræfajökull compositions, which is very distinct from the enriched end-members suggested for the Reykjanes Peninsula and the WRZ. Given the similar depth and degree of melting at rift zones, variation in the observed enriched end-members between rift zones must indicate spatial variations in enriched mantle sources within the shallow mantle under Iceland rather than purely mixing of melts from a bi-lithological mantle. This is consistent with observations that the ERZ lavas erupted closest to Öræfajökull exhibit the most Öræfajökull-like isotopic compositions, implying that a homogenised Öræfajökull source with positive ?207Pb is focused under the Öræfajökull centre and its associated flank zone. This then mixes laterally with the dominant negative-?207Pb ERZ mantle source. Like Reykjanes Peninsula and WRZ lavas, the ERZ mantle source has strongly negative Δ207Pb and low K/Nb (<170), and these provide evidence for a recycled oceanic crust contribution. The range in 206Pb/204Pb in mantle sources with negative Δ207Pb was probably generated by heterogeneity in 206Pb/204Pb and μ in the recycled oceanic crust, which is the dominant source of incompatible elements in Icelandic lavas.  相似文献   

11.
We have carried out a Pb double-spike and Lu-Hf isotope study of clinopyroxenes from spinel-facies mantle xenoliths entrained in Cenozoic intraplate continental volcanism of the French Massif Central (FMC). U-Th-Pb and Lu-Hf isotope systematics verify the existence of different lithospheric domains beneath the northern and southern FMC. Northern FMC clinopyroxenes have extreme Lu/Hf ratios and ultra-radiogenic Hf (εHf = +39.6 to +2586) that reflect ∼15-25% partial melting in Variscan times (depleted mantle model ages ∼360 Ma). Zr, Hf and Th abundances in these clinopyroxenes are low and unaffected by hydrous/carbonatitic metasomatism that overprinted LILE and light REE abundances and caused decoupling of Lu/Hf-Sm/Nd ratios and Nd-Hf isotopes (εNd = +2.1 to +91.2). Pb isotopes of northern FMC clinopyroxenes are radiogenic (206Pb/204Pb > 19), and typically more so than the host intraplate volcanic rocks. 238U/204Pb ratios range from 17 to 68, and most samples have distinctively low 232Th/238U (<1) and 232Th/204Pb (3-22). Clinopyroxenes from southern FMC lherzolites are generally marked by overall incompatible trace element enrichment including Zr, Hf and Th abundances, and have Pb isotopes that are similar to or less radiogenic than the host volcanic rocks. Hf isotope ratios are less radiogenic (εHf = +5.4 to +41.5) than northern FMC mantle and have been overprinted by silicate-melt-dominated metasomatism that affected this part of FMC mantle. Major element and Lu concentrations of clinopyroxenes from southern FMC harzburgites are broadly similar to northern FMC clinopyroxenes and suggest they experienced similar degrees of melt extraction as northern FMC mantle. 238U/204Pb (53-111) and 232Th/204Pb ratios (157-355) of enriched clinopyroxenes from the southern FMC are extreme and significantly higher than the intraplate volcanic rocks. In summary, mantle peridotites from different parts of the FMC record depletion at ∼360 Ma during Variscan subduction, followed by differing styles of enrichment. Northern FMC mantle was overprinted by a fluid/carbonatitic metasomatic agent that carried elements like U, Pb, Sr and light REE. In contrast, much of the southern FMC mantle was metasomatised by a small-degree partial silicate melt resulting in enrichment of all incompatible trace elements. The extreme mantle 238U/204Pb (northern and southern FMC), 232Th/238U (northern FMC) and 232Th/204Pb ratios (southern FMC), coupled with unremarkable present-day Pb isotope ratios, constrain the timing of enrichment. Mantle metasomatism is a young feature related to melting of the upwelling mantle responsible for Cenozoic FMC volcanism, rather than subduction-related metasomatism intimately associated with mantle depletion during the Variscan orogeny. The varying metasomatic styles relate to pre-existing variations in the thickness of the continental lithospheric lid, which controlled the extent to which upwelling mantle could ascend and melt. In the northern FMC, a thicker and more refractory lithospheric lid (?80 km) only allowed incipient degrees of melting resulting in fluid/carbonatitic metasomatism of the overlying sub-continental lithospheric mantle. The thinner lithospheric lid of the southern FMC (?70 km) allowed larger degrees of melting and resulted in silicate-melt-dominated metasomatism, and also focused the location of the volcanic fields of the FMC above this region.  相似文献   

12.
Post-3Ma volcanics from the N Luzon arc exhibit systematic variations in 87Sr/86Sr (0.70327–0.70610), 143Nd/144Nd (0.51302–0.51229) and 208Pb*/206Pb* (0.981–1.035) along the arc over a distance of about 500 km. Sediments from the South China Sea west of the Manila Trench also exhibit striking latitudinal variations in radiogenic isotope ratios, and much of the isotopic range in the volcanics is attributed to variations in the sediment added to the mantle wedge during subduction. However, Pb-Pb isotope plots reveal that prior to subduction, the mantle end-member had high 8/4, and to a lesser extent high 7/4, similar to that in MORB from the Indian Ocean and the Philippine Sea Plate. Th isotope data on selected Holocene lavas indicate a source with unusually high Th/U ratios (4.5–5.5). Combined trace element and isotope data require that three end-members were implicated in the genesis of the N Luzon lavas: (1) a mantle wedge end-member with a Dupal-type Pb isotope signature, (2) a high LIL/HFS subduction component interpreted to be a slab-derived hydrous fluid, and (3) an isotopically enriched end-member which reflects bulk addition (<5%) of subducted S China Sea terrigenous sediment. The 87Sr/86Sr ratios in the volcanics show a restricted range compared with that in the sediments, and this contrasts with 143Nd/144Nd and 208Pb*/206Pb*, both of which have similar ranges in the volcanics and sediments. Such differences imply that whereas the isotope ratios of Nd, Pb and Th are dominated by the component from subducted sediment, those of Sr reflect a larger relative contribution from the slab-derived fluid.  相似文献   

13.
Pliocene to recent volcanic rocks from the Bulusan volcanic complex in the southern part of the Bicol arc (Philippines) exhibit a wide compositional range (medium- to high-K basaltic-andesites, andesites and a dacite/rhyolite suite), but are characterised by large ion lithophile element enrichments and HFS element depletions typical of subduction-related rocks. Field, petrographic and geochemical data indicate that the more silicic syn- and post-caldera magmas have been influenced by intracrustal processes such as magma mixing and fractional crystallisation. However, the available data indicate that the Bicol rocks as a group exhibit relatively lower and less variable 87Sr/86Sr ratios (0.7036–0.7039) compared with many of the other subduction-related volcanics from the Philippine archipelago. The Pb isotope ratios of the Bicol volcanics appear to be unlike those of other Philippine arc segments. They typically plot within and below the data field for the Philippine Sea Basin on 207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, implying a pre-subduction mantle wedge similar to that sampled by the Palau Kyushu Ridge, east of the Philippine Trench. 143Nd/144Nd ratios are moderately variable (0.51285–0.51300). Low silica (<55 wt%) samples that have lower 143Nd/144Nd tend to have high Th/Nd, high Th/Nb, and moderately low Ce/Ce* ratios. Unlike some other arc segments in the Philippines (e.g. the Babuyan-Taiwan segment), there is little evidence for the involvement of subducted terrigenous sediment. Instead, the moderately low 143Nd/144Nd ratios in some of the Bicol volcanics may result from subduction of pelagic sediment (low Ce/Ce*, high Th/Nd, and high Th/Nb) and its incorporation into the mantle wedge via a slab-derived partial melt.  相似文献   

14.
Major, trace-element, and Sr-, Nd-and Pbisotope data are presented for volcanics from 12 active or recently active volcanoes from the islands of Flores, Adonara, Lembata and Batu Tara in the eastern Sunda are. The volcanics vary in composition from low-K tholeiite, through medium-and high-K calcalkaline types to the K-rich leucite basanites of Batu Tara. From the tholeiites to the leucite basanites there are marked increases in the concentrations of LILE (K, Rb, Ba, Sr), LREE and La/Yb, and all the volcanics have high Ba/ Nb, La/Nb and Ba/La compared with mid-ocean ridge and intraplate eruptives. K/Cs values are generally lower than OIB values, and overlap those of other arc volcanics and northeast Indian Ocean sediments. The volcanics exhibit a broad range of 87Sr/86Sr (0.70468–0.70706), 143Nd/144Nd (0.512946–0.512447), and a moderate range in 206Pb/204Pb (18.825–19.143), 207Pb/ 204Pb (15.643–15.760) and 208Pb/204Pb (38.97–39.51). Trace-element and isotopic data suggest that the mantle beneath the eastern Sunda arc is a complex heterogeneous mixture of 3 or 4 major source components: MORB-source or depleted MORB-source, OIB-source and subducted Indian Ocean sediment. The low-K tholeiites were probably formed by relatively large degrees of melting of depleted MORB-source mantle, modified by subduction-related fluids, whereas the trace-element and isotopic characteristics of the K-rich volcanics suggest that they were derived from an OIB source which and been modified by a subduction-related melt component. The source components of the medium-to high-K calcalkaline rocks are more difficult to determine, and probably include mixtures of MORB-source or OIB-source, and melt/fluid derived from subducted oceanic sediment. Minor-and trace-element modelling calculations indicate substantial difficulties in producing the relatively low Ti-contents of arc volcanics by melting OIB-source mantle. Where OIB mantle is considered to be an important component of arc magmas it is suggested that the HFSE are buffered to relatively low concentration by a residual Ti-rich accessory phase.  相似文献   

15.
Cenozoic lamprophyres (minettes, spessartites, kersantite) from the Western Alps, northern Italy, represent small volume, mafic melts with high Mg#s and high Ni and Cr contents. All the lamprophyres show light REE enrichment, high incompatible element contents, and Ta, Ti and Nb troughs on chondrite-normalized diagrams. Age-corrected 87Sr/86Sr isotopic ratios (assuming t = 30 Ma) are highly variable and range from 0.70590 to 0.71884; 143Nd/144Nd ratios range from 0.51203 to 0.51242. Pb isotopic ratios are: 206Pb/204Pb = 18.669–18.895, 207Pb/204Pb = 15.605–15.689 and 208Pb/204Pb = 38.224–39.134. 87Sr/86Sr ratios show a negative correlation with 143Nd/144Nd, and a positive correlation with K, Ba, and Rb as well as with Ti, Th, Ta, Nb and Zr abundances. The primitive nature of the lamprophyres, coupled with their enriched incompatible trace element and isotopic signatures, suggest derivation from a metasomatized upper mantle source. Linear arrays in isotope space and elemental data plots suggest mixing between two distinct end-members in the Italian mantle; an enriched end-member that is isotopically similar to pelagic sediments, and a significantly less enriched end-member that approaches Bulk Earth values. New isotopic data indicate that the mantle source(s) of the lamprophyres from the Western Alps contain a very high proportion of the enriched end-member. The geochemical signature of the enriched end-member is attributed to fluids or melts derived from pelagic sediments subducted during the closure of the Tethyan Ocean in the late Cretaceous to early Tertiary.  相似文献   

16.
New geochemical and isotopic data are reported for calc-alkaline (CA) volcanics of the Aeolian arc. Three main groups are recognized: the Alicudi and Filicudi volcanics in the western part of the arc; the Panarea, Salina and Lipari (henceforth termed PSL) volcanics in the central part of the arc and the Stromboli suite which makes up the eastern part of the arc. Each group is characterized by distinctive isotopic ratios and incompatible element contents and ratios. 87Sr/86Sr values (0.70352–0.70538) increase from west to northeast, and are well correlated with 143Nd/144Nd (Nd from +4.8 to -1.5). Pb isotope ratios are fairly high (6/4=19.15–19.54; 7/4=15.61–15.71; 8/4=38.97–39.36), with a general increase of 7/4 and 8/4 values from Alicudi to PSL islands and Stromboli. LILE contents and some incompatible element ratios (e.g. Ba/La, La/Nb, Zr/Nb, Rb/Sr) increase from the western to the central part of the arc, whereas HFSE and REE abundances decrease. Opposite variations are often observed in the volcanics toward the north-east from PSL islands. To account for these features and the decoupling observed between isotopic compositions and incompatible element abundances and ratios, it is suggested that a mantle source with affinities to the MORB source is metasomatized by slab-derived, crustal components. The proportion of crustal material entrained in the mantle source increases from Alicudi to Stromboli, according to the Sr and Nd isotope variations. It is also proposed that slab derived hydrous fluids play an important role, but which is variable in different sectors of the arc. This is attributed to the metasomatizing agent having variable fluid/melt ratios, reflecting different types of mass transfer from the subducted contaminant (probably pelagic sediments) to the mantle wedge. Thus, it is suggested that the slab derived end-member has a high hydrous fluid/melt ratio in the PSL mantle source and a correspondingly lower ratio in the Alicudi and Stromboli sources.  相似文献   

17.
The Denizli region of the Western Anatolia Extensional Province (WAEP) includes a typical example of intra-plate potassic magmatism. Lamproite-like K-rich to shoshonitic alkaline rocks erupted in the Upper Miocene-Pliocene in a tensional tectonic setting. The absence of Nb and Ta depletion, low Th/Zr and high Nb/Zr ratios and distinct isotopic values (i.e. low 87Sr/86Sr, 0.703523–0.703757; high 143Nd/144Nd, 0.512708–0.512784; high 206Pb/204Pb, 19.079–19.227, 207Pb/204Pb, 15.635–15.682, 208Pb/204Pb, 39.144–39.302) mark an anorogenic geochemical signature of the Denizli volcanics. All of the lavas are strongly enriched in large-ion-lithophile elements (e.g. Ba 1,100–2,200 ppm; Sr 1,900–3,100 ppm; Rb 91–295 ppm) and light rare-earth elements (e.g. LaN?=?319–464), with a geochemical affinity to ocean-island basalts and lack of a recognizable subduction signature or any evidence for crustal contamination. The restricted range of isotopic (Sr, Nd, Pb) ratios in both near-primitive (Mg# 66.7–77.2) and more evolved (Mg# 64.6–68.7) members of the Denizli volcanics signify their evolution from an isotopically equilibrated parental mantle source. Their high Dy/Yb and Rb/Sr values also suggest that garnet and phlogopite were present in the mantle source. Their strong EM-II signature, very low Nd model ages (0.44–049 Ga) and isotopic (Sr-Nd-Pb) values analogous to those of the Nyiragongo potassic basanites and kimberlites from the African stable continental settings, suggest that the parental melts that produced the Denizli volcanics are associated with very young and enriched mantle sources, which include both sublithospheric and enriched subcontinental lithospheric mantle melts. Mantle-lithosphere delamination probably played a significant role in the generation of these melts, and could be related to roll-back of the Aegean arc, lithospheric extension and asthenospheric mantle upwelling.  相似文献   

18.
Major and trace element and Sr-Nd-Pb-O-C isotopic compositions are presented for carbonatites from the Cape Verde (Brava, Fogo, Sáo Tiago, Maio and Sáo Vicente) and Canary (Fuerteventura) Islands. Carbonatites show pronounced enrichment in Ba, Th, REE, Sr and Pb in comparison to most silicate volcanic rocks and relative depletion in Ti, Zr, Hf, K and Rb. Calcio (calcitic)-carbonatites have primary (mantle-like) stable isotopic compositions and radiogenic isotopic compositions similar to HIMU-type ocean island basalts. Cape Verde carbonatites, however, have more radiogenic Pb isotope ratios (e.g. 206Pb/204Pb=19.3-20.4) than reported for silicate volcanic rocks from these islands (18.7-19.9; Gerlach et al. 1988; Kokfelt 1998). We interpret calcio-carbonatites to be derived from the melting of recycled carbonated oceanic crust (eclogite) with a recycling age of ~1.6 Ga. Because of the degree of recrystallization, replacement of calcite by secondary dolomite and elevated ‘13C and ‘18O, the major and trace element compositions of the magnesio (dolomitic)-carbonatites are likely to reflect secondary processes. Compared with Cape Verde calcio-carbonatites, the less radiogenic Nd and Pb isotopic ratios and the negative Ɨ/4 of the magnesio-carbonatites (also observed in silicate volcanic rocks from the Canary and Cape Verde Islands) cannot be explained through secondary processes or through the assimilation of Cape Verde crust. These isotopic characteristics require the involvement of a mantle component that has thus far only been found in the Smoky Butte lamproites from Montana, which are believed to be derived from subcontinental lithospheric sources. Continental carbonatites show much greater variation in radiogenic isotopic composition than oceanic carbonatites, requiring a HIMU-like component similar to that observed in the oceanic carbonatites and enriched components. We interpret the enriched components to be Phanerozoic through Proterozoic marine carbonate (e.g. limestone) recycled through shallow, subcontinental-lithospheric-mantle and deep, lower-mantle sources.  相似文献   

19.
We present new compositional data on a suite of historic lava flows from the Reykjanes Peninsula, Iceland. They were erupted over a short time period between c. 940 and c. 1340 ad and provide a snap-shot view of melt generation and evolution processes beneath this onshore, 65 km long, ridge segment. The lavas are tholeiitic basalts (MgO 6.5–9.2 wt%) and sparsely (≪5%) olivine and/or plagioclase phyric (±trace clinopyroxene). Individual eruptive events show remarkable compositional homogeneity. Despite a limited variation in Sr–Nd isotope compositions, high-precision double-spike Pb isotope data show tight coherent arrays that, together with correlations with incompatible trace element ratios, indicate control by binary mixing processes. Poor correlations with elemental abundances require that this mixing took place prior to extensive fractional crystallisation. Olivines in the historic lavas have light δ18O values (+4.2 to +4.3‰), which is likely to be a feature of the enriched mantle source to Reykjanes Peninsula lavas. High precision Pb isotope analyses of other post-glacial Reykjanes Peninsula lavas show significant variability in 207Pb/204Pb and 208Pb/204Pb at lower 206Pb/204Pb values than in the historic lavas. This variation demonstrates that at least three compositionally distinct components within the mantle are required to explain the Pb isotope variations within the Reykjanes Peninsula as a whole. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
New lead, strontium and helium isotopic data, together with trace element concentrations, have been determined for basalts from the Cape Verde archipelago (Central Atlantic). Isotopic and chemical variations are observed at the scale of the archipelago and lead to the definition of two distinct groupings, in keeping with earlier studies. The Northern Islands (Santo Antão, São Vicente, São Nicolau and Sal) present Pb isotopic compositions below the Northern Hemisphere Reference Line (NHRL) (cf. Hart, 1984), unradiogenic Sr and relatively primitive 4He/3He ratios. In contrast, the Southern Islands (Fogo and Santiago) display Pb isotopes above the NHRL, moderately radiogenic Sr and MORB-like helium signatures. We propose that the dichotomy between the Northern and Southern Islands results from the presence of three isotopically distinct components in the source of the Cape Verde basalts: (1) recycled ∼1.6-Ga oceanic crust (high 206Pb/204Pb, low 87Sr/86Sr and high 4He/3He); (2) lower mantle material (high 3He); and (3) subcontinental lithosphere (low 206Pb/204Pb, high 87Sr/86Sr and moderately radiogenic 4He/3He ratios). The signature of the Northern Islands reflects mixing between recycled oceanic crust and lower mantle, to which small proportions of entrained depleted material from the local upper mantle are added. Basalts from the Southern Islands, however, require the addition of an enriched component thought to be subcontinental lithospheric material instead of depleted mantle. The subcontinental lithosphere may stem from delamination and subsequent incorporation into the Cape Verde plume, or may be remnant from delamination just before the opening of the Central Atlantic. Basalts from São Nicolau reflect the interaction with an additional component, which is identified as oceanic crustal material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号