首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
G. Feulner 《Solar physics》2013,282(2):615-627
The Mauna Loa Observatory record of direct-beam solar irradiance measurements for the years 1958?–?2010 is analysed to investigate the variation of clear-sky terrestrial insolation with solar activity over more than four solar cycles. The raw irradiance data exhibit a marked seasonal cycle, extended periods of lower irradiance due to emissions of volcanic aerosols, and a long-term decrease in atmospheric transmission independent of solar activity. After correcting for these effects, it is found that clear-sky terrestrial irradiance typically varies by ≈?0.2±0.1 % over the course of the solar cycle, a change of the same order of magnitude as the variations of the total solar irradiance above the atmosphere. An investigation of changes in the clear-sky atmospheric transmission fails to find a significant trend with sunspot number. Hence there is no evidence for a yet unknown effect amplifying variations of clear-sky irradiance with solar activity.  相似文献   

2.
太阳总辐照是指在地球大气层顶接收到的太阳总辐射照度,也叫"太阳常数",但它实际上并非常数。太阳总辐照随波长的分布即为太阳分光辐照。太阳辐照变化的研究,对理解太阳表面及内部活动的物理过程、机制,研究地球大气、日地关系,解决人类面临的全球气候变暖的挑战等,都具有重要意义。首先简单介绍了太阳辐照,回顾了太阳辐照的空间观测;接着介绍了观测数据的并合,以及对合成数据的一些研究;然后讨论了太阳辐照变化的原因,简述了太阳总辐照的重构及其在气候研究上的一些应用,并进行必要的评论;最后对未来的研究方向提出了一些看法。  相似文献   

3.
Total solar irradiance (TSI) is the primary quantity of energy that is provided to the Earth. The properties of the TSI variability are critical for understanding the cause of the irradiation variability and its expected influence on climate variations. A deterministic property of TSI variability can provide information about future irradiation variability and expected long-term climate variation, whereas a non-deterministic variability can only explain the past.This study of solar variability is based on an analysis of two TSI data series, one since 1700 A.D. and one since 1000 A.D.; a sunspot data series since 1610 A.D.; and a solar orbit data series from 1000 A.D. The study is based on a wavelet spectrum analysis. First, the TSI data series are transformed into a wavelet spectrum. Then, the wavelet spectrum is transformed into an autocorrelation spectrum to identify stationary, subharmonic and coincidence periods in the TSI variability.The results indicate that the TSI and sunspot data series have periodic cycles that are correlated with the oscillations of the solar position relative to the barycenter of the solar system, which is controlled by gravity force variations from the large planets Jupiter, Saturn, Uranus and Neptune. A possible explanation for solar activity variations is forced oscillations between the large planets and the solar dynamo.We find that a stationary component of the solar variability is controlled by the 12-year Jupiter period and the 84-year Uranus period with subharmonics. For TSI and sunspot variations, we find stationary periods related to the 84-year Uranus period. Deterministic models based on the stationary periods confirm the results through a close relation to known long solar minima since 1000 A.D. and suggest a modern maximum period from 1940 to 2015. The model computes a new Dalton-type sunspot minimum from approximately 2025 to 2050 and a new Dalton-type period TSI minimum from approximately 2040 to 2065.  相似文献   

4.
We investigate the periodicity in the PMOD composite of the daily total solar irradiance (TSI) from 21 September 1978 to 9 June 2009. Besides the Schwabe cycle period (10.32 years), the quasi-rotation period is found to be statistically significant in TSI, whose value is about 32 days, longer than that in sunspot activity (27 days), and it intermittently appears around the sunspot maximum times. The quasi-rotation period in TSI is inferred to be mainly caused by sunspot activity, but to be modulated by bright features as well. It was previously found that variations of TSI over a Schwabe solar cycle mainly come from the combination of the sunspots’ blocking and the intensification due to bright faculae, plages, and network elements, with a slight dominance of the bright-feature effect during the maximum of the Schwabe cycle. For the sunspot-blocking and the bright-feature effect to contribute to TSI over a Schwabe solar cycle, the former is inferred to lead the latter by 29 days at least.  相似文献   

5.
L. Gy?ri 《Solar physics》2012,280(2):365-378
Sunspot and white light facular areas are important data for solar activity and are used, for example, in the study of the evolution of sunspots and their effect on solar irradiance. Solar Dynamic Observatory??s Helioseismic and Magnetic Imager (SDO/HMI) solar images have much higher resolution (??0.5????pixel?1) than Solar and Heliospheric Observatory??s Michelson Doppler Imager (SOHO/MDI) solar images (??2????pixel?1). This difference in image resolution has a significant impact on the sunspot and white light facular areas measured in the two datasets. We compare the area of sunspots and white light faculae derived from SDO/HMI and SOHO/MDI observations. This comparison helps the calibration of the SOHO sunspot and facular area to those in SDO observations. We also find a 0.22 degree difference between the North direction in SDO/HMI and SOHO/MDI images.  相似文献   

6.
Physical understanding of total and spectral solar irradiance variation depends upon establishing a connection between the temporal variability of spatially resolved solar structures and spacecraft observations of irradiance. One difficulty in comparing models derived from different data sets is that the many ways for identifying solar features such as faculae, sunspots, quiet Sun, and various types of “network” are not necessarily consistent. To learn more about classification differences and how they affect irradiance models, feature “masks” are compared as derived from five current methods: multidimensional histogram analysis of NASA/National Solar Observatory/Kitt Peak spectromagnetograph data, statistical pattern recognition applied to SOHO/Michelson Doppler Imager photograms and magnetograms, threshold masks allowing for influence of spatial surroundings applied to NSO magnetograms, and “one-trigger” and “three-trigger” algorithms applied to California State University at Northridge Cartesian Full Disk Telescope intensity observations. In general all of the methods point to the same areas of the Sun for labeling sunspots and active-region faculae, and available time series of area measurements from the methods correlate well with each other and with solar irradiance. However, some methods include larger label sets, and there are important differences in detail, with measurements of sunspot area differing by as much as a factor of two. The methods differ substantially regarding inclusion of fine spatial scale in the feature definitions. The implications of these differences for modeling solar irradiance variation are discussed. K.L. Harvey and S.R. Walton are deseased, to whom this paper is dedicated.  相似文献   

7.
We present a model for the reconstruction of spectral solar irradiance between 200 and 400?nm. This model is an extension of the total solar irradiance (TSI) model of Crouch et al. (Astrophys.?J. 677, 723, 2008) which is based on a data-driven Monte Carlo simulation of sunspot emergence, fragmentation, and erosion. The resulting time-evolving daily area distribution of magnetic structures of all sizes is used as input to a four-component irradiance model including contributions from the quiet Sun, sunspots, faculae, and network. In extending the model to spectral irradiance in the near- and mid-ultraviolet, the quiet Sun and sunspot emissivities are calculated from synthetic spectra at T eff=5750?K and 5250?K, respectively. Facular emissivities are calculated using a simple synthesis procedure proposed by Solanki and Unruh (Astron. Astrophys. 329, 747, 1998). The resulting time series of ultraviolet flux is calibrated against the data from the SOLSTICE instrument on the Upper Atmospheric Research Satellite (UARS). Using a genetic algorithm, we invert quiet Sun corrections, profile of facular temperature variations with height, and network model parameters which yield the best fit to these data. The resulting best-fit time series reproduces quite well the solar-cycle timescale variations of UARS ultraviolet observations, as well as the short-timescale fluctuations about the 81 day running mean. We synthesize full spectra between 200 and 400?nm, and validate these against the spectra obtained by the ATLAS-1 and ATLAS-3 missions, finding good agreement, to better than 3?% at most wavelengths. We also compare the UV variability predicted by our reconstructions in the descending phase of sunspot cycle 23 to SORCE/SIM data as well as to other reconstructions. Finally, we use the model to reconstruct the time series of spectral irradiance starting in 1874, and investigate temporal correlations between pairs of wavelengths in the bands of interest for stratospheric chemistry and dynamics.  相似文献   

8.
The time series of total solar irradiance (TSI) satellite observations since 1978 provided by ACRIM and PMOD TSI composites are studied. We find empirical evidence for planetary-induced forcing and modulation of solar activity. Power spectra and direct data pattern analysis reveal a clear signature of the 1.09-year Earth-Jupiter conjunction cycle, in particular during solar cycle 23 maximum. This appears to suggest that the Jupiter side of the Sun is slightly brighter during solar maxima. The effect is observed when the Earth crosses the Sun-Jupiter conjunction line every 1.09 years. Multiple spectral peaks are observed in the TSI records that are coherent with known planetary harmonics such as the spring, orbital and synodic periods among Mercury, Venus, Earth and Jupiter: the Mercury-Venus spring-tidal cycle (0.20 year); the Mercury orbital cycle (0.24 year); the Venus-Jupiter spring-tidal cycle (0.32 year); the Venus-Mercury synodic cycle (0.40 year); the Venus-Jupiter synodic cycle (0.65 year); and the Venus-Earth spring tidal cycle (0.80 year). Strong evidence is also found for a 0.5-year TSI cycle that could be driven by the Earth’s crossing the solar equatorial plane twice a year and may indicate a latitudinal solar-luminosity asymmetry. Because both spring and synodic planetary cycles appear to be present and the amplitudes of their TSI signatures appear enhanced during sunspot cycle maxima, we conjecture that on annual and sub-annual scales both gravitational and electro-magnetic planet-sun interactions and internal non-linear feedbacks may be modulating solar activity. Gravitational tidal forces should mostly stress spring cycles while electro-magnetic forces could be linked to the solar wobbling dynamics, and would mostly stress the synodic cycles. The observed statistical coherence between the TSI records and the planetary harmonics is confirmed by three alternative tests.  相似文献   

9.
Large sunspot areas correspond to dips in the total solar irradiance (TSI), a phenomenon associated with the local suppression of convective energy transport in the spot region. This results in a strong correlation between sunspot area and TSI. During the growth phase of a sunspot other physics may affect this correlation; if the physical growth of the sunspot resulted in surface flows affecting the temperature, for example, we might expect to see an anomalous variation in TSI. In this paper we study NOAA active region 8179, in which large sunspots suddenly appeared near disk center, at a time (March 1998) when few competing sunspots or plage regions were present on the visible hemisphere. We find that the area/TSI correlation does not significantly differ from the expected pattern of correlation, a result consistent with a large thermal conductivity in solar convection zone. In addition we have searched for a smaller-scale effect by analyzing white-light images from MDI (the Michelson Doppler Imager) on SOHO. A representative upper-limit energy consistent with the images is on the order of 3×1031 ergs, assuming the time scale of the actual spot area growth. This is of the same order of magnitude as the buoyant energy of the spot emergence even if it is shallow. We suggest that detailed image analyses of sunspot growth may therefore show `transient bright rings' at a detectable level.  相似文献   

10.
Comparison of the long-term variation of photospheric faculae areas with that of sunspots shows that studies of faculae provide both complementary and supplementary information on the behaviour of the solar cycle. Detailed studies of the development of sunspots with respect to faculae show that there is a high degree of order over much of a given cycle, but marked differences from cycle to cycle. Within a cycle the relationship between spot and faculae areas appears to be similar for the N and S solar hemispheres, and over the early stages of a cycle it is directly related to the magnitude of the maximum sunspot number subsequently attained in that cycle.This result may well have predictive applications, and formulae are given relating the peak sunspot number to simple parameters derived from this early developmental stage. Full application to the current cycle 21 is denied due to the cessation of the Greenwich daily photoheliographic measurements, but use of the cruder weekly data suggests a maximum smoothed sunspot number of 150 ± 22.The effects of the incompatibility of the spot and faculae data, in that faculae are unobservable over a large fraction of the solar disc and also do not always develop associated spots, have been examined in a detailed study of two cycles and shown not to vitiate the results.Now at NOAA, Environmental Data Service, NGSTDC, Boulder, Colo. 80302, U.S.A.  相似文献   

11.
Sunspots have an obvious direct effect upon the visible radiant energy falling upon the Earth. We show how to estimate this effect and compare it quantitatively with recent observations of the solar total irradiance (Willson et al., 1981). The sunspots explain about half of the total observed variance of one-day averages. Since the sunspot effect on irradiance produces an asymmetry of the solar radiation, rather than (necessarily) a variation of the total luminosity, we have also estimated the sunspot population on the invisible hemisphere. This extrapolation allows us to estimate the true luminosity deficit produced by sunspots, in a manner that tends toward the correct long-term average value. We find no evidence for instantaneous global re-emission to compensate for the sunspot flux deficit.  相似文献   

12.
This paper presents and interprets observations obtained by the Spectral Irradiance Monitor (SIM) on the Solar Radiation and Climate Experiment (SORCE) over a time period of several solar rotations during the declining phase of solar cycle 23. The time series of visible and infrared (IR) bands clearly show significant wavelength dependence of these variations. At some wavelengths the SIM measurements are qualitatively similar to the Mg II core-to-wing ratio, but in the visible and IR they show character similar to the Total Solar Irradiance (TSI) variations. Despite this overall similarity, different amplitudes, phases, and temporal features are observed at various wavelengths. The TSI can be explained as a complex sum of the various wavelength components. The SIM observations are interpreted with the aid of solar images that exhibit a mixture of solar activity features. Qualitative analysis shows how the sunspots, faculae, plage, and active network provide distinct contributions to the spectral irradiance at different wavelengths, and ultimately, how these features combine to produce the observed TSI variations. Most of the observed variability appears to be qualitatively explained by solar surface features related directly to the magnetic activity.  相似文献   

13.
Influence of the solar activity on the Indian Monsoon rainfall   总被引:1,自引:0,他引:1  
We use 130 years data for studying correlative effects due to solar cycle and activity phenomena on the occurrence of the Indian Monsoon rainfall. We compute the correlation coefficients and significance of correlation coefficients for the seasonal and the annual data. We find that: (i) for the whole years 1871–2000, the spring and southwest monsoon rainfall variabilities have significant positive correlations with the sunspot activity during the corresponding period, (ii) the FFT and the wavelet analyses of the southwest monsoon rainfall variability show the periods 2.7, 16 and 22 year, respectively (similar to the periods found in sunspot occurrence data) and, (iii) there is a long-term trend indicating a gradual decrease of occurrence of rainfall variability by nearly 2.3 ± 1.3 mm/year and increase of sunspot activity by nearly 3.9 ± 1.5 sunspots/year compared to the activity of previous solar cycle.

We speculate in this study a possible physical connection between the occurrence of the rainfall variability and the sunspot activity, and the flux of galactic cosmic rays. Owing to long-term positive and significant correlation of the spring and southwest monsoon rainfall variabilities with the sunspot activity, it is suggested that solar activity may be included as one of the crucial parameter in modeling and predicting the Indian monsoon rainfall.  相似文献   


14.
Jun Nishikawa 《Solar physics》1994,152(1):125-130
Spatially-resolved precise photometric observations of the whole Sun at wavelengths of 545nm (FWHM 40nm) were carried out by using the CCD solar surface photometer. Bright parts of photospheric network have contrast of several tenths of percent, and their contribution to the total irradiance is approximately half that of active region faculae. The solar irradiance variations estimated from sunspots, faculae and active network (contrast>0.3%) agreed with the ACRIM data. The quiet Sun irradiance used in the present results was different from the total irradiance at the solar minimum observed by the ACRIM, which indicates unmeasured components (contrast>0.1%) cause the 11-year cycle irradiance variation.  相似文献   

15.
Radosław Rek 《Solar physics》2010,261(2):337-351
The Maunder Minimum was the time during the second part of the 17th century, nominally from 1645 to 1717 AD, when unusually low numbers of sunspots were observed. On the basis of numerous recorded observations of auroras in the early 18th century, the end of the Minimum could be regarded as around 1700, but details of sunspot observations by Jan Heweliusz (Heweliusz, Machina Coelestis, 1679), John Flamsteed and Philippe de La Hire in 1684 allow us to interpret the Maunder Minimum as the period without a significant cessation of activity. This Minimum was also recognized in 14C data from trees which grew during the second part of 17th century. The variation in the production rate of radioactive carbon isotope 14C is due to modulation of the cosmic ray flux producing it by the changing level of solar activity and solar magnetic flux. Stronger magnetic fields in the solar wind make it more difficult for cosmic rays to reach the Earth, causing a drop in the production rate of 14C. However, more detailed analyses of 14C data indicate that the highest isotope abundances do not occur at the time of sunspot minima, as would be expected on the basis of modulation of the cosmic ray flux by the solar magnetic field, but two years after the sunspot number maximum. This time difference (or phase delay) can be accounted for if in fact there are both solar and non-solar cosmic ray contributions. Solar flares could also contribute high-energy particles and produce 14C and are generally not most frequent at the time of the highest sunspot numbers in the cycle.  相似文献   

16.
The effect of large-scale magnetic fields on total solar irradiance (TSI) was studied both in time–frequency and in time–longitude aspects. A continuous wavelet analysis revealed that the energy of thermomagnetic disturbances due to sunspots and faculae cascades into the magnetic network and facular macrostructure. A numerical technique of time–longitude analysis was developed to study the fine structure of temporal changes in the TSI caused by longitudinal brightness inhomogeneities and rotation of the Sun. The analysis facilitates mapping large-scale thermal inhomogeneities of the Sun and reveals patterns of radiative excesses and deficits relative to the undisturbed solar photosphere. These patterns are organized into 2- and 4-sector structures that exhibit the effects of both activity complexes and magnetically active longitudes. Large-scale patterns with radiative excess display a facular macrostructure and bright patterns in the magnetic network caused by the dissipation of large-scale thermomagnetic disturbances. Similar global-scale temperature patterns were found in the upper solar atmosphere. These temperature patterns are also causally related to long-lived magnetic fields of the Sun. During activity cycles 21–23 the patterns with radiative excess tend to be concentrated around the active longitudes which are centered at about 60° and 230° in the Carrington system.  相似文献   

17.
Owens  Mathew  Lang  Matthew  Barnard  Luke  Riley  Pete  Ben-Nun  Michal  Scott  Chris J.  Lockwood  Mike  Reiss  Martin A.  Arge  Charles N.  Gonzi  Siegfried 《Solar physics》2020,295(3):1-15

Solar radiation variability spans a wide range in time, ranging from seconds to decadal and longer. The nearly 40 years of measurements of solar irradiance from space established that the total solar irradiance varies by \(\approx 0.1\%\) in phase with the Sun’s magnetic cycle. Specific intervals of the solar spectrum, e.g., ultraviolet (UV), vary by orders of magnitude more. These variations can affect the Earth’s climate in a complex non-linear way. Specifically, some of the processes of interaction between solar UV radiation and the Earth’s atmosphere involve threshold processes and do not require a detailed reconstruction of the solar spectrum. For this reason a spectral UV index based on the (FUV-MUV) color has been recently introduced. This color is calculated using SORCE SOLSTICE integrated fluxes in the FUV and MUV bands. We present in this work the reconstructions of the solar (FUV-MUV) color and Ca ii K and Mg ii indices, from 1749–2015, using a semi-empirical approach based on the reconstruction of the area coverage of different solar magnetic features, i.e., sunspot, faculae and network. We remark that our results are in noteworthy agreement with latest solar UV proxy reconstructions that exploit more sophisticated techniques requiring historical full-disk observations. This makes us confident that our technique can represent an alternative approach which can complement classical solar reconstruction efforts. Moreover, this technique, based on broad-band observations, can be utilized to estimate the activity on Sun-like stars, that cannot be resolved spatially, hosting extra-solar planetary systems.

  相似文献   

18.
The solar irradiance data plays a very important role for understanding of Solar internal Structure and the solar terrestrial relationships. The Total Solar Irradiance (TSI) is integrated solar energy flux over the entire spectrum which arrives at the top of the atmosphere at the mean sun earth distance. TSI has been monitored from several satellites, e.g. Nimbus 7, Solar Maximum Mission (SMM), The NASA, Earth Radiation Budget Satellite (ERBS), NOAA9, NOAA10, Eureca and the Upper Atmospheric Research Satellite (UARS) etc. From these observations it reveals that the total solar irradiance varies about a small fraction of 0.1 over solar cycle being higher during maximum solar activity condition. In the present paper we have analysed the solar irradiance data from ERBS during the time period from October 15, 1984 to October 15, 2003. First filtering the data by Simple Exponential Smoothing we have applied the Rayleigh Power Spectrum Analysis on the processed data in order to search for its time variation. Study exhibits multi-periodicities on these data around 7, 11, 42, 80, 104, 130, 160, 254, 536, 752, 1142, 1388, 2474 and 4951 days with very high confidence levels (more than 95%). Apart from these strong periods there are some other weak periods around 22, 47, 53, 67, 69, 149, 167, 365, 489 and 683 days. These periods are significantly similar with the periods of other solar activities which may suggest that solar irradiance may be associated with other solar activities.  相似文献   

19.
Variations in total solar irradiance (TSI) correlate well with changes in projected area of photospheric magnetic flux tubes associated with dark sunspots and bright faculae in active regions and network. This correlation does not, however, rule out possible TSI contributions from photospheric brightness inhomogeneities located outside flux tubes and spatially correlated with them. Previous reconstructions of TSI report agreement with radiometry that seems to rule out significant “extra-flux-tube” contributions. We show that these reconstructions are more sensitive to the facular contrasts used than has been generally recognized. Measurements with the Solar Bolometric Imager (SBI) provide the first reliable support for the relatively high, wide-band, disk-center contrasts required to produce 10% rms agreement. Longer term bolometric imaging will be required to determine whether the small but systematic TSI residuals we see here are caused by remaining errors in spot and facular areas and contrasts or by extra-flux-tube brightness structures such as bright rings around sunspots or “convective stirring” around active regions.  相似文献   

20.
本文用云南天文台在第22周太阳活动峰年期间拍摄到的大太阳黑子群照相资料,太阳黑子目视描述资料,以及Nimbus—7卫星上辐射计测量的太阳总辐照度,分别计算了太阳总辐射照度与大黑子群的本影视面积,大黑子群全群视面积和日面上全部黑子的总视面积的相关系数。结果表明,太阳总辐射照度与这三种视面积均存在强的负相关。其中与大黑子群本影视面积的相关最强,其次是与全群视面积的相关,最后是与日面上全部黑子的总视面积的相关。并对以上结果和其它有关结果进行了分析和讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号