首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The age and composition of the 14 × 106 km2 of Antarctica's surface obscured by ice is unknown except for some dated detrital minerals and erratics. In remedy, we present four new analyses (U–Pb age, TDMC, εHf, and rock type) of detrital zircons from Neogene turbidites as proxies of Antarctic bedrock, and review published proxies: detrital hornblendes analysed for Ar–Ar age and bulk Sm–Nd isotopes; Pb isotope compositions of detrital K-feldspars; erratics and dropstones that reflect age and composition; and recycled microfossils that reflect age and facies. This work deals with the 240°E–0°–015°E sector, and complements Veevers and Saeed's (2011) analysis of the 70°E–240°E sector. Each sample is located in its ice-drainage basin for backtracking to the potential provenance. Gaps in age between sample and upslope exposure are specifically attributable to the provenance. The major provenance of detritus west of the Antarctic Peninsula (AP) is West Antarctica, and of detritus east of the AP East Antarctica. We confirm that the Central Antarctic provenance about a core of the Gamburtsev Subglacial Mountains (GSM) and the Vostok Subglacial Highlands (VSH) contains a basement that includes igneous (mafic granitoids) and metamorphic rocks with peak U–Pb ages of 0.65–0.50, 1.20–0.9, 2.1–1.9, 2.8–2.6, and 3.35–3.30 Ga, TDMC of 3.6–1.3 Ga, and mainly negative εHf. The potential provenance of zircons of 650–500 Ma age with TDMC ages of 1.55 Ga, and of zircons of 1200–900 Ma age with positive εHf lies beneath the ice in East Antarctica south and southeast of Dronning Maud Land within the Antarctic part of the East African–Antarctic Orogen. Zircons with the additional ages of 1.7–1.4 Ga, 2.1–1.9 Ga, and 3.35–3.00 Ga have a potential provenance in the GSM.  相似文献   

2.
The 10 June 2012 Mw 6.0 aftershock sequence in southwestern Anatolia is examined. Centroid moment tensors for 23 earthquakes with moment magnitudes (Mw) between 3.7 and 6.0 are determined by applying a waveform inversion method. The mainshock is a shallow focus strike-slip with reverse component event at a depth of 30 km. The seismic moment (Mo) of the mainshock is estimated as 1.28 × 1018 Nm and rupture duration of the Fethiye mainshock is 38 s. The focal mechanisms of the aftershocks are mainly strike-slip faulting with a reverse component. The geometry of the focal mechanisms reveals a strike-slip faulting regime with NE–SW trending direction of T-axis in the entire activated region. A stress tensor inversion of focal mechanism data is performed to obtain a more accurate picture of the Fethiye earthquake stress field. The stress tensor inversion results indicate a predominant strike-slip stress regime with a NW–SE oriented maximum horizontal compressive stress (SH). According to variance of the stress tensor inversion, to first order, the Fethiye earthquake area is characterized by a homogeneous interplate stress field. The Coulomb stress change associated with the mainshock and the largest aftershock are also investigated to evaluate any significant enhancement of stresses along the Gulf of Fethiye and surrounding region. Positive lobes with stress more than 0.4 bars are obtained, indicating that these values are large enough to increase the Coulomb stress failure towards NNW–SSE and E–W directions.  相似文献   

3.
Volcanic rocks preserved in the Lampang–Den Chai area in NW Thailand are important components of the giant Paleotethyan igneous belt. Constraining their age and petrogenesis is critical for better understanding their temporal-spatial relationship with the Lancangjiang igneous zone and the Paleotethyan tectonic evolution in SE Asia. The volcanic suite is constituted by intermediate to acid rocks with zircon U–Pb ages of 240.4 ± 1.7 Ma and 240.6 ± 1.9 Ma for the representative andesitic and rhyolitic samples, respectively. Volcanic sequence is dominated by calc-alkaline andesites, dacites and rhyolites. The andesitic and dacitic samples are characterized by high Mg# (37–57) and TiO2 (0.91–1.59 wt%), and can be classified as high-Mg series. They are enriched in LILEs and LREEs and depleted in HFSEs. Representative andesitic samples have 87Sr/86Sr (i) ratios of 0.70398–0.70567, εNd (t) values of +3.6–+3.9, zircon εHf (t) values of +2.8–+8.0 and δ18O values of 7.01–8.11‰, respectively. The rhyolitic samples are characterized by high Mg# (38–70) and low TiO2 (0.25–0.61 wt%). They are enriched in LILEs and LREEs, along with 87Sr/86Sr (i) = 0.70468–0.70645, εNd (t) = +2.0–+4.3 and zircon εHf (t) = +5.7–+13.6. Geochemical signatures suggest that the andesitic and dacitic samples might originate from a newly modified mantle source by slab-derived fluids and recycled sediments, and rhyolitic samples were derived from juvenile mafic crust. It is proposed that the Middle Triassic high-Mg volcanic rocks in the Lampang–Den Chai area formed in response to slab roll-back during transition of tectonic regime from subduction to continental collision between the Sibumasu and Indochina blocks. These rocks constitute part of the Chiang Khong–Lampang–Tak igneous zone, and can northerly link with the Lancangjiang igneous zone and southerly extend to the Chanthaburi, Malaysia and Singapore areas.  相似文献   

4.
Vein-type gold deposits in the Atud area are related to the metagabbro–diorite complex that occurred in Gabal Atud in the Central Eastern Desert of Egypt. This gold mineralization is located within quartz veins and intense hydrothermal alteration haloes along the NW–SE brittle–ductile shear zone, as well as along the contacts between them. By using the mass balance calculations, this work is to determine the mass/volume gains and losses of the chemical components during the hydrothermal alteration processes in the studied deposits. In addition, we report new data on the mineral chemistry of the alteration minerals to define the condition of the gold deposition and the mineralizing fluid based on the convenient geothermometers. Two generations of quartz veins include the mineralized grayish-to-white old vein (trending NW–SE), and the younger, non-mineralized milky white vein (trending NE–SW). The ore minerals associated with gold are essentially arsenopyrite and pyrite, with chalcopyrite, sphalerite, enargite, and goethite forming during three phases of mineralization; first, second (main ore), and third (supergene) phases. Three main hydrothermal alteration zones of mineral assemblages were identified (zones 1–3), placed around mineralized and non-mineralized quartz veins in the underground levels. The concentrations of Au, Ag, and Cu are different from zone to zone having 25–790 ppb, 0.7–69.6 ppm, and 6–93.8 ppm; 48.6–176.1 ppb, 0.9–12.3 ppm, and 39.6–118.2 ppm; and 53.9–155.4 ppb, 0.7–3.4 ppm, and 0.2–79 ppm for zones 1, 2, and 3, respectively.The mass balance calculations and isocon diagrams (calculated using the GEOISO-Windows program) revealed the gold to be highly associated with the main mineralized zone as well as sericitization/kaolinitization and muscovitization in zone 1 more than in zones 2 and 3. The sericite had a higher muscovite component in all analyzed flakes (average XMs = 0.89), with 0.10%–0.55% phengite content in wall rocks and 0.13%–0.29% phengite content in mineralized quartz veins. Wall rocks had higher calcite (CaCO3) contents and lower MgCO3 and FeCO3 contents than the quartz veins. The chlorite flakes in the altered wall rocks were composed of pycnochlorite and ripidolite, with estimated formation temperatures of 289–295 °C and 301–312 °C, respectively. Albite has higher albite content (95.08%–99.20%) which occurs with chlorite in zone 3.  相似文献   

5.
NE Iran, including the Kopeh Dagh and Allah Dagh-Binalud deformation domains, comprises the northeastern boundary of the Arabia–Eurasia collision zone. This study focuses on the evolution of the Plio-Quaternary tectonic regimes of northeast Iran. We present evidence for drastic temporal changes in the stress state by inversion of both geologically and seismically determined fault slip vectors. The inversions of fault kinematics data reveal distinct temporal changes in states of stress during the Plio-Quaternary (since ~ 5 Ma). The paleostress state is characterized by a regional transpressional tectonic regime with a mean N140 ± 10°E trending horizontal maximum stress axis (σ1). The youngest (modern) state of stress shows two distinct strike-slip and compressional tectonic regimes with a regional mean of N030 ± 15°E trending horizontal σ1. The change from the paleostress to modern stress states has occurred through an intermediate stress field characterized by a mean regional N trending σ1. The inversion analysis of earthquake focal mechanisms reveals a homogeneous, transpressional tectonic regime with a regional N023 ± 5°E trending σ1. The modern stress state, deduced from the youngest fault kinematics data, is in close agreement with the present-day stress state given by the inversions of earthquake focal mechanisms. According to our data and the deduced results, in northeast Iran, the Arabia–Eurasia convergence is taken up by strike-slip faulting along NE trending left-lateral and NNW trending right-lateral faults, as well as reverse to oblique-slip reverse faulting along NW trending faults. Such a structural assemblage is involved in a mechanically compatible and homogeneous modern stress field. This implies that no strain and/or stress partitioning or systematic block rotations have occurred in the Kopeh Dagh and Allah Dagh-Binalud deformation domains. The Plio-Quaternary stress changes documented in this paper call into question the extrapolation of the present-day seismic and GPS-derived deformation rates over geological time intervals encompassing tens of millions of years.  相似文献   

6.
Over 300 samples for paleomagnetic analysis and K–Ar dating were collected from 27 sites at NW–SE and NE–SW trending dike swarms (herein, NW dikes and NE dikes, respectively) in the Koshikijima Islands, northern Ryukyu Arc. The NW dikes are Middle Miocene in age and have directions (D = ? 37.7°, I = 51.8°, α95 = 9.6°, and κ = 40.8) that are deflected westward relative to the stable eastern Asian continent. Conversely, the NE dikes, of Late Miocene age, have directions (D = 16.1°, I = 57.7°, α95 = 7.1°, and κ = 41.9) that show no such deflection. These differences are interpreted as indicating that the Koshikijima Islands underwent approximately 40° of counter-clockwise rotation during the Middle to Late Miocene. A synthesis of the paleomagnetic and structural data suggests a three-stage history of extensional deformation: (1) displacement upon normal faults (F1 faults) without vertical-axis block rotation, (2) strike-slip reactivation of F1 faults and oblique-normal displacement on NE–SW-trending faults (F2 faults) with vertical-axis block rotation, and (3) oblique-normal displacement on F2 faults without vertical-axis block rotation. Regional differences in the timing and amount of counter-clockwise vertical-axis block rotations indicate that the northern Ryukyu Arc rotated as several distinct rigid blocks.  相似文献   

7.
In the tandem planet formation regime,planets form at two distinct sites where solid particles are densely accumulated due to the on/off state of the magnetorotational instability(MRI).We found that tandem planet formation can reproduce the solid component distribution of the Solar System and tends to produce a smaller number of large planets through continuous pebble flow into the planet formation sites.In the present paper,we investigate the dependence of tandem planet formation on the vertical magnetic field of the protoplanetary disk.We calculated two cases of B_Z 3.4 × 10~(-3) G and B_Z = 3.4 × 10~(-5) G at 100 AU as well as the canonical case of B_Z = 3.4 × 10~(-4) G.We found that tandem planet formation holds up well in the case of the strong magnetic field(B_Z 3.4 × 10~(-3) G).On the other hand,in the case of a weak magnetic field(B_Z= 3.4 × 10~(-5) G) at 100 AU,a new regime of planetary growth is realized:the planets grow independently at different places in the dispersed area of the MRl-suppressed region of r-8-30 AU at a lower accretion rate of M 10~(-7.4)M_⊙yr~(-1).We call this the "dispersed planet formation" regime.This may lead to a system with a larger number of smaller planets that gain high eccentricity through mutual collisions.  相似文献   

8.
Oxygen isotope systematics for co-existing pairs of gem-spinel and calcite in marble from Vietnam and other worldwide deposits have been determined in order to characterize the O-isotope fractionation between calcite and spinel. In Vietnam, the Δ18Occ–sp (= 3.7 ± 0.1‰ for six samples from the An Phu and Cong Troi deposits) is remarkably constant. The combination of these data with those obtained on calcite–spinel pairs of Paigutan (Nepal, n = 2), Ipanko (Tanzania, n = 1), and Mogok (Myanmar, = 2) are also consistent with an overall Δ18Occ–sp of 3.6 ± 0.3‰ for all the spinel samples (n = 11). The straight line correlation δ18Occ = 0.96 δ18Osp + 4.4 is excellent despite their worldwide geographic spread. The increment method of calculating oxygen isotope fractionation gave a geologically unreasonable temperature of formation for both minerals at 1374 °C when compared to temperatures obtained by mineral assemblage equilibrium of these marble type deposits, between 610 and 750 °C. The constant Δ18Occ–sp reflects a constant temperature for this amphibolite facies assemblage, whose current best estimate is calculated at 620 ± 40 °C, but unquantified uncertainties remain.  相似文献   

9.
Increased seismicity and occurrences of hot springs having surface temperature of 36–58 °C are observed in the central part of India (74–81° E, 20–25° N), where the NE trending Middle Proterozoic Aravalli Mobile Belt meets the ENE trending Satpura Mobile Belt. Earlier Deep Seismic Sounding (DSS) studies along Thuadara-Sendhwa-Sindad profile in the area has showed Mesozoic Sediments up to around 4 km depth covered by Deccan Trap and the Moho depth with a boundary velocity (Pn) of 8.2 km/s. In the present study, surface heat flow of 48 ± 4 mW m?2 has been estimated based on Pn velocity, which agrees with the value of heat flow of 52 ± 4 mW m?2 based on Curie point isotherms estimates. The calculated temperature-depth profile shows temperature of 80–120 °C at the basement, which is equivalent to oil window temperature in Mesozoic sediments and around 570–635 °C at Moho depth of 38–43 km and the thermal lithosphere is about 110 km thick, which is comparatively higher than those of adjoining regions. The present study reveals the brittle–ductile transition zone at 14–41 km depth (temperature around 250–600 °C) where earthquake nucleation takes place.  相似文献   

10.
The mid-late Eocene “Valley of Whales” in the Fayum province of Egypt contains hundreds of marine-mammals’ skeletons. Given its paleontological importance, we carried out a paleomagnetic study of the fossil-bearing formations. A sequence of basalts directly overlying the upper Eocene rocks in three distant clusters within a 25 km-long NW–SE graben in the southwestern part of the area was also studied. Thermal demagnetization of three-axis IRM was used to identify and eliminate sites dominated by hematite and/or goethite as potential remanence carriers. Progressive thermal demagnetization of the NRM isolated a characteristic NNE–SSW dual-polarity direction with a shallow inclination that passes both tilt and reversal tests. The mean tilt-corrected direction of the sedimentary formations is D/I = 16°/30° (k = 50, α95 = 3°) yielding a paleomagnetic pole at 70°N/159°E. The anisotropy of magnetic susceptibility (AMS) indicated that the observed inclinations were free from inclination shallowing, as did the nearly identical characteristic remanence of the overlying basalt flows (with a tilt-corrected reversed-polarity direction of D/I = 198°/−28° (k = 38, α95 = 7°) and a pole at 68°N/158°E). The new paleopoles place the Fayum province at a lower paleolatitude (15–17°N) than today (29.5°N), and point to the possible prevalence of tropical climate in northeast Africa during mid-late Eocene times. This tropical position is nearly identical to the paleolatitudes extrapolated from the mean of 36 coeval poles rotated from the other major cratons and from Africa itself. The declinations show a minor easterly deviation from those predicted by extrapolation from other continents. This is interpreted as due to a small clockwise rotation internal to NE Africa, possibly related to Red Sea/Gulf of Suez rifting after the late Eocene. The alternative explanation that the geomagnetic field had a non-zonal non-dipole field contribution is not favored.  相似文献   

11.
Granitoids play an important role in deciphering both crustal growth and tectonic evolution of Earth. In the eastern end of the Yinshan–Yanshan belt of North China Craton, the Yiwulüshan massif is a typical region that presents the tectonic evolution features of this belt. Our field work on the host rocks has demonstrated two phases of opposite tectonics: compressional and extensional, however, the deformation is almost invisible in the intrusive rocks. To improve the understanding of the tectonic evolution of the Yiwulüshan massif and the Late Mesozoic tectonics of East Asia, a multidisciplinary study has been carried out. In this study, anisotropy of magnetic susceptibility (AMS) and gravity modeling have been applied on these Jurassic plutons (Lüshan, Jishilazi and Guanyindong), which intrude into the Yiwulüshan massif. According to laboratory measurements and microscopic observations on thin sections, the AMS of the Yiwulüshan massif is characterized by secondary fabrics, indicating that the intensive post solidus deformation has reset the (primary) magmatic magnetic fabrics. A relatively gentle NW dipping magnetic foliation has been identified with two distinct groups of magnetic lineations of N34°E and N335°E orientations, namely LM1 and LM2, relatively. Gravity modeling reveals a southward thinning of the massif with a possible feeding zone rooted in the northern part of the massif. Integrating all results from structural observation, geochronological investigation, AMS measurement and gravity modeling, two tectonic phases have been identified in the Yiwulüshan massif, posterior to the Jurassic (180–160 Ma) magmatism in the Yinshan–Yanshan area. The early one concerns a Late Jurassic–Early Cretaceous (~ 141 Ma) compressional event with a top-to-the-south to southwest sense of shear. The second one shows an Early Cretaceous (~ 126 Ma) NW–SE ductile extensional shearing. At that time, sedimentary basins widened and Jurassic plutons started to be deformed under post solidus conditions. In fact, the NW–SE trend of the maximum stretching direction is a general feature of East Asian continent during Late Mesozoic.  相似文献   

12.
The Carris orebody consists of two partially exploited W–Mo–Sn quartz veins formed during successive shear stages and multipulse fluid fillings. They cut the Variscan post-D3 Gerês I-type granite. The most important ore minerals are wolframite, scheelite, molybdenite and cassiterite. There are two generations of wolframite. The earlier generation of wolframite is rare and has the highest WO4Mn content (91 mol%) and the most common wolframite contains 26–57 mol% WO4Mn. Re–Os dating of molybdenite from the ore quartz veins and surrounding granite yields ages of 279 ± 1.2 Ma and 280.3 ± 1.2 Ma, respectively which are in very good agreement with the previous ID-TIMS U–Pb zircon age for the Carris granite (280 ± 5 Ma).3He/4He ratio of pyrite ranging between 0.73 and 2.71 Ra (1 Ra = 1.39 × 10 6) and high 3He/36Ar (0.8–5 × 10 3) indicate a mixture of a crustal radiogenic helium fluid with a mantle derived-fluid.The fluid inclusion studies on quartz intergrown with wolframite and scheelite, beryl and fluorite reveal that two distinct fluid types were involved in the genesis of this deposit. The first was a low to medium salinity aqueous carbonic fluid (CO2 between 4 and 14 mol%) with less than 1.95 mol% N2, which was only found in quartz associated with wolframite. The other was a low salinity aqueous fluid found in all the four minerals. The homogenization temperatures indicate minimum entrapment temperatures of 226–310 °C (average 280 °C) for the H2O–CO2–N2–NaCl fluid and average temperatures of 266 °C for scheelite and 242 °C, 190 °C and 160 °C for the last generations of beryl, fluorite and quartz, respectively. It was estimated that wolframite was deposited ~ 7 km depth, assuming a lithostatic pressure, probably due to strong pressure fluctuation caused by seismic events triggered by brittle tectonics during the exhumation event. Precipitation of scheelite and sulphides took place later, at the same depth, but under a hydrostatic or suprahydrostatic pressure regime, and probably caused by mixing between the magmatic–hydrothermal fluid and meteoric waters that deeply penetrated the basement during post-Variscan decompression.  相似文献   

13.
《Precambrian Research》2006,144(3-4):239-260
We present here new palaeomagnetic, isotopic age and geochemical data from Archean and Early Palaeoproterozoic rocks in the eastern Fennoscandian Shield. We have studied NE–SW trending gabbronorite dyke sets and their host Archean basement rocks in the Vodlozero block near the 2449 Ma Burakovka layered intrusion in southern Russian Karelia. Both dyke sets are genetically related to the Burakovka intrusion. The other, ca. 25 km long Avdeev dyke, locating a few kilometers south from the Burakovka intrusion, yields a stable single component remanence direction that is in agreement with the direction previously obtained from the Burakovka intrusion. Another NE–SW trending dyke, 0.8 m wide Shalskiy diabase dyke, about 30 km south of the Burakovka intrusion yields a similar remanence direction as the Avdeev dyke. The overall mean remanence direction has a palaeopole at Plat = −12.3°N, Plong = 243.5°E (A95 = 15.4°, 4 sites, 28 samples). The thin Shalskiy diabase dyke transects a similarly NE–SW trending 500 m wide coarse grained gabbronorite dyke which has now been dated by Sm–Nd method as 2608 ± 56 Ma. Geochemically all the dykes are quite similar showing slight calc-alkaline affinity and low TiO2 and high SiO2 with moderate MgO and low Cr and Ni. Furthermore, the dykes are geochemically identical to the 2.45 Ga dyke swarm in the northern Karelian Province.The remanence direction of the thin Shalskiy diabase dyke differs significantly from the high temperature and high coercivity remanence component of the unbaked Archean gabbronorite dyke which yields a palaeopole at Plat = 22.7°N, Plong = 222.1°E (dp = 8.2°, dm = 16.2°, five samples). On the basis of different remanence directions of the diabase dyke and the unbaked Archean gabbronorite dyke, the baked contact test for the diabase dyke is positive. In addition to the high temperature and high coercivity component of the baked and unbaked Archean gabbronorite dyke, in low temperatures and coercivities we isolated a similar component as in the diabase dyke. A comparable remanence component was also obtained from the Archean basement at ca. 8 km from the dykes. We propose that in the studied area, the Archean basement and the Archaean dyke were partly remagnetized due to emplacement and subsequent uplift and cooling of the large Burakovka layered intrusion and related dykes at about 2.40 Ga ago.This interpretation lends support from a new 40Ar/39Ar dating of hornblende from another area, Lake Paajarvi area, in northern Karelia. There, a negative baked contact test was previously obtained for the remanence of the dated ca. 2.45 Ga dyke rocks related to the ca. 2.45 Ga Oulanka layered intrusion. The 40Ar/39Ar dating of the unbaked Archean basement which yields the same remanence component as the dykes, shows a plateau age of ca. 2.6 Ga, but in addition, it also shows resetting of the basement at ca. 2.4 Ga ago. The dating thus supports reactivation and partial remagnetization of the Archean basement at ca. 2.4 Ga ago.Our new palaeomagnetic results from the Burakovka dykes and the new 40Ar/39Ar dating from the Lake Paajarvi area give support to our previous interpretation that at Lake Paajarvi area the remanence component suggested to be 2.4 Ga, despite to negative baked contact test, is indeed of this age. Therefore, it is implied that the results can be used for continental reconstructions.  相似文献   

14.
Copper–gold–bismuth–tellurium mineralization in the Stanos area, Chalkidiki Peninsula, Greece, occurs in the Proterozoic- to Silurian-aged Serbomacedonian Massif, which tectonically borders the Mesozoic Circum-Rhodope metamorphic belt to the west and crystalline rocks of the Rhodope Massif to the east. This area contains the Paliomylos, Chalkoma, and Karambogia prospects, which are spatially related to regional NW–SE trending shear zones and hosted by marble, amphibolite gneiss, metagabbro, and various muscovite–biotite–chlorite–actinolite–feldspar–quartz schists of the Silurian Vertiskos Unit. Metallic minerals occur as disseminated to massive aggregates along foliation planes and in boudinaged quartz veins. Iron-bearing sulfides (pyrite, arsenopyrite, and pyrrhotite) formed prior to a copper-bearing stage that contains chalcopyrite along with galena, sphalerite, molybdenite, and various minerals in the system Bi–Cu–Pb–Au–Ag–Te. Fluid inclusion homogenization temperatures of primary aqueous liquid–vapor inclusions in stage I quartz veins range from 170.1 °C to 349.6 °C (peak at ~ 230 °C), with salinities of 4.5 to 13.1 wt.% NaCl equiv. Calculated isochores intersect P–T conditions associated with the upper greenschist facies caused by local overpressures during late-stage tectonic movement along the shear zone in the Eocene, which produced stretching and unroofing of rocks in the region. Values of δ34S for sulfides in the Stanos shear zone range from 2.42 to 10.19‰ and suggest a magmatic sulfur source with a partially reduced seawater contribution. For fluids in equilibrium with quartz, δ18O at 480 °C varies from 5.76 to 9.21‰ but does not allow for a distinction between a metamorphic and a magmatic fluid.A 187Re–187Os isochron of 19.2 ± 2.1 Ma for pyrite in the Paliomylos prospect overlaps ages obtained previously from intrusive rocks spatially-related to the Skouries porphyry Cu–Au, the Asimotrypes Au, and the intrusion-related Palea Kavala Bi–Te–Pb–Sb ± Au deposits in northern Greece, as well as alteration minerals in the carbonate-replacement Madem Lakkos Pb–Zn deposit. Ore-forming components of deposits in the Stanos area were likely derived from magmatic rocks at shallow depth that intruded an extensional shear environment at ~ 19 Ma.  相似文献   

15.
In eastern Thailand the Klaeng fault zone includes a high-grade metamorphic rock assemblage, named Nong Yai Gneiss, which extends about 30 km in a NW–SE direction along the fault zone. The rocks of this brittle-fault strand consist of amphibolite to granulite grade gneissic rocks. Structural analysis indicates that the rocks in this area experienced three distinct episodes of deformation (D1–D3). The first (D1) formed large-scale NW–SE-trending isoclinal folds (F1) that were reworked by small-scale tight to open folds (F2) during the second deformation (D2). D1 and D2 resulted from NE–SW shortening during the Triassic Indosinian orogeny before being cross-cut by leucogranites. D1 and D2 fabrics were then reworked by D3 sinistral shearing, including shear planes (S3) and mineral stretching lineations (L3). LA–MC–ICP–MS U–Pb zircon dating suggested that the leucogranite intrusion and the magmatic crystallization took place at 78.6 ± 0.7 Ma followed by a second crystallization at 67 ± 1 to 72.1 ± 0.6 Ma. Both crystallizations occurred in the Late Cretaceous and, it is suggested, were tectonically influenced by SE Asian region effects of the West Burma and Shan-Thai/Sibumasu collision or development of an Andean-type margin. The sinistral ductile movement of D3 was coeval with the peak metamorphism that occurred in the Eocene during the early phases of the India–Asia collision.  相似文献   

16.
Earthquakes in Kenya are common along the Kenya Rift Valley because of the slow divergent movement of the rift and hydrothermal processes in the geothermal fields. This implies slow but continuous radiation of seismic energy, which relieves stress in the subsurface rocks. On the contrary, the NW-SE trending rift/fault zones such as the Aswa-Nyangia fault zone and the Muglad-Anza-Lamu rift zone are the likely sites of major earthquakes in Kenya and the East African region. These rift/fault zones have been the sites of a number of strong earthquakes in the past such as the M w = 7.2 southern Sudan earthquake of 20 May 1990 and aftershocks of M w = 6.5 and 7.1 on 24 May 1990, the 1937 M s = 6.1 earthquake north of Lake Turkana close to the Kenya-Ethiopian border, and the 1913 M s = 6.0 Turkana earthquake, among others. Source parameters of the 20 May 1990 southern Sudan earthquake show that this earthquake consists of only one event on a fault having strike, dip, and rake of 315°, 84°, and ?3°. The fault plane is characterized by a left-lateral strike slip fault mechanism. The focal depth for this earthquake is 12.1 km, seismic moment M o = 7.65 × 1019 Nm, and moment magnitude, M w = 7.19 (?7.2). The fault rupture started 15 s earlier and lasted for 17 s along a fault plane having dimensions of ?60 km × 40 km. The average fault dislocation is 1.1 m, and the stress drop, , is 1.63 MPa. The distribution of historical earthquakes (M w ≥ 5) from southern Sudan through central Kenya generally shows a NW-SE alignment of epicenters. On a local scale in Kenya, the NW–SE alignment of epicenters is characterized by earthquakes of local magnitude M l ≤ 4.0, except the 1928 Subukia earthquake (M s = 6.9) in central Kenya. This NW–SE alignment of epicenters is consistent with the trend of the Aswa-Nyangia Fault Zone, from southern Sudan through central Kenya and further southwards into the Indian Ocean. We therefore conclude that the NW–SE trending rift/fault zones are sites of strong earthquakes likely to pose the greatest earthquake hazard in Kenya and the East African region in general.  相似文献   

17.
The Niassa Gold Belt, in northernmost Mozambique, is hosted in the Txitonga Group, a Neoproterozoic rift sequence overlying Paleoproterozoic crust of the Congo–Tanzania Craton and deformed during the Pan-African Orogeny. The Txitonga Group is made up of greenschist-facies greywacke and schist and is characterized by bimodal, mainly mafic, magmatism. A zircon U–Pb age for a felsic volcanite dates deposition of the sequence at 714 ± 17 Ma. Gold is mined artisanally from alluvial deposits and primary chalcopyrite-pyrite-bearing quartz veins containing up to 19 ppm Au have been analyzed. In the Cagurué and M’Papa gold fields, dominantly N–S trending quartz veins, hosted in metagabbro and schist, are regarded as tension gashes related to regional strike-slip NE–SW-trending Pan-African shear zones. These gold deposits have been classified as mesozonal and metamorphic in origin. Re–Os isotopic data on sulfides suggest two periods of gold deposition for the Cagurué Gold Field. A coarse-crystalline pyrite–chalcopyrite assemblage yields an imprecise Pan-African age of 483 ± 72 Ma, dating deposition of the quartz veins. Remobilization of early-formed sulfides, particularly chalcopyrite, took place at 112 ± 14 Ma, during Lower Cretaceous Gondwana dispersal. The ~483 Ma assemblage yields a chondritic initial 187Os/188Os ratio of 0.123 ± 0.058. This implies a juvenile source for the ore fluids, possibly involving the hosting Neoproterozoic metagabbro. The Niassa Gold Belt is situated at the eastern end of a SW–NE trending continental-scale lineament defined by the Mwembeshi Shear Zone and the southern end of a NW–SE trending lineament defined by the Rukwa Shear Zone. We offer a review of gold deposits in Zambia and Tanzania associated with these polyphase lineaments and speculate on their interrelation.  相似文献   

18.
Dissolution rates of pressure solution (PS) for quartz aggregates in 0.002 M NaHCO3 solution were experimentally determined under low effective stress conditions of 0.42–0.61 MPa, and low temperatures of 25–45 °C. At temperatures of 25 °C, 35 °C, and 45 °C, the resultant silicon dissolution rates are 4.2 ± 1.2 × 10−15, 6.0 ± 1.0 × 10−15 and 7.8 ± 1.9 × 10−15 mol/cm2/s, respectively. Ratios between these dissolution rates and those of quartz sand at zero effective stress are 4.1 ± 1.2 at 25 °C, 3.0 ± 0.5 at 35 °C, and 2.4 ± 0.6 at 45 °C. As the uniaxial pressure was increased, the dissolution rate of PS also increased, though gradually decreased when the effective stress was kept constant. After the removal of stress, the dissolution rate was observed to increase once again. The activation energy of our PS experiments was determined to be approximately 24 kJ/mol, lower than the amount required for quartz sand dissolution to commence at zero effective stress. Our results clearly show that, even at such low temperature and effective stress, Si released into solution as a result of PS can be detected. This implies that experimental compaction of quartz aggregates can be measured even under such condition.  相似文献   

19.
There is ongoing debate as to the subduction direction of the Bangong–Nujiang Ocean during the Mesozoic (northward, southward or bidirectional subduction). Arc-related intermediate to felsic intrusions could mark the location of the subduction zone and, more importantly, elucidate the dominant geodynamic processes. We report whole rock geochemical and zircon U–Pb and Hf isotopic data for granitoids from the west central Lhasa subterrane (E80° to E86°). All rocks show metaluminous to peraluminous, calc-alkaline signatures, with strong depletion of Nb, Ta and Ti, enrichment of large ion lithophile elements (e.g., Cs, Rb, K), a negative correlation between SiO2 and P2O5, and a positive correlation between Rb and Th. All these features are indicative of I-type arc magmatism. New zircon U–Pb results, together with data from the literature, indicate continuous magmatism from the Late Jurassic to the Early Cretaceous (160 to 130 Ma). Zircon U–Pb ages for samples from the northern part of the west central Lhasa subterrane (E80° to E82°30′) yielded formation ages of 165 to 150 Ma, whereas ages of 142 to 130 Ma were obtained on samples from the south. This suggests flat or low-angle subduction of the Bangong–Nujiang Ocean, consistent with a slight southward decrease in zircon εHf(t) values for Late Jurassic rocks. Considering the crustal shortening, the distance from the Bangong–Nujiang suture zone, and a typical subduction zone melting depth of ~ 100 km, the subduction angle was less than 14° for Late Jurassic magmatism in the central Lhasa interior, consistent with flat or low-angle subduction. Compared with Late Jurassic rocks (main εHf(t) values of − 16 to − 7), Early Cretaceous rocks (145 to 130 Ma) show markedly higher εHf(t) values (mainly − 8 to 0), possibly indicating slab roll-back, likely caused by slab foundering or break-off. Combined with previously published works on arc magmatism in the central Lhasa and west part of the southern Qiangtang subterranes, our results support the bidirectional subduction of the Bangong–Nujiang Ocean along the Bangong–Nujiang Suture Zone, and indicates flat or low-angle southward subduction (165 to 145 Ma) followed by slab roll-back (145 to 130 Ma).  相似文献   

20.
Uranium(VI) sorption onto kaolinite was investigated as a function of pH (3–12), sorbate/sorbent ratio (1 × 10?6–1 × 10?4 M U(VI) with 2 g/L kaolinite), ionic strength (0.001–0.1 M NaNO3), and pCO2 (0–5%) in the presence or absence of 1 × 10?2–1 × 10?4 M citric acid, 1 × 10?2–1 × 10?4 M EDTA, and 10 or 20 mg/L fulvic acid. Control experiments without-solids, containing 1 × 10?6–1 × 10?4 M U(VI) in 0.01 M NaNO3 were used to evaluate sorption to the container wall and precipitation of U phases as a function of pH. Control experiments demonstrate significant loss (up to 100%) of U from solution. Although some loss, particularly in 1 × 10?5 and 1 × 10?4 M U experiments, is expected due to precipitation of schoepite, adsorption on the container walls is significant, particularly in 1 × 10?6 M U experiments. In the absence of ligands, U(VI) sorption on kaolinite increases from pH ~3 to 7 and decreases from pH ~7.5 to 12. Increasing ionic strength from 0.001 to 0.1 M produces only a slight decrease in U(VI) sorption at pH < 7, whereas 10% pCO2 greatly diminishes U(VI) sorption between pH ~5.5 and 11. Addition of fulvic acid produces a small increase in U(VI) sorption at pH < 5; in contrast, between pH 5 and 10 fulvic acid, citric acid, and EDTA all decrease U(VI) sorption. This suggests that fulvic acid enhances U(VI) sorption slightly via formation of ternary ligand bridges at low pH, whereas EDTA and citric acid do not form ternary surface complexes with the U(VI), and that all three ligands, as well as carbonate, form aqueous uranyl complexes that keep U(VI) in solution at higher pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号