首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generation of waves in Boussinesq models using a source function method   总被引:4,自引:0,他引:4  
A method for generating waves in Boussinesq-type wave models is described. The method employs a source term added to the governing equations, either in the form of a mass source in the continuity equation or an applied pressure forcing in the momentum equations. Assuming linearity, we derive a transfer function which relates source amplitude to surface wave characteristics. We then test the model for generation of desired incident waves, including regular and random waves, for both one and two dimensions. We also compare some model results with analytical solution and available experiment data.  相似文献   

2.
We develop techniques of numerical wave generation in the time-dependent extended mild-slope equations of Suh et al. [1997. Time-dependent equations for wave propagation on rapidly varying topography. Coastal Engineering 32, 91–117] and Lee et al. [2003. Extended mild-slope equation for random waves. Coastal Engineering 48, 277–287] for random waves using a source function method. Numerical results for both regular and irregular waves in one and two horizontal dimensions show that the wave heights and the frequency spectra are properly reproduced. The waves that pass through the wave generation region do not cause any numerical disturbances, showing usefulness of the source function method in avoiding re-reflection problems at the offshore boundary.  相似文献   

3.
Internal inlet for wave generation and absorption treatment   总被引:1,自引:0,他引:1  
A new method of implementing, in two-dimensional (2-D) Navier–Stokes equations, a numerical internal wave generation in the finite volume formulation is developed. To our knowledge, the originality of this model is on the specification of an internal inlet velocity defined as a source line for the generation of linear and non-linear waves. The use of a single cell to represent the source line and its transformation to an internal boundary condition proved to be an interesting alternative to the common procedure of adding a mass source term to the continuity equation within a multi-cell rectangular region. Given the reduction of the source domain to a one-dimensional region, this simple new type of source introduced less perturbation than the 2-D source type. This model was successfully implemented in the PHOENICS code (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series). In addition, the volume of fluid (VOF) fraction was used to describe the free surface displacements. A friction force term was added to the momentum transport equation in the vertical direction, in order to enhance wave damping, within relatively limited number of cells representing the sponge layers at the open boundaries. For monochromatic wave, propagating on constant water depth, numerical and analytical results showed good agreements for free surface profiles and vertical distribution of velocity components. For solitary wave simulation, the wave shape and velocity were preserved; while, small discrepancy in the tailing edge of the free surface profiles was observed. The suitability of this new numerical wave generation model for a two source lines extension was investigated and proven to be innovative. The comparisons between numerical, analytical and experimental results showed that the height of the merging waves was correctly reproduced and that the reflected waves do not interact with the source lines.  相似文献   

4.
姜海  郭海燕  张林  王伟 《海洋与湖沼》2016,47(6):1101-1106
为研究内孤立波质量源数值造波方法,本文采用两个点源形式的质量源,分别放置于两层流体的上下层中作为内孤立波激发源。推导源项表达式,从不可压缩流体的Navier-Stokes方程出发,结合内孤立波Kd V、e Kd V理论,基于商业软件FLUENT发展了一种内孤立波质量源数值造波方法。通过数值模拟,分析了质量源造波过程中内孤立波的生成过程,并将数值模拟结果同理论及实验作对比。结果表明:基于此方法生成的内孤立波波形、波高及波致水平速度与理论及实验吻合度较好,该方法是可行的,并且耗时短、效率高。  相似文献   

5.
For Navier-Stokes equation model using the VOF scheme, Lin and Liu (Lin, P. and Liu, P.L.-F. (1999). Internal wave-maker for Navier-Stokes equations models. J. Waterw. Port Coast. Ocean Eng., 125 (4), 207–215.) developed an internal wave-maker method for which a mass source function of the continuity equation was used to generate target wave trains. Using this internal wave-maker method, various numerical experiments have been conducted without any problems due to waves reflected by a wave-maker. In this study, an internal wave-maker method using a momentum source function was proposed. Various numerical simulations in two and three dimensions were performed using the momentum source wave-maker applied to the RANS equation model in a CFD code, FLUENT. To verify their applicability in 2 dimensions, the computational results obtained using the momentum source wave-maker in a channel of constant depth were compared with the results obtained by using the mass source wave-maker and with the analytical solutions. And the results of the present numerical simulations of hydraulic experiments, which represent nonlinear waves on a submerged shoal and breaking waves on a plane beach, were compared with measurements. The comparisons showed good agreements between them. To see their applicability into 3-dimensional cases, the present results in a basin of constant depth were compared with the analytical solutions, and they agreed well with each other. In addition, vertical variation of longshore current was presented by using the 3-dimensional simulation results.  相似文献   

6.
数值波浪水槽是研究波浪及波浪与结构相互作用的常用工具,可在真实尺度下产生波浪,并提供流场的详细数据。然而,大部分数值波浪水槽都存在数值耗散和数值色散问题,数值耗散使波能缓慢消散,数值弥散在波传播过程中使波频移。本文在有限差分法(FDM)求解欧拉方程的基础上,提出了一种抑制数值耗散效应的简单方法,考虑阻尼项的影响,对波的传播解进行了解析求解。该方法的主要思想是在动量方程中附加一个源项,其强度由数值阻尼效应的强度决定。本文通过对规则线性波、Stokes波和不规则波的数值模拟,验证了该方法的有效性。结果表明,本文方法可有效减小数值波浪水槽中存在的数值耗散现象。  相似文献   

7.
Solitary waves have been commonly used as an initial condition in the experimental and numerical modelling of tsunamis for decades. However, the main component of a tsunami waves acts at completely different spatial and temporal scales than solitary waves. Thus, use of solitary waves as approximation of a tsunami wave may not yield realistic model results, especially in the coastal region where the shoaling effect restrains the development of the tsunami wave. Alternatively, N-shaped waves may be used to give a more realistic approximation of the tsunami wave profile. Based on the superposition of the sech2(*) waves, the observed tsunami wave profile could be approximated with the N-shaped wave method, and this paper presents numerical simulation results based on the tsunami-like wave generated based on the observed tsunami wave profile measured in the Tohoku tsunami. This tsunami-like wave was numerically generated with an internal wave source method based on the two-phase incompressible flow model with a Volume of Fluid (VOF) method to capture the free surface, and a finite volume scheme was used to solve all the governing equations. The model is first validated for the case of a solitary wave propagating within a straight channel, by comparing its analytical solutions to model results. Further, model comparisons between the solitary and tsunami-like wave are then made for (a) the simulation of wave run-up on shore and (b) wave transport over breakwater. Comparisons show that use of these largely different waveform shapes as inputs produces significant differences in overall wave evolution, hydrodynamic load characteristics as well as velocity and vortex fields. Further, it was found that the solitary wave uses underestimated the total energy and hence underestimated the run-up distance.  相似文献   

8.
This paper describes the formulation and validation of a nearshore wave model for tropical coastal environment. The governing Boussinesq-type equations include the conservative form of the nonlinear shallow-water equations for shock capturing. A Riemann solver supplies the inter-cell flux and bathymetry source term, while a Godunov-type scheme integrates the evolution variables in time. The model handles wave breaking through momentum conservation with energy dissipation based on an eddy viscosity concept. The computed results show very good agreement with laboratory data for wave propagation over a submerged bar, wave breaking and runup on plane beaches as well as wave transformation over fringing reefs. The model accurately describes transition between supercritical and subcritical flows as well as development of dispersive waves in the processes.  相似文献   

9.
近岸海浪几种数值计算模型的比较   总被引:9,自引:2,他引:9  
除了统计模型,目前可用于近岸海浪计算的主要模型基本上可以分为Boussinesq方程、缓坡方程、能量平衡方程三大类。本文在对这三类模型作简要介绍的基础上,对它们用于近岸波浪计算各自存在的优缺点作了较为详细的比较,然后综合这三类模型的优点,根据目前我们所掌握的一些先进的海浪计算方法,提出一种比较实用的计算模型。  相似文献   

10.
Internal wave generation in an improved two-dimensional Boussinesq model   总被引:1,自引:0,他引:1  
A set of Boussinesq-type equations with improved linear frequency dispersion in deeper water is solved numerically using a fourth order accurate predictor-corrector method. The model can be used to simulate the evolution of relatively long, weakly nonlinear waves in water of constant or variable depth provided the bed slope is of the same order of magnitude as the frequency dispersion parameter. By performing a linearized stability analysis, the phase and amplitude portraits of the numerical schemes are quantified, providing important information on practical grid resolutions in time and space. In contrast to previous models of the same kind, the incident wave field is generated inside the fluid domain by considering the scattered wave field in one part of the fluid domain and the total wave field in the other. Consequently, waves leaving the fluid domain are absorbed almost perfectly in the boundary regions by employment of damping terms in the mass and momentum equations. Additionally, the form of the incident regular wave field is computed by a Fourier approximation method which satisfies the governing equations accurately in water of constant depth. Since the Fourier approximation method requires an Eulerian mean current below wave trough level or a net mass transport velocity to be specified, the method can be used to study the interaction of waves and currents in closed as well as open basins. Several computational examples are given. These illustrate the potential of the wave generation method and the capability of the developed model.  相似文献   

11.
植被斜坡岸滩海啸波消减数值模拟研究   总被引:1,自引:0,他引:1  
An explicit one-dimensional model based on the shallow water equations(SWEs) was established in this work to simulate tsunami wave propagation on a vegetated beach. This model adopted the finite-volume method(FVM)for maintaining the mass balance of these equations. The resistance force caused by vegetation was taken into account as a source term in the momentum equation. The Harten–Lax–van Leer(HLL) approximate Riemann solver was applied to evaluate the interface fluxes for tracing the wet/dry transition boundary. This proposed model was used to simulate solitary wave run-up and long-periodic wave propagation on a sloping beach. The calibration process suitably compared the calculated results with the measured data. The tsunami waves were also simulated to discuss the water depth, tsunami force, as well as the current speed in absence of and in presence of forest domain. The results indicated that forest growth at the beach reduced wave energy loss caused by tsunamis. A series of sensitivity analyses were conducted with respect to variable parameters(such as vegetation densities, wave heights, wave periods, bed resistance, and beach slopes) to identify important influences on mitigating tsunami damage on coastal forest beach.  相似文献   

12.
In this work, a combined immersed boundary (IB) and volume of fluid (VOF) methodology is developed to simulate the interactions of free-surface waves and submerged solid bodies. The IB method is used to account for the no-slip boundary condition at solid interfaces and the VOF method, utilizing a piecewise linear interface calculation, is employed to track free surfaces. The combined model is applied in several case studies, including the propagation of small-amplitude progressive waves over a submerged trapezoidal dike, a solitary wave traveling over a submerged rectangular object, and wave generation induced by a moving bed. Numerical results depicting the free-surface evolutions and velocity fields are in good agreement with either experimental data or numerical results obtained by other researchers. In addition, the simplification of the initial free-surface deformation used in most tsunami earthquake source study is justified by the present model application. The methodology presented in the paper serves as a good tool for solving many practical problems involving free surfaces and complex boundaries.  相似文献   

13.
《Coastal Engineering》1999,38(1):1-24
This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary conditions. It is demonstrated that previous fully dispersive formulations from the literature have used an inconsistent linear relation between the velocity potential and the surface elevation. As a consequence these formulations are accurate only in shallow water, while nonlinear transfer of energy is significantly underestimated for larger wave numbers. In the present work we correct this inconsistency. In addition to the improved deterministic formulation, we present improved stochastic evolution equations in terms of the energy spectrum and the bispectrum for multidirectional waves. The deterministic and stochastic formulations are solved numerically for the case of cross shore motion of unidirectional waves and the results are verified against laboratory data for wave propagation over submerged bars and over a plane slope. Outside the surf zone the two model predictions are generally in good agreement with the measurements, and it is found that the accuracy of e.g., the energy spectrum and of the third-order statistics is considerably improved by the new formulations, particularly outside the shallow-water range.  相似文献   

14.
非线性弱色散波内部流场的重构   总被引:1,自引:0,他引:1  
基于势流理论和级数直接求逆方法,本文建立了基于Bousinesq方程或Green-Naghdi方程给出的水深平均流速或某特征流速及波面信息重构非线性弱色散波内部流场的算法。以Bousinesq方程的孤立波解为例,用本反演方法计算了孤立波的表面水平流速及底部水平流速。结果表明本算法是有效的。本反演算法可用于获取非线性弱色散波的内部流场的详细信息。  相似文献   

15.
In this paper, we study the harmonic generation and energy dissipation as water waves propagating through coastal vegetation. Applying the homogenization theory, linear wave models have been developed for a heterogeneous coastal forest in previous works (e.g. [17], [10], [11]). In this study, the weakly nonlinear effects are investigated. The coastal forest is modeled by an array of rigid and vertically surface-piercing cylinders. Assuming monochromatic waves with weak nonlinearity incident upon the forest, higher harmonic waves are expected to be generated and radiated into open water. Using the multi-scale perturbation theory, micro-scale flows in the vicinity of cylinders and macro-scale wave dynamics are separated. Expressing the unknown variables (e.g. velocity, free surface elevation) as a superposition of different harmonic components, the governing equations for each mode are derived while different harmonics are interacting with each other because of nonlinearity in the cell problem. Different from the linear models, the leading-order cell problem for micro-scale flow motion, driven by the macro-scale pressure gradient, is now a nonlinear boundary-value-problem, while the wavelength-scale problem for wave dynamics remains linear. A modified pressure correction method is employed to solve the nonlinear cell problem. An iterative scheme is introduced to connect the micro-scale and macro-scale problems. To demonstrate the theoretical results, we consider incident waves scattered by a homogeneous forest belt in a constant shallow depth. Higher harmonic waves are generated within the cylinder array and radiated out to the open water region. The comparisons of numerical results obtained by linear and nonlinear models are presented and the behavior of different harmonic components is discussed. The effects of different physical parameters on wave solutions are discussed as well.  相似文献   

16.
This paper presents a technique to generate waves at oblique angles in finite difference numerical models in a rectangular grid system by using internal generation technique [Lee, C., Suh, K.D., 1998. Internal generation of waves for time-dependent mild-slope equations. Coast. Eng. 34, 35–57.] along an arc-shaped line source. Tests were made for four different types of wave generation layouts. Quantitative experiments were conducted under the following conditions: the propagation of waves on a flat bottom, the refraction and shoaling of waves on a planar slope, and the diffraction of waves to a semi-infinite breakwater. Numerical experiments were conducted using the extended mild-slope equations of Suh et al. [Suh, K.D., Lee, C., Park, W.S., 1997. Time-dependent equations for wave propagation on rapidly varying topography. Coast. Eng. 32, 91–117.]. The fourth layout type consisting of two parallel lines connected to a semicircle showed the best solutions, especially for a small grid size. This technique is useful for the numerical simulation of irregular waves with broad-banded directional spectrum using conventional spectral wave models for the reasonable estimation of bottom friction and wave-breaking.  相似文献   

17.
A new form of generalized Boussinesq equations for varying water depth   总被引:1,自引:0,他引:1  
M. Zhao  B. Teng  L. Cheng 《Ocean Engineering》2004,31(16):597-2072
A new set of equations of motion for wave propagation in water with varying depth is derived in this study. The equations expressed by the velocity potentials and the wave surface elevations include first-order non-linearity of waves and have the same dispersion characteristic to the extended Boussinesq equations. Compared to the extended Boussinesq equations, the equations have only two unknown scalars and do not contain spatial derivatives with an order higher than 2. The wave equations are solved by a finite element method. Fourth-order predictor–corrector method is applied in the time integration and a damping layer is applied at the open boundary for absorbing the outgoing waves. The model is applied to several examples of wave propagation in variable water depth. The computational results are compared with experimental data and other numerical results available in literature. The comparison demonstrates that the new form of the equations is capable of calculating wave transformation from relative deep water to shallow water.  相似文献   

18.
This study investigates how the refraction of water waves is affected by the higher-order bottom effect terms proportional to the square of bottom slope and to the bottom curvature in the extended mild-slope equations. Numerical analyses are performed on two cases of waves propagating over a circular shoal and over a circular hollow. Numerical results are analyzed using the eikonal equation derived from the wave equations and the wave ray tracing technique. It is found that the higher-order bottom effect terms change the wavelength and, in turn, change the refraction of waves over a variable depth. In the case of waves over a circular shoal, the higher-order bottom effects increase the wavelength along the rim of shoal more than near the center of shoal, and intensify the degree of wave refraction. However, the discontinuity of higher-order bottom effects along the rim of shoal disperses the foci of wave rays. As a result, the amplification of wave energy behind the shoal is reduced. Conversely, in the case of waves over a circular hollow, the higher-order bottom effects decrease the wavelength near the center of the hollow in comparison with the case of neglecting higher-order bottom effects. Consequently, the degree of wave refraction is decreased, and the spreading of wave energy behind the hollow is reduced.  相似文献   

19.
This is an experimental study of the acoustic method of surface-wave excitation using an underwater source of high-frequency (950 kHz) sound. The surface waves are excited at the sound-beam modulation frequency (3–55 Hz). For a normal fall onto the free surface, the modulated sound beam efficiently generates waves in the gravity-capillary range. This provides flexible electronic control of the main wave parameters (frequency and amplitude) in the packet and continuous modes. The amplitude-frequency characteristics of the process of surface-wave generation were obtained by numerical calculations (based on equations for the rate of acoustic flux and propagation of gravity-capillary surface waves) and by experiments (based on surface wave measurements by optical and contact methods). Both values are very consistent: on the background of a similar monotonic attenuation with frequency, they have a local dip near the minimum of the phase velocity and oscillation in the frequency range above 20 Hz. The experiments on the excitation of wave packets by single acoustic messages with varying lengths and powers, as well as by falling water drops, indicated that, in all cases, the phase characteristics are satisfactorily consistent with one another and the time needed for the signal to arrive at the measurement point is determined by the group velocity.  相似文献   

20.
《Coastal Engineering》2001,42(2):155-162
It is studied whether the mass transport or energy transport is the proper viewpoint for internally generating waves in the extended Boussinesq equations of Nwogu [J. Waterw., Port, Coastal Ocean Eng. 119 (1993) 618–638]. Numerical solutions of the Boussinesq equations with the internal generation of sinusoidal waves show that the energy transport approach yields the required wave amplitude properly while the mass transport approach yields wave amplitude different from the required one by the ratio of phase velocity to energy velocity. The waves which pass through the wave generation point do not cause any numerical distortion while the incident waves are generated. The technique of internal generation of waves shows its capability of generating nonlinear cnoidal waves as well as linear sinusoidal waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号