首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li/Ca ratios were measured in planktonic and benthic foraminifera from a variety of hydrographic settings to investigate the factors influencing lithium incorporation into foraminiferal tests including temperature, dissolution, pressure, and interspecies differences. Down-core measurements of planktonic (Orbulina universa, Globigerinoides ruber, and Globigerinoides sacculifer) and benthic foraminifera (calcitic Cibicides wuellerstorfi and aragonitic Hoeglandina elegans) show a systematic variation in Li/Ca with δ18O through the last glacial-interglacial transition. All species examined exhibit an increase in Li/Ca between 14 to 50% from the Holocene to the last glacial maximum. Li/Ca generally increases with decreasing temperature as seen in a latitudinal transect of planktonic O. universa and down-slope benthic species along the Bahama Bank margins. Postdepositional dissolution possibly causes a decrease in planktonic foraminiferal Li/Ca along the Sierra Leone Rise, and increased water depth causes a decrease in benthic foraminiferal Li/Ca in the deep Caribbean. However, none of these effects are sufficient to account for the observed glacial-interglacial changes. Physiological factors such as calcification rate may affect the Li/Ca content of foraminiferal calcite. The calcification rate in turn may be a function of carbonate ion concentration of ambient ocean water. This work shows that incorporation of lithium by foraminifera appears to be influenced by factors other than seawater composition and does not appear to be dominated by changes in temperature, dissolution, or pressure. We hypothesize that the consistent increase in foraminiferal Li/Ca during the last glacial maximum may be linked to changes in seawater carbonate ion concentration. Important parameters to be tested include calcification rate and foraminiferal test size and weight. If foraminiferal Li/Ca is dominantly controlled by calcification rate as a function of seawater carbonate ion concentration, then Li/Ca may act as a proxy of past atmospheric CO2.  相似文献   

2.
We investigate the sensitivity of U/Ca, Mg/Ca, and Sr/Ca to changes in seawater [CO32−] and temperature in calcite produced by the two planktonic foraminifera species, Orbulina universa and Globigerina bulloides, in laboratory culture experiments. Our results demonstrate that at constant temperature, U/Ca in O. universa decreases by 25 ± 7% per 100 μmol [CO32−] kg−1, as seawater [CO32−] increases from 110 to 470 μmol kg−1. Results from G. bulloides suggest a similar relationship, but U/Ca is consistently offset by ∼+40% at the same environmental [CO32−]. In O. universa, U/Ca is insensitive to temperature between 15°C and 25°C. Applying the O. universa relationship to three U/Ca records from a related species, Globigerinoides sacculifer, we estimate that Caribbean and tropical Atlantic [CO32−] was 110 ± 70 μmol kg−1 and 80 ± 40 μmol kg−1 higher, respectively, during the last glacial period relative to the Holocene. This result is consistent with estimates of the glacial-interglacial change in surface water [CO32−] based on both modeling and on boron isotope pH estimates. In settings where the addition of U by diagenetic processes is not a factor, down-core records of foraminiferal U/Ca have potential to provide information about changes in the ocean’s carbonate concentration.Below ambient pH (pH < 8.2), Mg/Ca decreased by 7 ± 5% (O. universa) to 16 ± 6% (G. bulloides) per 0.1 unit increase in pH. Above ambient pH, the change in Mg/Ca was not significant for either species. This result suggests that Mg/Ca-based paleotemperature estimates for the Quaternary, during which surface-ocean pH has been at or above modern levels, have not been biased by variations in surface-water pH. Sr/Ca increased linearly by 1.6 ± 0.4% per 0.1 unit increase in pH. Shell Mg/Ca increased exponentially with temperature in O. universa, where Mg/Ca = 0.85 exp (0.096*T), whereas the change in Sr/Ca with temperature was within the reproducibility of replicate measurements.  相似文献   

3.
The Zagros Basin is one of the most universal oil and gas basins that is located in the west to south of Iran and in north of the Arabian Plate. The Guri Member at the bottom of the Mishan Formation, in some areas such as Bandar Abbas hinterland, contains a significant amount of gas. The Bandar Abbas hinterland is located in the southeast of Zagros. The Guri Limestone is the youngest hydrocarbon reservoirs of the Zagros Sedimentary Basin. In this study, a total of 178 samples from the Guri Limestone in the Handun section are investigated for foraminiferal biostratigraphy. The study of foraminifers led to a recognition of 43 genera and 57 species of benthic and planktonic foraminifera. For the first time, planktonic foraminiferal species including Praeorbulina glomerosa, Praeorbulina transitoria, Orbulina suturalis, and Orbulina universa are reported, and based on the identified benthic and planktonic foraminifera taxa, the age of the Guri Member at Handun section is estimated as late Burdigalian to Langhian.  相似文献   

4.
The calcium isotope ratios (δ44Ca = [(44Ca/40Ca)sample/(44Ca/40Ca)standard −1] · 1000) of Orbulina universa and of inorganically precipitated aragonite are positively correlated to temperature. The slopes of 0.019 and 0.015‰ °C−1, respectively, are a factor of 13 and 16 times smaller than the previously determined fractionation from a second foraminifera, Globigerinoides sacculifer, having a slope of about 0.24‰ °C−1. The observation that δ44Ca is positively correlated to temperature is opposite in sign to the oxygen isotopic fractionation (δ18O) in calcium carbonate (CaCO3). These observations are explained by a model which considers that Ca2+-ions forming ionic bonds are affected by kinetic fractionation only, whereas covalently bound atoms like oxygen are affected by kinetic and equilibrium fractionation. From thermodynamic consideration of kinetic isotope fractionation, it can be shown that the slope of the enrichment factor α(T) is mass-dependent. However, for O. universa and the inorganic precipitates, the calculated mass of about 520 ± 60 and 640 ± 70 amu (atomic mass units) is not compatible with the expected ion mass for 40Ca and 44Ca. To reconcile this discrepancy, we propose that Ca diffusion and δ44Ca isotope fractionation at liquid/solid transitions involves Ca2+-aquocomplexes (Ca[H2O]n2+ · mH2O) rather than pure Ca2+-ion diffusion. From our measurements we calculate that such a hypothesized Ca2+-aquocomplex correlates to a hydration number of up to 25 water molecules (490 amu). For O. universa we propose that their biologically mediated Ca isotope fractionation resembles fractionation during inorganic precipitation of CaCO3 in seawater. To explain the different Ca isotope fractionation in O. universa and in G. sacculifer, we suggest that the latter species actively dehydrates the Ca2+-aquocomplex before calcification takes place. The very different temperature response of Ca isotopes in the two species suggests that the use of δ44Ca as a temperature proxy will require careful study of species effects.  相似文献   

5.
We critically evaluate the applicability of Ca-isotope ratios in planktonic foraminifers as proxy for past sea surface temperatures (SST) and isotope composition of paleo-seawater (δ44Casw) reconstructions. Previous studies have shown discrepancies regarding the temperature sensitivity of Ca isotope fractionation in foraminifers of more than one order of magnitude. We present new data from the planktonic foraminifer species Orbulina universa, Globigerinoides sacculifer and Neogloboquadrina pachyderma (sinistral) from culture experiments, multinet deployments and coretop samples. Specimens of G. sacculifer cultured at low salinities (33-34.5) show predominantly no major temperature dependent Ca isotope fractionation, in contrast to previous individuals cultured at higher salinities of 34.5-36. The new data of O. universa are consistent with previously published results, revealing a small but significant temperature sensitivity. Calcium isotope fractionation in tests of N. pachyderma shows a significant variation with temperature, which is not uniform over the total investigated temperature range (−1.6 °C to +10 °C), possibly reflecting the influence of additional controlling factors besides temperature. Controlled dissolution experiments in the laboratory indicate that the Ca-isotope composition of G. sacculifer and N. pachyderma is relatively insensitive to partial dissolution of their tests.Calcium isotope ratios in the planktonic foraminifers G. sacculifer and N. pachyderma (s) reveal a complex Ca isotope fractionation behaviour, which is not yet fully understood. Additional validation studies are crucial to enhance the basic understanding of the calcium isotope systematics in planktic foraminifer shells, and the potential for applying Ca-isotope ratios as proxies for seawater temperature and the oceanic Ca budget.  相似文献   

6.
Calcium isotope fractionation in calcite and aragonite   总被引:1,自引:0,他引:1  
Calcium isotope fractionation was measured on skeletal aragonite and calcite from different marine biota and on inorganic calcite. Precipitation temperatures ranged from 0 to 28°C. Calcium isotope fractionation shows a temperature dependence in accordance with previous observations: 1000 · ln(αcc) = −1.4 + 0.021 · T (°C) for calcite and 1000 · ln(αar) = −1.9 + 0.017 · T (°C) for aragonite. Within uncertainty the temperature slopes are identical for the two polymorphs. However, at all temperatures calcium isotopes are more fractionated in aragonite than in calcite. The offset in δ44/40Ca is about 0.6‰. The underlying mechanism for this offset may be related to the different coordination numbers and bond strengths of the calcium ions in calcite and aragonite crystals, or to different Ca reaction behavior at the solid-liquid interface. Recently, the observed temperature dependence of the Ca isotope fractionation was explained quantitatively by the temperature control on precipitation rates of calcium carbonates in an experimental setting (Lemarchand et al., 2004). We show that this mechanism can in principle also be applied to CaCO3 precipitation in natural environments in normal marine settings. Following this model, Ca isotope fractionation in marine Ca carbonates is primarily controlled by precipitation rates. On the other hand the larger Ca isotope fractionation of aragonite compared to calcite can not be explained by different precipitation rates. The rate control model of Ca isotope fractionation predicts a strong dependence of the Ca isotopic composition of carbonates on ambient CO32− concentration. While this model is in general accordance with our observations in marine carbonates, cultured specimens of the planktic foraminifer Orbulina universa show no dependence of Ca-isotope fractionation on the ambient CO32− concentration. The latter observation implies that the carbonate chemistry in the calcifying vesicles of the foraminifer is independent from the ambient carbonate ion concentration of the surrounding water.  相似文献   

7.
A detailed paleoceanographic history of the Subantarctic region for the last million years was determined using paleomagnetic stratigraphy, radiolarian and planktonic foraminiferal biostratigraphy, and the oxygen isotope record from stages 1 to 13 (0.5 MY) in a deep-sea core (E45-74) from the southern Indian Ocean. Changes in the abundances of Antarctissa strelkovi and Neogloboquadrina pachyderma record 12 glacial/interglacial cycles. The paleoceanographic events based on the combined results of these siliceous and calcareous indexes agree with changes in the global ice-volume record. Calcium carbonate dissolution selectively alters the planktonic foraminiferal fauna and causes test fragmentation and increased numbers of benthic foraminifera and radiolarians. Intense periods of calcium carbonate dissolution are associated principally with glacial episodes and are probably related to increased Antarctic bottom-water activity as well as changes in surface-water mass positions.  相似文献   

8.
Stable oxygen and carbon isotope ratios (δ18O and δ13C, respectively) of a planktonic foraminiferal species (Globigerinoides sacculifer) and marble carbonate were measured with and without a variety of pretreatments like ultrasonication, soaking in H2O2, methanol and roasting under vacuum. Additionally, organic matter - carbonate mixtures were also analysed with and without the above pretreatments. No significant difference was found in the isotope ratios of treated and untreated samples. It appears that most of the pretreatments may not be necessary when dealing with planktonic foraminifera, especially G. sacculifer. Analysis of two different size fractions (> 400 μm and 250–400 μm) of this species reveals that the smaller size fraction is enriched in 18O and depleted in 13C relative to the bigger size fraction. It is therefore necessary to choose a proper size fraction for isotopic analyses.  相似文献   

9.
This survey of magnesium stable isotope compositions in marine biogenic aragonite and calcite includes samples from corals, sclerosponges, benthic porcelaneous and planktonic perforate foraminifera, coccolith oozes, red algae, and an echinoid and brachiopod test. The analyses were carried out using MC-ICP-MS with an external repeatability of ±0.22‰ (2SD for δ26Mg; n = 37), obtained from a coral reference sample (JCp-1).Magnesium isotope fractionation in calcitic corals and sclerosponges agrees with published data for calcitic speleothems with an average Δ26Mgcalcite-seawater = −2.6 ± 0.3‰ that appears to be weakly related to temperature. With one exception (Vaceletia spp.), aragonitic corals and sclerosponges also display uniform Mg isotope fractionations relative to seawater with Δ26Mgbiogenic aragonite-seawater = −0.9 ± 0.2.Magnesium isotopes in high-Mg calcites from red algae, echinoids and perhaps some porcelaneous foraminifera as well as in all low-Mg calcites (perforate foraminifera, coccoliths and brachiopods) display significant biological influences. For planktonic foraminifera, the Mg isotope data is consistent with the fixation of Mg by organic material under equilibrium conditions, but appears to be inconsistent with Mg removal from vacuoles. Our preferred model, however, suggests that planktonic foraminifera synthesize biomolecules that increase the energetic barrier for Mg incorporation. In this model, the need to remove large quantities of Mg from vacuole solutions is avoided. For the high-Mg calcites from echinoids, the precipitation of amorphous calcium carbonate may be responsible for their weaker Mg isotope fractionation.Disregarding superimposed biological effects, it appears that cation light isotope enrichments in CaCO3 principally result from a chemical kinetic isotope effect, related to the incorporation of cations at kink sites. In this model, the systematics of cation isotope fractionations in CaCO3 relate to the activation energy required for cation incorporation, which probably reflects the dehydration of the cation and the crystal surface and bond formation at the incorporation site. This kinetic incorporation model predicts (i) no intrinsic dependence on growth rate, unless significant back reaction upon slow growth reduces the isotope fractionation towards that characteristic for equilibrium isotope partitioning (this may be observed for Ca isotopes in calcites), (ii) a small decrease of isotope fractionation with increasing temperature that may be amplified if higher temperatures promote back reaction and (iii) a sensitivity to changes in the activation barrier caused by additives such as anions or biomolecules or by the initial formation of amorphous CaCO3.  相似文献   

10.
Chemolithotrophic homoacetogenic bacteria apparently express a characteristic stable carbon isotope fractionation and may contribute significantly to acetate production in anoxic environments. However, fractionation factors (ε) in bacterial cultures have rarely been determined and the effect of substrate availability has not been assessed. We therefore studied the kinetic carbon isotope effect in cultures of Thermoanaerobacter kivui grown at 55 °C. The fractionation factor in HCO3 buffered medium was ca. 15‰ more negative than that in PO43− buffered medium. To test whether the difference was caused by the initial substrate ratio of H2 and total inorganic carbon (TIC; 0.5 in HCO3 vs. 4.0 in PO43− buffered medium), T. kivui was grown in either [3-(N-morpholino) propanesulfonic acid, MOPS] buffered or PO43− buffered media with different HCO3 concentration. Indeed, the fractionation factor became more negative with increasing HCO3 concentration and decreasing H2/TIC ratio. While pH had only a small effect, the fractionation was generally more negative in MOPS buffered than in phosphate buffered media, indicating that the buffer system also affected fractionation. Collectively, the results show that substrate availability and other environmental factors affect the magnitude of isotope fractionation during acetate production by chemolithotrophic homoacetogenesis.  相似文献   

11.
To study what dictates oxygen isotope equilibrium fractionation between inorganic carbonate and water during carbonate precipitation from aqueous solutions, a direct precipitation approach was used to synthesize witherite, and an overgrowth technique was used to synthesize aragonite. The experiments were conducted at 50 and 70°C by one- and two-step approaches, respectively, with a difference in the time of oxygen isotope exchange between dissolved carbonate and water before carbonate precipitation. The two-step approach involved sufficient time to achieve oxygen isotope equilibrium between dissolved carbonate and water, whereas the one-step approach did not. The measured witherite-water fractionations are systematically lower than the aragonite-water fractionations regardless of exchange time between dissolved carbonate and water, pointing to cation effect on oxygen isotope partitioning between the barium and calcium carbonates when precipitating them from the solutions. The two-step approach experiments provide the equilibrium fractionations between the precipitated carbonates and water, whereas the one-step experiments do not. The present experiments show that approaching equilibrium oxygen isotope fractionation between precipitated carbonate and water proceeds via the following two processes:
1.
Oxygen isotope exchange between [CO3]2− and H2O:
(1)  相似文献   

12.
Composition and abundance of benthic and planktonic foraminifera in surface sediments of the brine-filled Shaban and Kebrit Deeps and some bathyal-slope environments in the northern Red Sea were examined for correlation with environmental conditions (e.g., bathymetry, sediment grain-size, organic matter, and carbonates) of the brine-filled deeps and normal Red Sea water. About 67 benthic foraminiferal species were recorded in these sediments. The lowest faunal density and diversity were recorded in the Shaban and Kebrit Deeps, whereas the highest density and diversity were recorded in the bathyal-slope sediments. Cluster analysis divided the benthic foraminiferal species into three major faunal assemblages. Buccella granulataGyroidinoides soldaniiBolivina persiensis assemblage dominated the 650–1,300 m depth due to predominance of oligotrophic, highly oxygenated bottom waters. The Melonis novozealandicumSpirophthalmidium acutimargo assemblage was recorded in the deep and bathyal-slope sediments indicating its tolerance for wider ranges of environmental conditions. The deeps were only dominated by the Brizalina spathulata assemblage indicating existence of un-totally anoxic conditions. The deeps yielded also very low planktonic foraminiferal density that may be attributed to occurrence of the seawater–brine interface which not only minimized the deposition of high buoyancy, large-test species (Globigerinoides sacculifer, Globigerinella siphonifera, and Orbulina universa), but also overestimated the small-test species (Globigerinoides ruber, Globoturborotalita rubescens, and Globigerinita glutinata) in the sediments. These findings should be taken into consideration when reconstructing paleoceanographic conditions of the Red Sea using core sediments from the brine-filled deeps.  相似文献   

13.
《Chemical Geology》1999,153(1-4):281-287
An empirical method is presented that allows the determination of the individual contributions of anions and cations to the effect of dissolved salts on hydrogen isotope fractionation in aqueous systems (isotope salt effect). The method is solely based on experimental data and does not involve the choice of arbitrary reference values or theoretical assumptions. Plotting experimental liquid–vapor D/H fractionation factors for aqueous solutions of sodium salts vs. O–D stretching frequencies of water molecules in the hydration shells of the anions shows an excellent linear correlation. The distance between this line and the pure water liquid–vapor fractionation data point in the same plot gives the cation contribution to the isotope salt effects. The anion contribution can then simply be derived as the difference between the total salt effect and the cation salt effect. The validity of the concept is demonstrated using precise literature data for the O–D stretching frequencies in the hydration shells of individual ions at 20°C [Bergström, P.A., 1991. Single ion hydration properties in aqueous solution: a quantitative infrared spectroscopic study. PhD Thesis. Uppsala University] and for the liquid–vapor hydrogen isotope fractionation between aqueous solutions and water vapor at the same temperature [Stewart, M.K., Friedman, I., 1975. Deuterium fractionation between aqueous salt solutions and water vapor. Journal of Geophysical Research 80, 3812–3818]. Within the limits of experimental uncertainties, the data set shows internal consistency. Cation salt effects, 1000 ln Γ at 20°C, are (in per mil per mole per liter, using the convention of Horita et al. [Horita, J., Cole, D.R., Wesolowski, D.J., 1993a. The activity–composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II. Vapor–liquid water equilibration of mixed salt solutions from 50–100°C. Geochimica et Cosmochimica Acta 57, 4703–4711]): Na++0.7; K++0.7; Mg2++6.5; Ca2++1.8; Al3++12. The salt effect of H+ cannot be determined unequivocally. The combined effect of the fractionation of H+ itself plus its salt effect is +4.9. Anion effects are +1.4 for Cl, +2.7 for Br, +3.5 for I and −1.4 for SO42. Further single anion salt effects are being predicted as −1.8 for F, +4.9 for NO3, +6.9 for ClO4 and +5.4 for the triflate ion (CF3SO3).  相似文献   

14.
《Geochimica et cosmochimica acta》1999,63(13-14):1981-1989
In order to better understand environmental factors controlling oxygen isotope shifts in autochthonous lacustrine carbonate sequences, we undertook an extensive one-year study (March, 1995 to February, 1996) of water-column chemistry and daily sediment trap material from a small lake in Central Switzerland. Comparisons between calculated equilibrium isotope values, using the fractionation equation of Friedman and O’Neil, (1977) and measured oxygen isotope ratios of calcite in the sediment-traps reveal that oxygen isotopic values of autochthonous calcite (δ18O) are in isotopic equilibrium with ambient water during most of the spring and summer, when the majority of the calcite precipitates. In contrast, small amounts of calcite precipitated in early-spring and again in late-autumn are isotopically depleted in 18O relative to the calculated equilibrium values, by as much as 0.8‰. This seasonally occurring apparent isotopic nonequilibrium is associated with times of high phosphorous concentrations, elevated pH (∼8.6) and increased [CO32−] (∼50 μmol/l) in the surface waters. The resulting weighted average δ18O value for the studied period is −9.6‰, compared with a calculated equilibrium δ18O value of −9.4‰. These data convincingly demonstrate that δ18O of calcite are, for the most part, a very reliable proxy for temperature and δ18O of the water.  相似文献   

15.
The boron isotope-pH technique is founded on a theoretical model of carbonate δ11B variation with pH that assumes that the boron isotopic composition of carbonates mirrors the boron isotopic composition of borate in solution (δ11Bcarb = δ11Bborate). Knowledge of the fractionation factor for isotope exchange between boric acid and borate in solution (α4-3), the equilibrium constant for the dissociation of boric acid (pKB*), as well as the isotopic composition of boron in seawater (δ11Bsw) are required parameters of the model.The available data suggests that both the value of α4-3 and the history of δ11Bsw are poorly constrained. However, if one assumes that δ11Bcarb = δ11Bborate, an empirical value for α4-3 can be estimated from the results of inorganic carbonate precipitation experiments. This exercise yields an α4-3 value of ∼0.974 in accordance with recent theoretical estimates, but substantially deviates from the theoretical value of 0.981 often used to estimate paleo-ocean pH. Re-evaluation of ocean pH using an α4-3 value of 0.974 and published foraminiferal δ11B values for the Cenozoic yield pH estimates that are relatively invariant, but unrealistically high (∼8.4-8.6). Uncertainty increases as foraminiferal ‘vital effects’ are considered and different models for secular changes in seawater δ11B are applied.The inability to capture realistic ocean pH possibly reflects on our understanding of the isotopic relationship between carbonate and borate, as well as the mechanism of boron incorporation in carbonates. Given the current understanding of boron systematics, pH values estimated using this technique have considerable uncertainty, particularly when reconstructions exceed the residence time of boron in the ocean.  相似文献   

16.
古海洋研究中的地球化学新指标   总被引:30,自引:4,他引:30  
有机地球化学与微量元素地球化学古环境指标及其相关的同位素指标已成为追溯古全球变化与古海洋生物地球化学演化的有力工具。从古环境替代指标的示踪原理和应用的角度,综述了有孔虫碳同位素、有机地球化学整体指标、生物标志化合物、单体有机分子同位素、微量元素等在古海洋古环境研究中的应用及相关的研究动态与进展。指出古海洋研究正从以恢复古海洋的物理参数(温度、盐度、古洋流等)为主,向着揭示古水团演化、古生产力、古营养状况、碳贮库及碳循环等古生物地球化学演化过程方向纵深发展。  相似文献   

17.
Phosphoric acid digestion has been used for oxygen- and carbon-isotope analysis of carbonate minerals since 1950, and was recently established as a method for carbonate ‘clumped isotope’ analysis. The CO2 recovered from this reaction has an oxygen isotope composition substantially different from reactant carbonate, by an amount that varies with temperature of reaction and carbonate chemistry. Here, we present a theoretical model of the kinetic isotope effects associated with phosphoric acid digestion of carbonates, based on structural arguments that the key step in the reaction is disproportionation of H2CO3 reaction intermediary. We test that model against previous experimental constraints on the magnitudes and temperature dependences of these oxygen isotope fractionations, and against new experimental determinations of the fractionation of 13C-18O-containing isotopologues (‘clumped’ isotopic species). Our model predicts that the isotope fractionations associated with phosphoric acid digestion of carbonates at 25 °C are 10.72‰, 0.220‰, 0.137‰, 0.593‰ for, respectively, 18O/16O ratios (1000 lnα) and three indices that measure proportions of multiply-substituted isotopologues . We also predict that oxygen isotope fractionations follow the mass dependence exponent, λ of 0.5281 (where ). These predictions compare favorably to independent experimental constraints for phosphoric acid digestion of calcite, including our new data for fractionations of 13C-18O bonds (the measured change in Δ47 = 0.23‰) during phosphoric acid digestion of calcite at 25 °C.We have also attempted to evaluate the effect of carbonate cation compositions on phosphoric acid digestion fractionations using cluster models in which disproportionating H2CO3 interacts with adjacent cations. These models underestimate the magnitude of isotope fractionations and so must be regarded as unsucsessful, but do reproduce the general trend of variations and temperature dependences of oxygen isotope acid digestion fractionations among different carbonate minerals. We suggest these results present a useful starting point for future, more sophisticated models of the reacting carbonate/acid interface. Examinations of these theoretical predictions and available experimental data suggest cation radius is the most important factor governing the variations of isotope fractionation among different carbonate minerals. We predict a negative correlation between acid digestion fractionation of oxygen isotopes and of 13C-18O doubly-substituted isotopologues, and use this relationship to estimate the acid digestion fractionation of for different carbonate minerals. Combined with previous theoretical evaluations of 13C-18O clumping effects in carbonate minerals, this enables us to predict the temperature calibration relationship for different carbonate clumped isotope thermometers (witherite, calcite, aragonite, dolomite and magnesite), and to compare these predictions with available experimental determinations. The success of our models in capturing several of the features of isotope fractionation during acid digestion supports our hypothesis that phosphoric acid digestion of carbonate minerals involves disproportionation of transition state structures containing H2CO3.  相似文献   

18.
Manganese carbonate deposits in Japanese Jurassic sedimentary rocks were studied petrogeochemically. The deposits are characteristically composed of spheroidal micronodules, up to 1 mm in diameter, and always contain well-preserved radiolarian shells. Chemical elemental composition and mineralogical characteristics indicate that the micronodules contain rhodochrosite in a mixed carbonate phase composition (Mn86.7?92.2Ca2.2?2.9Mg2.6?6.7Fe2.6?5.6)CO3 Carbon and oxygen isotope values, which range from ?7.99 to ?4.78‰ and ?4.05 to 0.28‰ relative to PDB, respectively, suggest that the manganese carbonate was precipitated in a suboxic zone. The micronodules closely resemble agglutinated benthic foraminifera in shape. We suggest that agglutinated foraminiferal tests composed of radiolarian shells accumulated selectively on the sediment surface during redeposition of bottom sediments and were replaced by manganese carbonate in suboxic diagenetic conditions of manganese reduction.  相似文献   

19.
We have compared detailed planktonic and benthonic foraminiferal carbon and oxygen isotope records from the Palaeocene and early Eocene successions at DSDP Site 577 (Shatsky Rise, North Pacific), a composite section derived from DSDP Leg 74 sites (Walvis Ridge, South Atlantic) and a composite section from ODP Leg 113 sites (Maud Rise, Weddell Sea). The δ13C records of Palaeocene and early Eocene Foraminifera at Site 577 and the Leg 74 sites show that an increase in δ13C values in surface waters at 64 Ma (end of Zone P1) resulted in increased vertical carbon isotope gradients (δ13C) between surface and deeper dwelling planktonic foraminifera, and between surface-dwelling planktonics and benthonic foraminifera which became progressively steeper until the iniddle Late Palaeocene (Zone P4). This steepening also occurs in the latest Palaeocene of the composite Leg 113 section and can be explained by an increase in surface ocean productivity. This increase in productivity probably resulted in an expansion of the oxygen minimum zone (OMZ). Benthonic δ13C values increased during the late Palaeocene in Site 577 and the composite Leg 74 section, suggesting that the Palaeocene carbon isotope maximum was composed of both within-ocean reservoir (increased surface water productivity) and between-reservoir (organic carbon burial) ftactionation effects. The benthonic δ13C increase lags the surface ocean δ13C increase in the early Palaeocene (63–64 Ma) suggesting that surface water productivity increase probably led an increase in the burial rate of organic carbon relative to carbonate sedimentation. Moreover, inter-site δ13C comparisons suggest that the locus of deep to intermediate water formation for the majority of the Palaeocene and the earliest Eocene was more likely to have been in the high southern latitudes than in the lower latitudes. Oxygen isotope data show a decline in deeper water temperatures in the early and early late Palaeocene, followed by a temperature increase in the late Palaeocene and across the PalaeoceneEocene boundary. We speculate that these changes in deeper water temperatures were related to the flux of CO2 between the oceans and the atmosphere through a mechanism operating at the high southern latitudes.  相似文献   

20.
Marine organisms must possess strategies enabling them to initiate calcite precipitation despite the unfavorable conditions for inorganic precipitation in surface seawater. These strategies are poorly understood. Here we compare two potential strategies of marine calcifyers to manipulate seawater chemistry in order to initiate calcite precipitation: Removal of Mg2+ and H+ ions from seawater solutions. An experimental setup was used to monitor the onset of inorganic precipitation on seed crystals as a function of the Mg2+ concentration and pH in artificial seawater. We focused on precipitation rates typical for biogenic calcification in planktonic foraminifera (∼10−3 mol m−2 h−1) and time scales typical for the initiation of calcification in these organisms (minutes to hours). We find that the carbonate ion concentration has to increase by a factor of ∼13 when [Mg2+] increases from 0 to 53 mmol kg−1 in order to maintain a typical biogenic precipitation rate. Model calculations for the energy requirement for various scenarios of Mg2+ and H+ removal including Ca2+ exchange and CO2 diffusion are presented. We conclude that the more cost-effective strategy to initiate calcite precipitation in foraminifera is H+ removal, rather than Mg2+ removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号