首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine Geology》1999,153(1-4):177-197
Drilling of deep-water post-Messinian sedimentary sequences by ODP Legs 160 and 161 in the Mediterranean Sea has shown that occurrence of organic-carbon-rich sapropels and sapropel-like sediments extends from the Levantine Basin westward into the Alboran Basin. In the eastern Mediterranean, sapropel deposition started in the Early Pliocene, whereas in the Western Basin the onset of sapropel formation occurred later, in the Early Pleistocene. Precessional cycles are apparently the primary external forcing for sapropel formation. Nevertheless, the pattern of sapropel occurrence suggests that the precessional influence is modulated by the glaciation cycles. Large differences were observed in the organic carbon contents of sapropels recovered in the eastern and western Mediterranean. Correspondence between organic carbon contents, Rock-Eval hydrogen index values and elemental C/N ratios indicate that both variations in the production and preservation of marine organic matter have led to the accumulation of high amounts of organic matter in sapropels. Molecular organic geochemical compositions of sapropels from the eastern Mediterranean further confirm that the major fraction of organic matter in sapropels is derived from marine algal sources and has undergone variable oxidation. Enhanced marine productivity and improved preservation of organic matter is central to sapropel formation. Accumulation of increased amounts of land-derived material at times of sapropel formation is also evidenced, supporting the hypothesis of significant periodic freshwater discharges.  相似文献   

2.
《Marine Geology》1999,153(1-4):103-116
Diagenetic dissolution of magnetic minerals has been widely observed in organic-rich sediments from many environments. Organic-rich sediments from the eastern Mediterranean Sea (sapropels), recovered during Leg 160 of the Ocean Drilling Program, reveal a surprising catalogue of magnetic properties. Sapropels, from all sites studied across the eastern Mediterranean Sea, are strongly magnetic and the magnetization is directly proportional to the organic carbon content. The magnetization of the sapropels is dominated by a low-coercivity, probably single domain magnetic mineral (with an inverse magnetic fabric) that exhibits a clear decay in magnetic properties when exposed to air. During heating, the magnetic particles irreversibly break down between 360 and 400°C. The contrast between the magnetic properties of sapropels and surrounding sediments is marked, with remanence intensities of sapropels often being more than three orders of magnitude higher than those of underlying sediments. The contrast between the magnetic properties of sapropels and the surrounding sediments is apparently controlled by non-steady-state diagenesis: sulphate-reducing conditions dominated during sapropel deposition, while overlying sediments were deposited under oxic conditions. The mineral responsible for the magnetic properties of sapropels is most likely to have formed under sulphate-reducing conditions that existed during times of sapropel formation. Attempts to identify this mineral have been unsuccessful, but several lines of evidence point toward an unknown ferrimagnetic iron sulphide phase. The influence of diagenesis on the magnetic properties of cyclically-deposited eastern Mediterranean sedimentary sequences suggests that magnetic parameters may be a useful proxy for diagenesis in these sediments.  相似文献   

3.
Numerous sapropels and sapropelic strata from Upper Pliocene and Pleistocene hemipelagic sediments of the Tyrrhenian Sea show that intermittent anoxia, possibly related to strongly increased biological productivity, was not restricted to the eastern Mediterranean basins and may be a basin-wide result of Late Pliocene-Pleistocene climatic variability. Even though the sapropel assemblage of the Tyrrhenian Sea clearly originates from multiple processes such as deposition under anoxic conditions or during spikes in surface water productivity and lateral transport of organic-rich suspensates, many “pelagic sapropels” have been recognized. Stratigraphic ages calculated for the organic-rich strata recovered during ODP Leg 107 indicate that the frequency of sapropel formation increased from the lowermost Pleistocene to the base of the Jaramillo magnetic event, coinciding with a period when stable isotope records of planktonic foraminifera indicate the onset of climatic cooling in the Mediterranean. A second, very pronounced peak in sapropel formation occurred in the Middle to Late Pleistocene (0.73-0.26 Ma). Formainifers studied in three high-resolution sample sets suggest that changes in surface-water temperature may have been responsible for establishing anoxic conditions, while salinity differences were not noted in the faunal assemblage. However, comparison of sapropel occurrence at Site 653 with the oxygen isotopic record of planktonic foraminifers established by Thunell et al. (Proc. ODP, Sci. Results 107, 1990) indicates that sapropel occurrences coincide with negative δ18O excursions in planktonic foraminifers in thirteen of eighteen sapropels recognized in Hole 653A. A variant of the meltwater hypothesis accepted for sapropel formation in the Late Pleistocene eastern Mediterranean may thus be the cause of several “anoxic events” in the Tyrrhenian as well. Model calculations indicate that the amount of oxygen advection from Western Mediterranean Deep Water exerts the dominant control on the oxygen content in deep water of the Tyrrhenian Sea. Inhibition of deep-water formation in the northern Adriatic and the Balearic Basin by increased meltwater discharge and changing storm patterns during climatic amelioration may thus be responsible for sapropel formation in the Tyrrhenian Sea.  相似文献   

4.
《Marine Geology》1999,153(1-4):199-219
Pyrite formation within and directly below sapropels in the eastern Mediterranean was governed by the relative rates of sulphide production and Fe liberation and supply to the organic-rich layers. At times of relatively high SO2−4 reduction, sulphide could diffuse downward from the sapropel and formed pyrite in underlying sediments. The sources of Fe for pyrite formation comprised detrital Fe and diagenetically liberated Fe(II) from sapropel-underlying sediments. In organic-rich sapropels, input of Fe from the water column via Fe sulphide formation in the water may have been important as well. Rapid pyrite formation at high saturation levels resulted in the formation of framboidal pyrite within the sapropels, whereas below the sapropels slow euhedral pyrite formation at low saturation levels occurred. δ34S values of pyrite are −33‰ to −50‰. Below the sapropels δ34S is lower than within the sapropels, as a result of increased sulphide re-oxidation at times of relatively high sulphide production and concentration when sulphide could escape from the sediment. The percentage of initially formed sulphide that was re-oxidized was estimated from organic carbon fluxes and burial efficiencies in the sediment. It ranges from 34% to 80%, varying significantly between sapropels. Increased palaeoproductivity as well as enhanced preservation contributed to magnified accumulation of organic matter in sapropels.  相似文献   

5.
A brief review of the geological knowledge on the anoxic basins of the eastern Mediterranean is presented. Anoxic basins have been discovered in two different geological settings in the eastern Mediterranean. Bannock Basin belongs to the compressional style of the Mediterranean Ridge, and Tyro and Poseidon Basins belong to the transcurrent tectonic style of the Strabo Trench. The origin of the basins is subsurface salt dissolution triggered by tectonic deformation of the sediments on the Mediterranean Ridge, and tectonic subsidence (pull-apart mechanism) in the Strabo Trench. The onset of a deep-sea brine lake is always related to the outcrop of Messinian salts on the side-walls of the basin. The rate of basin subsidence controls the evolution of the brine lakes, which can also be completely diluted by bottom water circulation.  相似文献   

6.
A sapropelic layer with organic carbon contents of 1.0–1.5%, in contrast to the usual 0.2–0.5% of adjacent normal basin sediments, is found to be widespread in sediment cores collected from the Cilicia Basin, northeastern Mediterranean. The horizon is thought to be equivalent to the S1 sapropel of other workers. It is finely laminated with no evidence of bioturbation, has a very markedly low magnetic susceptibility, and contains a significantly higher content of pollen and plant debris than is found in the normal basin sediment. The stable oxygen and carbon isotope values suggest that the layer formed during post-glacial climatic warming when fresh nutrient-rich surface water flowed into the Cilicia Basin from the surrounding land to produce a stratified water mass which allowed the development of anoxic bottom waters. The distribution of the sapropelic layer indicates that anoxic conditions extended to within approximately 350 m of sea level during deposition, a depth shallower than previously recorded in the Eastern Mediterranean.  相似文献   

7.
A sequential leaching technique has been used to characterize the solid state speciation of total copper (∑Cu) among a number of operationally defined host fractions in surface seawater particulates from the Atlantic Ocean, a diagenetically active hemipelagic sediment core from the eastern Mediterranean, a turbidite - rich sediment core from the Madeira Abyssal Plain and a series of 79 Atlantic Ocean surface or near surface sediments. Around 50% of the ∑Cu in the surface water particulates is held in organic associations. When the material is deposited at the sediment surface, following its entry into the down-column carbon flux, the ∑Cu undergoes phase transformations as the organic carriers are destroyed. However, some of the organically associated copper (Cu5) is preserved in the sediments, the amount depending on the diagenetic environment of deposition. The relationship between ∑Cu and organic carbon in an oceanic sediment may be masked, but the partitioning speciation data has shown that good correlations can be found between organic carbon and Cu5. The concentration of Cu5 in Atlantic Ocean surface sediments is highest in hemipelagic (diagenetically active) sediments deposited in the marginal regions, and lowest in open-ocean (less diagenetically active) sediments of the Mid-Atlantic Ridge and ridge flanks. The marginal sediments contain an average of 20% of their total Cu in an organic association, with the result that these sediments can act as traps for seawater-derived Cu that would normally be regarded as being ‘reactive’ in the marine environment. To a first approximation, the preservation of Cu5 in the sediments mimics that of primary production in the overlying waters, and so ‘fingerprints’ the operation of the global ocean carbon flux in oceanic deposits. However, the relationship can be perturbed by the off-shelf transport of organic-rich, Cu5-containing, turbidites which can result in the transfer and burial of organic copper host fractions in open-ocean oxic environments.  相似文献   

8.
《Marine Geology》2001,172(3-4):181-195
In the reconstruction of bioproductivity in surface waters the extent to which a proxy has been diagenetically altered is often a matter of debate. Here we investigate how organic- and calcareous-walled dinoflagellate cysts can be used for separately estimating bioproductivity and oxygen related diagenesis. This is achieved by studying the cyst content of the most recent Eastern Mediterranean sapropel S1, that is thought to have been deposited under conditions of increased primary production in surface waters and possible anoxia in the bottom waters. Based on chemical evidence, it has been shown that the visible sapropelic layer represents only the residual lower part of what was initially a much thicker sapropel, as a result of post-depositional decay of organic matter related to oxygen penetration into the sediments. The effect of aerobic organic matter decay on the cyst associations is studied through the comparison of the unaffected, lower part of the initial sapropel and the ‘oxidised’ upper part. Comparing the unaffected sapropelic sediments with pre- and post-sapropelic material gives insight into the relationship between fossil cysts assemblages and palaeoproductivity.Impagidinium aculeatum, Impagidinium patulum, Operculodinium israelianum, Polysphaeridium zoharyi and probably Impagidinium spp., Impagidinium paradoxum and Nematosphaeropsis labyrinthus are very resistant against aerobic decay and their accumulation rates appear to be primarily related to productivity in surface waters. Protoperidinium and Echinidinium species, on the other hand, are shown to be very sensitive and can be used to recognise oxygen-related decay. The calcareous-walled dinoflagellate cysts seem to be unaffected by oxic organic matter decay in Mediterranean sediments.  相似文献   

9.
The modern Mediterranean Sea is oligotrophic, yet its sediment record contains layers of organic-carbon-rich sapropels at 21 ky (precessional) spacing that imply periods of elevated paleoproductivity that approached the high productivities of modern upwelling systems. Resolution to this paradox is provided by lines of evidence suggesting that the mode of primary productivity changed from one dominated by algae to one during times of sapropel deposition in which photosynthetic bacteria were important. We have made a high-resolution comparison of the organic carbon and nitrogen isotopic compositions of three sapropels and their background sediments in a 3-m sequence that corresponds to 1001 to 946 ka. Organic δ13C values systematically increase from − 26‰ to − 21‰ and δ15N values systematically decrease from 4‰ to < 0‰ as organic carbon mass accumulation rates increase in the sapropel layers. The increase in carbon isotope values mirrors the increases in primary productivity and associated organic matter export indicated by the increased mass accumulation rates. The decrease in nitrogen isotope values implies major contributions of nitrogen-fixing cyanobacteria to the total marine productivity. The precessional minima with which sapropels coincide were times of wetter climate that stratified the surface Mediterranean Sea, increased delivery of soil-derived phosphorus, and evidently amplified microbial primary production. Our high-resolution study reveals several relatively rapid excursions into and out of the high-productivity mode that suggest that sapropel deposition was a climate-sensitive surface-driven phenomenon that was not accompanied by basin-wide stagnation.  相似文献   

10.
Polarographic techniques have been used to determine reduced inorganic sulphur speciation in recent anoxic marine sediments from two hypersaline basins, the Tyro and the Bannock Basins, in the Eastern Mediterranean. The following phases were determined: acid volatile sulphur (AVS), pyritic sulphur and zerovalent sulphur. The determination of AVS and pyrite was based respectively on the acidification and Cr(II) reduction of these sulphur components to H2S. H2S was collected in base and the sulphide concentration was measured by polarography. Standard Na2S and pyrite gave recoveries of 99.6% ± 3.9% and 97% ± 12% respectively. Total zerovalent sulphur in a sediment sample was measured by the reaction of sulphite with thiosulphate. Thiosulphate was measured directly by polarography.

Pyrite is the main phase of inorganic reduced sulphur in the sediments from the Tyro and the Bannock Basins, and it has about the same average level (125 υmoles per gramme dry weight) in the cores recovered from the two areas. However, the distribution of pyrite in the top 100 cm of the two cores differs significantly. In the Bannock Basin a sharp increase is observed with depth, whereas in the Tyro Basin there is a small decrease with depth.

The total amount of reduced inorganic sulphur is less than the total amount of sulphur in the sediments. This indicates that there must be additional sulphur-bearing phases. One of these phases may be gypsum, and indeed, gypsum crystals have been observed in the Bannock Basin.

In neither basin is there a significant correlation between reduced sulphur and organic carbon. The pyrite that occurs in these basins may have been formed syngenetically at the interface of the anoxic brine and oxic seawater. Diagenetic pyrite may have been formed within the sediments of the basins. AVS and total zerovalent sulphur are still observed at depth. We therefore suggest that this may be due to the incomplete transformation of AVS and zerovalent sulphur into pyrite.  相似文献   


11.
A combined study of lithological, geochemical and physical sediment properties is reported from a completely laminated S5 sapropel, recovered in three gravity cores (M40-4 SL67, M51-3 SL103, M51-3 SL104) from the Pliny Trench region of the eastern Mediterranean. The thickness of the studied sapropel S5 varies between 85 and 91 cm and tops most S5-sapropels in the Mediterranean. Based on optical features like color and thickness of laminae, the sapropels were subdivided into thirteen distinct lithostratigraphic zones. These zones, as well as the finer layering pattern within them, could be followed exactly among the three cores, indicating that the processes responsible for this variation acted at least on a regional scale. The sapropel sediment is characterized by exceptionally high porosity, which is strongly correlated with Si/Ca. This relationship implies that the sapropel is in essence an organic-matter rich diatomite and its exceptional thickness can be explained by preservation of diatoms forming a loosely packed sediment fabric. Compared to other S5 sapropels, the preservation of diatoms has apparently led to a twofold increase in the thickness of the sapropel layer. Relative abundances of 10 elements were determined at ultra-high resolution (0.2 mm) by XRF-scanner over the complete length of each sapropel including several cm of enclosing marl. An analysis of the chemical data indicates that the lowermost 13 cm of the sapropel is chemically more similar to the underlying marl and that the sediment chemistry shows different signals at different scales. The strongest pattern is the contrast between the sapropel and the surrounding marl, which is accentuated in elements indicative for redox conditions as well as terrigenous sediment input and productivity. Within the sapropel, a mm- to cm-scale layering is observed. The abundances of many elements are systematically linked to the pattern of these layers, indicating a common origin, related to productivity and/or terrigenous sediment and/or redox conditions. This pattern indicates a link to a regional climatic process, making the S5 sapropel horizon in M40-4 SL67, M51-3 SL103 and M51-3 SL104 a potential high-resolution archive of climatic variability during the last interglacial in the Mediterranean Sea and its adjacent landmasses.  相似文献   

12.
Elevated methane (CH4) concentrations (128–2692×103 nM) occur in the hypersaline anoxic brine pools of Bannock and Urania Basins, eastern Mediterranean Sea, compared to low concentrations (17–80×103 nM) in the sediments below the anoxic brines. The CH4 enrichment in the brines might be due to the long residence time of the brine in the Basin. An attempt is made to determine the sources for the enriched dissolved CH4 by considering the influence of hydrothermal activity, the occurrence of sapropel layers (biogenic) and dissolution of gas hydrates. Furthermore, it is suggested that the enriched CH4 in Bannock and Urania Basins is diffused and mixed with the overlying waters by local upward transport mechanisms that selectively move CH4 upward in these Basins.  相似文献   

13.
北冰洋西部表层沉积物中生源组分及其古海洋学意义   总被引:4,自引:0,他引:4  
通过对中国首次和第二次北极科学考察在北冰洋西部所采取的66个表层沉积物中生源组分的分析,探讨了该海区表层生产力变化与水团的相互关系。楚科奇海西南部呈现出高的有机碳和生源蛋白石含量,而中部和东部哈罗德浅滩至阿拉斯加沿岸,以及楚科奇海台、北风脊和加拿大海盆表现出低的有机碳和生源蛋白石含量。楚科奇海陆架区表层沉积物以底栖有孔虫为主,丰度低;而楚科奇海台、北风脊和加拿大海盆则以浮游有孔虫占绝对优势,丰度较高。生源组分的分布特征显然与通过白令海峡进入楚科奇海的三股太平洋水和大西洋次表层水相关。楚科奇海西侧沿富营养的阿纳德尔流方向的区域呈现出高的表层生产力。而东侧受寡营养的阿拉斯加沿岸流及阿拉斯加西北沿岸陆源物质输入的影响,呈现出低的表层生产力。北纬75°以北及加拿大海盆受海冰覆盖影响,也表现出最低的表层生产力。而受北大西洋次表层水的影响,楚科奇海陆架外侧高纬海域表现出较高的钙质生物生产力。表层沉积物中Corg/N比值及其分布反映楚科奇海表层沉积物中的有机碳以海洋自身来源为主,且主要受生物泵过程控制。有机碳和生源蛋白石含量呈现高的正相关关系,说明硅藻等浮游植物的初级生产力可能控制着生物泵对碳的吸收和释放。  相似文献   

14.
This study investigated the organic carbon accumulation rates (OCARs) and sulfate reduction rates (SRRs) in slope and basin sediments of the Ulleung Basin, East/Japan Sea. These sediments have high organic contents at depths greater than 2,000 m; this is rare for deep-sea sediments, except for those of the Black Sea and Chilean upwelling regions. The mean organic carbon to total nitrogen molar ratio was estimated to be 6.98 in the Ulleung Basin sediments, indicating that the organic matter is predominantly of marine origin. Strong organic carbon enrichment in the Ulleung Basin appears to result from high export production, and low dilution by inputs of terrestrial materials and calcium carbonate. Apparent sedimentation rates, calculated primarily from excess 210Pb distribution below the zone of sediment mixing, varied from 0.033 to 0.116 cm year−1, agreeing well with previous results for the basin. OCARs fluctuated strongly in the range of 2.06–12.5 g C m−2 year−1, these rates being four times higher at the slope sites than at the basin sites. Within the top 15 cm of the sediment, the integrated SRRs ranged from 0.72 to 1.89 mmol m−2 day−1, with rates approximately twice as high in the slope areas as in the basin areas. SRR values were consistently higher in areas of high sedimentation and of high organic carbon accumulation, correlating well with apparent sedimentation rates and OCARs. The sulfate reduction rates recorded in the basin and slope sediments of the Ulleung Basin are higher than those reported for other parts of the world, with the exception of the Peruvian and Chilean upwelling regions. This is consistent with the high organic carbon contents of surface sediments of the Ulleung Basin, suggesting enhanced organic matter fluxes.  相似文献   

15.
Kimmeridgian organic-rich shales of the Madbi Formation from the Marib-Shabowah Basin in western Yemen were analysed to evaluate the type of organic matter, origin and depositional environments as well as their oil-generation potential. Results of the current study establishes the organic geochemical characteristics of the Kimmeridgian organic-rich shales and identifies the kerogen type based on their organic petrographic characteristics as observed under reflected white light and blue light excitation. Kerogen microscopy shows that the Kimmeridgian organic-rich shales contain a large amount of organic matter, consisting predominantly of yellow fluorescing alginite and amorphous organic matter with marine-microfossils (e.g., dinoflagellate cysts and micro-foraminiferal linings). Terrigenous organic matters (e.g., vitrinite, spores and pollen) are also present in low quantities. The high contributions of marine organic matter with minor terrigenous organic matter are also confirmed by carbon isotopic values. The organic richness of the Kimmeridgian shales is mainly due to good preservation under suboxic to relatively anoxic conditions, as indicated by the percent of numerous pyritized fragments associated with the organic matter. The biomarker parameters obtained from mass spectrometer data on m/z 191 and m/z 217 also indicate that these organic-rich shales contain mixed organic matter that were deposited in a marine environment and preserved under suboxic to relatively anoxic conditions.The Kimmeridgian organic-rich shales thus have high oil and low gas-generation potential due to oil window maturities and the nature of the organic matter, with high content of hydrogen-rich Type II and mixed Type II-III kerogens with minor contributions of Type III kerogen.  相似文献   

16.
The partitioning of annual organic carbon fluxes from five stations located in the vicinity of the Pacific-Antarctic Ridge and the Peru continental margin suggests that 35–85% of the total near-bottom organic carbon flux is utilized at or near the sediment-water interface. These estimates have large uncertainties, but illustrate that assessments of organic carbon utilization can be made by several stepwise approaches which are generally applicable to a wide spectrum of marine environments.In one approach, the mineralization of organic carbon from the sediments was predicted from both sedimentary organic carbon and pore water nutrient profiles with comparable results. Neglecting sediment mixing, the rate constants of the anoxic sediments off Peru range from 0.1 × 10?3 to 4 × 10?3 y?1, and rate constants derived for oxic SW Pacific sediments range from 3 × 10?4 to 7 × 10?4 y?1. As with other values reported for sulfate reducing sediments by Toth and Lerman (1977) and for oxic central Pacific sediments by Müller and Mangini (1980), log-log plots of rate constants vs. sedimentation rate define two parallel linear relationships for oxic and anoxic sediments, respectively. The apparently enhanced rates for oxic environments may result from large benthic organisms which redistribute a portion of the available detritus and in doing so convert it into more easily accessible and metabolizable organic matter. In low-oxygen environments, bottom feeders and infauna are less abundant and more likely to irrigate rapidly accumulating sediments.  相似文献   

17.
In the last few years it has frequently been suggested that Ba is a useful indicator of paleoproductivity. The formation of some sapropels in the Eastern Mediterranean is considered to be related to, or to coincide with, periods of enhanced productivity. A high-resolution sampling study has been undertaken in order to investigate whether the Ba distribution in sapropels reflects a primary input signal or whether it has been altered by diagenetic processes.

On the basis of our results we suggest that three diagenetic stages determine the distribution of Ba. During deposition of the sapropel (stage 1) Ba is mobilized as anoxic conditions prograde. After deposition of the sapropel (stage 2), a progressive oxidation front develops. This front induces the formation of Mn and Fe enrichments and barite precipitation at the oxic/anoxic boundary. Barite precipitation is believed to be caused mainly by a rise in the porewater sulphate concentration after sulphides have been oxidized by the front.

Upon burial (stage 3), suboxic conditions develop as the oxygen becomes exhausted again. In contrast to Fe- and Mn-oxyhydroxides which dissolve and reprecipitate at higher levels, barite is preserved because dissolved sulphate is not depleted.

The interpretation of the Ba distribution in organic-rich sediment is not straightforward. Diagenetic reallocation of a primary Ba signal will possibly disturb the relationship between Ba and organic production. Consequently, one must be very cautious when invoking Ba as a paleoproductivity indicator.  相似文献   


18.
Coastal marine sediment, air and seawater samples were collected at six sampling stations in the Eastern Mediterranean Sea distant from pollutant point sources. All sediment samples were analyzed to determine polycyclic aromatic hydrocarbon (PAH), black carbon (BC) and organic carbon (OC) contents. The PAH contents of gaseous and seawater samples of the study were determined in order to evaluate the role of air–sea exchange as PAH nonpoint source to the marine sediments. The average concentration of the total PAHs (∑PAHs) in the sediments varied from 2.2 to 1056.2 ng g−1 dry weight. The average BC and OC contents varied from 0.3 to 5.6 and from 2.9 to 21.4 mg g−1 dry weight, respectively. ∑PAH concentration in the marine atmosphere varied from 20.0 to 83.2 ng m−3. Air–water exchange flux (FA–W) estimation has indicated air transport as a significant source of PAHs to pristine marine sediments of Eastern Mediterranean. In addition, the significant correlation between the PAHs and the organic and soot carbon content further suggests the importance of atmospheric input of PAHs to the sediments.  相似文献   

19.
《Marine Geology》1999,153(1-4):337-343
We discuss the palaeoclimatic interpretation of unprecedented high-resolution micropalaeontological studies of short-term (2 to 4 centuries) interruptions within early Holocene organic-rich layer (sapropel) S1 from the eastern Mediterranean. Results for cores from the Adriatic and Aegean seas that contain `double' S1 sapropels indicate that these interruptions, which are centred roughly around 7000 years 14Cnc BP, are genuine and related to climatic deterioration. This interpretation is endorsed by a coeval dry event recorded in terrestrial records and indications of climatic deterioration affecting human migration patterns and early societies in Egypt. The presence of sapropel interruptions in the two major source areas of deep water for the entire eastern Mediterranean likely implies that similar intervals may be found throughout the basin, provided that sedimentation rates and sampling resolutions allow the detection of events with a duration of only several centuries. Moreover, our results show that the `sapropel mode' of circulation comprises a delicate balance between reduced ventilation and enhanced productivity, which is easily disturbed through surface water cooling triggering a short time of improved deep water ventilation.  相似文献   

20.
The source rock characteristics (e.g. thickness, lateral extension, richness) are known to be highly variable in both time and space. The Lower Jurassic formations of north-western Europe contain source rocks with organic-rich intervals showing different characteristics from one region to another: the Paris Basin differs from the South-East Basin of France, but organic content and hydrogen index also vary within a single basin. During the Early Jurassic, the overall depositional environment of north-western Europe corresponded to an epicontinental domain at the western extremity of the Tethys Ocean. The early transgressive phase of the Jurassic induced flooding of this European realm. Because of the evolution of the connections and threshold of the European basins and their associated sedimentary settings, this domain occupied a key position for the deposition of organic-rich layers. Using a forward modelling approach, we aim to predict the heterogeneous characteristics of such sediments. It is widely accepted that primary productivity and preservation are key factors favouring the accumulation of organic-rich layers. However, the roles of these factors remain to be assessed and the processes leading to accumulation and preservation need to be quantified.We focus on the Lower Jurassic (Hettangian to Toarcian) in France, since this provides a vast amount of data to calibrate the 100-kyr time step model in terms of an accurate framework including paleogeography, stratigraphy, lithology, palaeontology, mineralogy and geochemistry.Results show that favourable conditions for the deposition of organic-rich sediment can occur even with moderate primary productivity and without requiring anoxic conditions. These windows are firstly dependent on internal factors directly linked to the basin morphology, such as sedimentation rate, bathymetry and distance from the coastline. We do not need to evoke external factors such as oceanic anoxic events or enhancement of primary production to account for the deposition of organic-rich sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号