首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The structure of the mid-Norwegian volcanic Vøring margin at the onset of the Maastrichtian–Paleocene extension phase reflects the cumulative effect of earlier consecutive rifting events. Lateral structural differences present on the margin at that time are a consequence of migration of the location of maximum extension in time between Norway and Greenland. The most important imprints (Moho depth, thermal structure) of these events on the lithosphere are incorporated in a numerical simulation of the final extension phase. We focus on a possible mechanism of formation of the Vøring Marginal High and address the relationship between spatial and temporal evolution of crustal thinning and thickening, uplift of the surface and strength of the lithosphere.It is found that the Vøring Basin formed the strongest part of the margin which explains why the Maastrichtian–Paleocene rift axis was not located here but instead jumped westward with respect to the earlier rift axes locations. The modeling study predicts that local crustal thickening during extension can be expected when large lateral thermal variations are present in the lithosphere at the onset of extension. Negative buoyancy induced by lateral temperature differences increases downwelling adjacent to the rifting zone; convergence of material at the particular part of the margin is mainly taken up by the lower crust. The model shows that during the final phase of extension, the crust in the Vøring Marginal High area was thickened and the surface uplifted. It is likely that this dynamic process and the effects of magmatic intrusions both acted in concert to form the Marginal High.  相似文献   

2.
The southern margin of Australia is a passive continental margin, formed during a Late Jurassic–Cretaceous rifting phase. The development of this passive margin is mainly associated with extensional processes that caused crustal thinning. In this work, we have measured the amount of extension and the stretching factor (β factor) across seven transect profiles approximately evenly distributed across the margin. The obtained results show that the amount of extension and the β factor along the margin vary from west to east. The lowest amount of extension, low–intermediate β factors and a very narrow margin are observed in the western part with 80 km of extension and is underlain mostly by the Archean Yilgarn Craton and the Albany–Fraser Orogen. The Gawler Craton in the centre of the south Australian margin is another region of low extension and low–intermediate β factor. The largest amount of extension (384 km) and the largest β factor (β = 1.88) are found in the eastern part of the passive margin in an area underlain by Phanerozoic Tasman Orogen units. Our results imply that there is a strong control of the age and thickness of the continental lithosphere on the style of rifting along the Australian passive margin. Rifting of old and cold lithosphere results in a narrow passive margin, with the formation of relatively few faults with relatively wide spacing, while rifting of younger, warmer lithosphere leads to wide rifting that is accommodated by a large number of faults with small spacing.  相似文献   

3.
Numerous basin modelling studies have been performed on the Viking Graben in the northern North Sea during the past decades in order to understand the driving mechanisms for basin evolution and palaeo temperature estimations. In such modelling, it is important to include lithospheric flexure. The values derived for the lithospheric strength by these studies vary considerably (i.e. up to a factor of 30). In this study, which is based on new interpretation of a regional transect, we show that both the estimated value of the effective elastic thickness and the derived β-profile are dependent on the assumed value of the depth of necking. The use of models that implicitly set the level of necking at a depth of 0 km generally leads to an underestimation of the lithospheric strength, and an overestimation of the thinning factors. In the northern Viking Graben, a necking depth at intermediate crustal levels gives results comparable to the observations. Extension by faulting is modelled to be a significant factor. In conclusion, rifting in the northern Viking Graben can be explained with various models of effective elastic thicknesses (EET) varying from 1 km for a zero necking depth to the depth of the 450 °C isotherm for an intermediate level of necking.It is also shown that the development of the basin during the post-rift phase cannot be explained by pure shear/simple shear extension. Two mechanisms are proposed here to explain the post-rift subsidence pattern, namely intra-plate stress and phase boundary migration. The two extreme models for EET mentioned above (1 km for a zero necking depth to the depth of the 450 °C isotherm for an intermediate level of necking) give very different responses to compressional stress, the latter gives basically no response for realistic intra-plate stress.  相似文献   

4.
The mid-Norwegian margin has a complex history and has experienced several phases of changing horizontal and vertical stresses on regional and local scale during the Cenozoic time. In addition to regional stresses related to the opening of the North Atlantic (i.e. ridge push), local variations in stress history may be important for development, distribution and reactivation of structures in the Vøring area in Cenozoic time. Presence and stability of flexural hinge zones between areas of relative uplift and subsidence have played an important role for focusing shallow horizontal stresses within the basins. Emplacement of lower crustal bodies during break-up will, whatever the nature of these bodies, have substantial isostatic effects, and modelling show that this could cause many hundred meters of temporal uplift above the lower crustal bodies, locally exceeding 1300 m of surface uplift. Effects of intra plate stress (IPS) are modelled along three 2D transects across the Vøring Basin. Modelling shows that IPS may have given substantial vertical motions in certain areas of the mid-Norwegian shelf, both with extensional IPS at the time of break-up, and later with compressive IPS during Tertiary time. The modelling assumes a strongly reduced effective elastic thickness (EET) due to lithospheric heating at break-up and later increasing EET as the lithosphere cooled towards present time. Our modelling takes into account the tectonic and isostatic effects of loading faulting and lithospheric thinning throughout the geological history, including several phases of extension prior to the Cenozoic compression. This approach emphasizes the importance of the deformation history of the lithosphere compared to other studies that only take into account the effects of Cenozoic processes of compression and loading on the sedimentary units. We do not state that isostatic uplift or intra plate stress are the most important causes for Cenozoic uplift and compressional deformation in this area, but point to the fact that these factors locally may have played an important role in focusing deformation caused by an interplay of different mechanisms.  相似文献   

5.
The Songliao Basin, the largest oil-producing basin in China, was the centre of late Mesozoic rifting and lithospheric thinning in northeastern China. However, the rifts are still poorly revealed due to a thick cover of subsidence successions. By structural interpretation and sequential restoration of cross-sections based on new 2D seismic data and well data, this study presents the structural style, basin evolution, and horizontal crustal extension of the central Songliao Basin. We have developed a novel method to retrieve the regional extension principal strains. The results enable an assignment of rifting into two episodes. The earlier episode (ca. 157–130 Ma) was dominated by distributed faulting of numerous planar normal faults trending NNE–SSW, NNW–SSE, or near NS, probably reflecting pre-existing basement fabrics; in contrast, the later episode (ca. 130–102 Ma) was controlled by localized extension along several major listric faults. Horizontal crustal extension during rifting is estimated to have been 11–28 km (10.6%–25.5%), with the long-term average rate varying from 0.20 to 0.51 mm yr–1. Regional horizontal strains show a gradual evolution from biaxial extension at the beginning of rifting to WNW–ESE uniaxial stretching during the later rifting episode. Brittle crustal extension is interpreted to have been associated with vertical strain due to tectonic stretching, which is estimated to have contributed more in thinning the lower crust than the mantle lithosphere. Accordingly, a two-episode dynamic model is proposed to explain rifting in the Songliao Basin. We suggest that the earlier event was dominated by delamination of the thickened continental lithosphere, whereas the later event was probably controlled by regional crustal detachment due to slab subduction and stagnancy of the Izanagi lithospheric plate.  相似文献   

6.
Subsidence mechanisms that may have controlled the evolution of the eastern Black Sea have been studied and simulated using a numerical model that integrates structural, thermal, isostatic and surface processes in both two- (2-D) and three-dimensions (3-D). The model enables the forward modelling of extensional basin evolution followed by deformation due to subsequent extensional and compressional events. Seismic data show that the eastern Black Sea has evolved via a sequence of interrelated tectonic events that began with early Tertiary rifting followed by several phases of compression, mainly confined to the edges of the basin. A large magnitude (approximately 12 km) of regional subsidence also occurred in the central basin throughout the Tertiary. Models that simulate the magnitude of observed fault controlled extension (β=1.13) do not reproduce the total depth of the basin. Similarly, the modelling of compressional deformation around the edges of the basin does little to enhance subsidence in the central basin. A modelling approach that quantifies lithosphere extension according to the amount of observed crustal thinning and thickening across the basin provides the closest match to overall subsidence. The modelling also shows that deep crustal and mantle–lithosphere processes can significantly influence the rate and magnitude of syn- to post-rift subsidence and shows that such mechanisms may have played an important role in forming the anomalously thin syn-rift and thick Miocene–Quaternary sequences observed in the basin. It is also suggested that extension of a 40–45 km thick pre-rift crust is required to generate the observed magnitude of total subsidence when considering a realistic bathymetry.  相似文献   

7.
The stratigraphic and structural evolution of the Pattani Basin, the most prolific petroleum basin in Thailand, reflects the extensional tectonic regime of continental Southeast Asia. E-W extension resulting from the northward collision of India with Eurasia since the Early Tertiary resulted in the formation of a series of N-S-trending sedimentary basins, which include the Pattani Basin. The sedimentary succession in the Pattani Basin is divisible into synrift and post-rift sequences. Deposition of the synrift sequence accompanied rifting and extension, with episodic block faulting and rapid subsidence. The synrift sequence comprises three stratigraphic units: (1) Upper Eocene to Lower Oligocene alluvial-fan, braidedriver, and floodplain deposits; (2) Upper Oligocene to Lower Miocene floodplain and channel deposits; and (3) a Lower Miocene regressive package consisting of marine to nonmarine sediments. Post-rift succession comprises: (1) a Lower to Middle Miocene regressive package of shallow marine sediments through floodplain and channel deposits; (2) an upper Lower Miocene transgressive sequence; and (3) an Upper Miocene to Pleistocene transgressive succession. The post-rift phase is characterized by slower subsidence and decreased sediment influx. The present-day shallow-marine condition in the Gulf of Thailand is the continuation of this latest transgressive phase.

The subsidence and thermal history of the Pattani Basin is consistent with a nonuniform lithospheric-stretching model. The amount of extension as well as surface heat flow generally increases from the margin to the basin center. The crustal stretching factor (β) varies from 1.3 at the basin margin to 2.8 in the center. The subcrustal stretching factor (5) ranges from 1.3 at the basin margin to more than 3.0 in the basin center. The stretching of the lithosphere may have extended the basement rocks by as much as 45 to 90 km and has led to passive upwelling of the aesthenosphere, resulting in high heat flow (1.9 to 2.5 Heat Flow Units [HFU]) and high geothermal gradient (45 to 60° C/km). The validity of nonuniform lithospheric stretching as a mechanism for the formation of the Pattani Basin is confirmed by the good agreement between the level of organic maturation modeled on the basis of the predicted heatflow history and measured vitrinite reflectance at various depths measured in some 30 boreholes.  相似文献   

8.
The structural setting beneath the Ligurian Sea resuJts from several tectonic events reflected in the nature of the crust. The central-western sector, called the Ligurian basin, is part of the northwestern Mediterranean. It is a marginal basin that was generated in Oligocene-Miocene time by subduction of the Adriatic plate beneath the European plate and by the eastward drift of the Corsica-Sardinia block. The eastern sector belongs to the Tyrrhenian basin system and is characterized by extensional activity which since Tortonian time superimposed an earlier compressional regime. Our effort has been addressed in particular towards simplifying the complex nature of the crust of the Ligurian basin by modelling its genesis using uniform extension and sea-floor depth variation with age. In the rift stage of the basin's evolution, the initial subsidence reaches the isostatic equilibrium level of the asthenosphere by a thinning factor of 3.15. The additional passive process, corresponding to the cooling of the lithosphere since 21 Ma, leads to a total tectonic subsidence of 3.4 km, representing the boundary of the extended continental crust. For values up to 4.1 km a transitional-type crust is expected, whereas for higher tectonic subsidence values a typical oceanic crust should exist. After setting these constraints, the boundaries of the different crust types have been drawn based on total tectonic subsidence observations deduced from bathymetry and post-rift sediment thickness. Although there is a general agreement with the previous reconstructions deduced from other experimental data, the oceanic realm has wider extent and more complex shape. The northernmost part of this realm shows crust of sub-oceanic type altemating basement highs with lower subsidence values. The observed surface heat flux is consistent with the predicted geothermal held in the Alpine-Provençal continental margin and in the oceanic domain. However, a characteristic thermal asymmetry is clearly visible astride the basin, due to the enhanced heat flux of the Corsica margin. Even if the uniform extension model accounts well at a regional level for the present basement depth, a remarkable tectonic subsidence excess has been found in the Alpine-Provençal continental margin. This evidence agrees with the reprise in compression of the margin; the direction of the greatest principal stress is N120°E on average.  相似文献   

9.
Direct observation and extensive sampling in ancient margins exposed in the Alps, combined with drill-hole and geophysical data from the present-day Iberia margin, result in new concepts for the strain evolution and near-surface response to lithospheric rupturing at magma-poor rifted margins. This paper reviews data and tectonic concepts derived from these two margins and proposes that extension, leading to thinning and final rupturing of the continental lithosphere, is accommodated by three fault systems, each of them characterized by a specific temporal and spatial evolution during rifting of the margin, by its fault geometry, and its surface response. The data presented in this paper suggest that margin architecture and distribution of rift structures within the future margin are controlled first by inherited heterogeneities within the lithosphere leading to a contrasting behaviour of the future distal and proximal margins during an initial stage of rifting. The place of final break-up appears to be determined early in the evolution of the margin and occurs where the crust has been thinned during a first stage to less than 10 kilometres. During final break-up, the rheology of the extending lithosphere is controlled by the thermal structure related to the rise of the asthenosphere and by serpentinization and magmatic processes.Dedicated to Daniel Bernoulli who taught me to compare the geological record of oceans and orogens  相似文献   

10.
The Tatricum, an upper crustal thrust sheet of the Central Western Carpathians, comprises pre-Alpine crystalline basement and a Late Paleozoic-Mesozoic sedimentary cover. The sedimentary record indicates gradual subsidence during the Triassic, Early Jurassic initial rifting, a Jurassic-Early Cretaceous extensional tectonic regime with episodic rifting events and thermal subsidence periods, and Middle Cretaceous overall flexural subsidence in front of the orogenic wedge prograding from the hinterland. Passive rifting led to the separation of the Central Carpathian realm from the North European Platform. A passive margin, rimmed by peripheral half-graben, was formed along the northern Tatric edge, facing the Vahic (South Penninic) oceanic domain. The passive versus active margin inversion occurred during the Senonian, when the Vahic ocean began to be consumed southwards below the Tatricum. It is argued that passive to active margin conversion is an integral part of the general shortening polarity of the Western Carpathians during the Mesozoic that lacks features of an independent Wilson cycle. An attempt is presented to explain all the crustal deformation by one principal driving force - the south-eastward slab pull generated by the subduction of the Meliatic (Triassic-Jurassic Tethys) oceanic lithosphere followed by the subcrustal subduction of the continental mantle lithosphere.  相似文献   

11.
Horizontal extension of a previously thickened crust could be the principal mechanism that caused the development of widespread extensional basins throughout the North China block (Hua-Bei region) during the Mesozoic. We develop here a regional tectonic model for the evolution of the lithosphere in the North China block, based on thin sheet models of lithospheric deformation, with numerical solutions obtained using the finite element method. The tectonic evolution of this region is defined conceptually by two stages in our simplified tectonic model: the first stage is dominated by N–S shortening, and the second by E–W extension. We associate the N–S shortening with the Triassic continental collision between the North and South China blocks, assuming that the Tan-Lu Fault system defines the eastern boundary of the North China block. The late Mesozoic E–W extension that created the Mesozoic basin systems requires a change in the regional stress state that could have been triggered by either or both of the following factors: First, gravitational instability of the lithosphere triggered by crustal convergence might have removed the lower layers of the thickened mantle lithosphere and thus caused a rapid increase in the local gravitational potential energy of the lithosphere. Secondly, a change to the constraining stress on the eastern boundary of the North China block, that might have been caused by roll-back of the subducting Pacific slab, could have reduced the E–W horizontal stress enough to activate extension. Our simulations show that widespread thickening of the North China block by as much as 50% can be explained by the collision with South China in the Triassic and Jurassic. If convergence then ceases, E–W extension can occur in the model if the eastern boundary of the region can move outwards. We find that such extension may occur, restoring crustal thickness of order 30 km within a period of 50 Myr or less, if the depth-averaged constitutive relation of the lithosphere is Newtonian, and if the Argand number (the ratio of buoyancy-derived stress to viscous stress) is greater than about 4. Widespread convective thinning of the lithosphere is not required in order to drive the extension with these parameters. If, however, the lithospheric viscosity is non-Newtonian (with strain-rate proportional to the third power of stress) the extensional phase would not occur in a geologically plausible time unless the Argand number were significantly increased by a lithospheric thinning event that was triggered by crustal thickening ratios as low as 1.5.  相似文献   

12.
松辽盆地裂谷期前火山岩与裂谷盆地关系及动力学过程   总被引:11,自引:0,他引:11  
刘德来 《地质论评》1998,44(2):130-135
松辽盆地存在裂谷期前火山岩,之后上地壳脆性伸展发育半地堑裂谷盆地。裂谷期前火山岩近水平展布于基底之上,裂谷期,沉则分布于半地暂内,两者属于不同构造层。  相似文献   

13.
燕辽地区燕山期火成岩与造山模型   总被引:70,自引:2,他引:70  
邓晋福  刘厚祥 《现代地质》1996,10(2):137-148
通过与安第斯、青藏北缘、大陆裂谷带火成岩的比较,阐述了燕辽地区燕山期火成岩具活动大陆边缘靠内陆一侧的构造属性。提出了三种可能的母岩浆(玄武质、粗面质与花岗质)以及它们的混合作用是制约以壳幔混合型为主、组成谱系宽的火成岩的主要机制。基于实验岩石学成果,论述了无负Eu异常的中酸性火成岩类(正长岩、二长岩、石英闪长岩类)形成于加厚陆壳底部(或山根带)。主要基于岩石学成果,讨论了燕山期本区陆壳厚约60~70km,岩石圈厚约100~150km。通过与印支期岩石圈(厚约150~200km)的对比,提出了造山岩石圈的拆沉-去根作用,使岩石圈减薄了约50km。由此,提出了一个大洋俯冲与岩石圈拆沉相结合的造山模型,称为华北式(或燕辽式)造山带模型。这一模型不但可以满意地解释为什么弧火成岩属性的岩浆活动可深入远离海沟达一千多公里的内陆地区以及挤压与拉伸交替的反转构造的发育,而且还可以比较满意地解释为什么火成岩组成极性极不明显,伴随岩浆活动的陆壳不断抬升等,并指出燕山期地幔岩石圈减薄,山根仍存在,所以造山后A型花岗岩(指碱性正长岩类)仍保持无负Eu异常,而本区新生代处于大陆裂谷发育环境,地幔岩石圈与陆壳均减薄。  相似文献   

14.
The common observation of sedimentary basin inversion in orogenic forelands implies that rifts constitute weak areas of the continental lithosphere. When compressed, the rifts respond with uplift of the deepest parts and erosion of sediments therein. Simultaneously, syn-compressional marginal troughs are formed flanking the inversion zone.Since rifting and subsequent post-rift thermal re-equilibration are processes expected to alter the long-term mechanical state of the lithosphere, the phenomenon of basin inversion is non-trivial from a rheological point of view. Stochastic modelling of the long-term thermal structure beneath sedimentary basins indicates that the crustal part of a rift is warmer, and hence weaker, than the surrounding crustal blocks. In contrast, the mantle part is cold and strong beneath the basin centre.In this paper, it is investigated whether the rifting-induced strength alterations constitute a sufficient condition for a thermally equilibrated rift to invert by compression. Numerical experiments with two-dimensional dynamic thermo-mechanical models are performed. In particular, the focus is on rifting-related mechanical instabilities that reduce the load bearing capacity of the lithosphere. In the experiments, strain-softening behaviour is introduced in the non-associated plasticity model representing brittle yielding. The result is self-consistent large-scale fault formation.The models predict that the rifting-related necking instability induces differential crustal thinning increasing the post-rift crustal weakness. Strain softening and the associated fault formation amplifies the necking instability and introduces zones of structural weakness exposed for compressional re-activation.Under these circumstances, basin inversion follows as a natural consequence of rift compression.  相似文献   

15.
A number of large areas of igneous provinces produced in North Asia in the Late Paleozoic and Early Mesozoic include Siberian and Tarim traps and giant rift systems. Among them, the Central Asian Rift System (CARS) has the most complicated structure, evolved during the longest time, and is a large (3000 × 600 km) latitudinally oriented belt of rift zones extending from Transbaikalia and Mongolia to Middle Asia and including the Tarim traps in western China. CARS was produced in the Late Carboniferous, and its further evolution was associated with the lateral migration of rifting zones; it ended in the Early Jurassic and lasted for approximately 110 Ma. CARS was produced on an active continental margin of the Siberian continent and is noted for largest batholiths, which were emplaced simultaneously with rifting. The batholiths are surrounded by rift zones and compose, together with them, concentrically zoned magmatic areas, with crustal (granitoid) magmatism focused within their central portions, whereas mantle (rift-related) magmatism is predominant in troughs and grabens in peripheral zones. The batholiths show geological and isotopic geochemical evidence that their granitoids were produced by the anatexis of the host rocks at active involvement of mantle magmas. Zonal magmatic areas of the type are viewed as analogues of large igneous provinces formed in the environments characteristic of active continental margins. Large within-plate magmatic provinces in North Asia are thought to have been generated in relation to the overlap of at least two mantle plumes by the Siberian continent during its movement above the hot mantle field. In the continental lithosphere, mantle plumes initiated within-plate magmatic activity and facilitated rifting and the generation of traps and alkaline basite and alkali-salic magmatic associations. Because of the stressed states during collision of various type in the continental margin, the mantle melts did not ascend higher than the lowest crustal levels. The thermal effect of these melts on the crustal rocks induced anatexis and eventually predetermined the generation of the batholiths.  相似文献   

16.
大陆解体与被动陆缘的演化   总被引:3,自引:1,他引:3  
火山型被动陆缘是大陆解体过程中形成的一类陆缘类型,其演化过程与活动陆缘一样复杂多变。随着近年来对大陆解体过程与被动陆缘演化的深入研究,对其沉积过程、岩浆活动以及变质作用研究都有了很大的进展。陆壳减薄解体的过程有许多不同的模式,不对称的简单剪切模式可能是火山型被动陆缘的成因,其机制是软流圈隆起的最大位置从剖面上看与地壳减薄最大位置不在一条垂线上,造成软流圈上升的岩浆在解体的大陆一侧形成火山型被动陆缘。被动陆缘的沉积建造由两套沉积物组成,一套是大陆解体的裂谷阶段所形成的陆相沉积物和双模式火山岩组合,另一套是稳定陆缘的复理石组合;岩浆作用中基性岩类反应了物质直接源于上地幔的主要特点,并有部分受到地壳混染的特征;变质作用中高温低压环境主要发生在裂谷作用阶段,其特点反映了大陆解体过程中随着时间的增温和减压过程,而拆离伸展阶段则被脆性变形所代替。  相似文献   

17.
Integrated geochemical and Sr–Nd–Pb isotopic studies of the Early Jurassic Nandaling flood basalts (NFB) in the Yanshan belt, northern margin of the North China Craton (NCC), are presented in this paper. These sub-alkaline basalts evolved from a more magnesium-rich parental magma through fractional crystallization of olivine and clinopyroxene. The primitive magma of the NFB originated from 2–5% partial melting of spinel to garnet transitional peridotite at about 70–80 km depth in the Mesozoic lithosphere mantle. The NFB contain a distinctive lithospheric component, characterized by Nb (Ta), Th, U and Ti depletions, LREE enrichments, moderate Sr, and low Nd and Pb initial isotopic ratios, as a result of an interaction between lower crust (15–25%) and primitive magma evoked by magmatic underplating at crust–mantle boundary. The Early Jurassic NFB extruded in an intraplate extensional setting related to post-orogenic collapse in the northern margin of the NCC, indicating an event of lithospheric modification earlier than that in the southern margin (Early Cretaceous). The temporal similarity of the Jurassic–Cretaceous mantle-derived mafic rocks to lower crust replacement, and the decoupling of surface shortening with lithospheric thinning during the Late Jurassic–Early Cretaceous, suggest the important role of magmatic underplating and subsequent crust–mantle interaction accompanied by asthenosphere upwelling on the evolution of the Mesozoic lithosphere of the NCC. The correlation between lithospheric thinning and magmatic underplating may be an important process in continental rifting.  相似文献   

18.
The evolution of the Australian plate can be interpreted in a plate‐tectonic paradigm in which lithospheric growth occurred via vertical and horizontal accretion. The lithospheric roots of Archaean lithosphere developed contemporaneously with the overlying crust. Vertical accretion of the Archaean lithosphere is probably related to the arrival of large plumes, although horizontal lithospheric accretion was also important to crustal growth. The Proterozoic was an era of major crustal growth in which the components of the North Australian, West Australian and South Australian cratons were formed and amalgamated during a series of accretionary events and continent‐continent collisions, interspersed with periods of lithospheric extension. During Phanerozoic accretionary tectonism, approximately 30% of the Australian crust was added to the eastern margin of the continent in a predominantly supra‐subduction environment. Widespread plume‐driven rifting during the breakup of Gondwana may have contributed to the destruction of Archaean lithospheric roots (as a result of lithospheric stretching). However, lithospheric growth occurred at the same time due to mafic underplating along the eastern margin of the plate. Northward drift of Australia during the Tertiary led to the development of a complex accretionary margin at the leading edge of the plate (Papua New Guinea).  相似文献   

19.
This paper presents an updated review of recent field/structural and petrologic/geochemical studies on orogenic peridotites from the Alpine–Apennine ophiolites (NW Italy). Results provide determinant constraints to the evolution of the lithospheric mantle during passive rifting of the fossil Ligurian Tethys oceanic basin.The pre-rift, spinel lherzolites precursors, preserved in the mantle section of the Ligurian ophiolites, were resident in the lithosphere along an intermediate geothermal gradient (T about 1000 °C, P compatible with spinel-peridotite facies). Passive rifting by far-field tectonic forces induced whole-lithosphere extension and thinning (the a-magmatic stage). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent decompression melting along the axial zone of extension. Silica-undersaturated melt fractions infiltrated via diffuse/focused porous-flow through the lithospheric mantle under extension (the magmatic stage) and underwent pyroxenes-dissolving/olivine-crystallizing interaction with the percolated host peridotite.Pyroxenes assimilation and olivine deposition modified the melt compositions into silica-saturated. These derivative liquids migrated to shallower, plagioclase-peridotite facies levels, where they stagnated and impregnated/refertilized the lithospheric mantle. Melt thermal advection by melt infiltration heated to temperatures higher than 1200 °C the lithospheric mantle column above the melting asthenosphere.The syn-rift magmatic and tectonic processes induced significant rheological softening/weakening that destabilized the lithospheric mantle of the Europe–Adria plate along the axial zone of extension. The presence of destabilized lithospheric mantle between the future continental margins played a determinant role in promoting the geodynamic evolution from pre-oceanic rifting to oceanic spreading.The active upwelling of hotter/deeper asthenosphere inside the destabilized axial zone promoted transition to active rifting, enhancing continent break-up. Asthenosphere underwent partial melting and formed aggregated MORB liquids that migrated inside high-porosity dunite channels. The MORB liquids formed olivine-gabbro intrusions and pillowed lava flows (the oceanic crustal rocks).This paper evidences the primary role of mantle destabilization by melt infiltration in the geodynamic evolution of the Ligurian Tethys rifting.  相似文献   

20.
By compiling wide-angle seismic velocity profiles along the 400-km-long Lofoten–Vesterålen continental margin off Norway, and integrating them with an extensive seismic reflection data set and crustal-scale two-dimensional gravity modelling, we outline the crustal margin structure. The structure is illustrated by across-margin regional transects and by contour maps of depth to Moho, thickness of the crystalline crust, and thickness of the 7+ km/s lower crustal body. The data reveal a normal thickness oceanic crust seaward of anomaly 23 and an increase in thickness towards the continent–ocean boundary associated with breakup magmatism. The southern boundary of the Lofoten–Vesterålen margin, the Bivrost Fracture Zone and its landward prolongation, appears as a major across-margin magmatic and structural crustal feature that governed the evolution of the margin. In particular, a steeply dipping and relatively narrow, 10–40-km-wide, Moho-gradient zone exists within a continent–ocean transition, which decreases in width northward along the Lofoten–Vesterålen margin. To the south, the zone continues along the Vøring margin, however it is offset 70–80 km to the northwest along the Bivrost Fracture Zone/Lineament. Here, the Moho-gradient zone corresponds to a distinct, 25-km-wide, zone of rapid landward increase in crustal thickness that defines the transition between the Lofoten platform and the Vøring Basin. The continental crust on the Lofoten–Vesterålen margin reaches a thickness of 26 km and appears to have experienced only moderate extension, contrasting with the greatly extended crust in the Vøring Basin farther south. There are also distinct differences between the Lofoten and Vesterålen margin segments as revealed by changes in structural style and crustal thickness as well as in the extent of elongate potential-field anomalies. These changes may be related to transfer zones. Gravity modelling shows that the prominent belt of shelf-edge gravity anomalies results from a shallow basement structural relief, while the elongate Lofoten Islands belt requires increased lower crustal densities along the entire area of crustal thinning beneath the islands. Furthermore, gravity modelling offers a robust diagnostic tool for the existence of the lower crustal body. From modelling results and previous studies on- and off-shore mid-Norway, we postulate that the development of a core complex in the middle to lower crust in the Lofoten Islands region, which has been exhumed along detachments during large-scale extension, brought high-grade, lower crustal rocks, possibly including accreted decompressional melts, to shallower levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号