首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
In this study, the simulation of an extreme weather event like heavy rainfall over Mumbai (India) on July 26, 2005 has been attempted with different horizontal resolutions using the Advanced Research Weather Research Forecast model version 2.0.1 developed at the National Center for Atmospheric Research (NCAR), USA. The study uses the Betts–Miller–Janjic (BMJ) and the Grell–Devenyi ensemble (GDE) cumulus parameterization schemes in single and nested domain configurations. The model performance was evaluated by examining the different predicted parameters like upper and lower level circulations, moisture, temperature, and rainfall. The large-scale circulation features, moisture, and temperature were compared with the National Centers for Environmental Prediction analyses. The rainfall prediction was assessed quantitatively by comparing rainfall from the Tropical Rainfall Measuring Mission products and the observed station values reported in the Indian Daily Weather Reports from India Meteorological Department (IMD). The quantitative validation of the simulated rainfall was done by calculating the categorical skill scores like frequency bias, threat scores (TS), and equitable threat scores (ETS). It is found that in all simulations, both in single and nested domains, the GDE scheme has outperformed the BMJ scheme for the simulation of rainfall for this specific event.  相似文献   

2.
Simulation of a flood producing rainfall event of 29 July 2010 over north-west Pakistan has been carried out using the Weather Research and Forecasting (WRF) model. This extraordinary rainfall event was localized over north-west Pakistan and recorded 274 mm of rainfall at Peshawar (34.02°N, 71.58°E), within a span of 24 h on that eventful day where monthly July normal rainfall is only 46.1 mm. The WRF model was run with the triple-nested domains of 27, 9, and 3 km horizontal resolution using Kain–Fritsch cumulus parameterization scheme having YSU planetary boundary layer. The model performance was evaluated by examining the different simulated parameters. The model-derived rainfall was compared with Pakistan Meteorological Department–observed rainfall. The model suggested that this flood producing heavy rainfall event over north-west region of Pakistan might be the result of an interaction of active monsoon flow with upper air westerly trough (mid-latitude). The north-west Pakistan was the meeting point of the southeasterly flow from the Bay of Bengal following monsoon trough and southwesterly flow from the Arabian Sea which helped to transport high magnitude of moisture. The vertical profile of the humidity showed that moisture content was reached up to upper troposphere during their mature stage (monsoon system usually did not extent up to that level) like a narrow vertical column where high amounts of rainfall were recorded. The other favourable conditions were strong vertical wind shear, low-level convergence and upper level divergence, and strong vorticity field which demarked the area of heavy rainfall. The WRF model might be able to simulate the flood producing rainfall event over north-west Pakistan and associated dynamical features reasonably well, though there were some spatial and temporal biases in the simulated rainfall pattern.  相似文献   

3.
Localized deep cumulus convective clouds have a capability of giving enormous amount of rainfall over a limited horizontal area, within a short span of time. Such types of extreme rainfall events are most common over the high elevated areas of Northern India during the Southwest monsoon season which causes widespread damage to the property and lives. Therefore, it is necessary to predict such extreme events accurately to avoid damage associated with them. The numerical mesoscale model Weather Research and Forecasting has been used to simulate the cloud burst event of Leh on August 05, 2010, so as to capture the main characteristics of the various parameters associated with this localized mesoscale phenomenon. The model has been integrated with four nested domains keeping Leh and its adjoining area as center. Two cloud microphysics parameterization schemes namely WSM3 and WSM6 have been used for the sensitivity experiments and results have been analyzed to examine the performance of both the schemes in capturing such extreme localized heavy rainfall events. Results show that the WSM6 microphysics was able to simulate the precipitation near to the observation. WSM3 microphysics simulated the location of the circulation near to the observation. In addition, the results also show that the maximum magnitudes of meridional and vertical wind as simulated with WSM3 microphysics are 12 and 4 m/s, respectively.  相似文献   

4.
In the present study, the Advanced Research WRF (ARW) version 3.2.1 has been used to simulate the heavy rainfall event that occurred between 7 and 9 October 2007 in the southern part of Bangladesh. Weather Research and Forecast (WRF–ARW version) modelling system with six different microphysics (MP) schemes and two different cumulus parameterization (CP) schemes in a nested configuration was chosen for simulating the event. The model domains consist of outer and inner domains having 9 and 3 km horizontal resolution, respectively with 28 vertical sigma levels. The impacts of cloud microphysical processes by means of precipitation, wind and reflectivity, kinematic and thermodynamic characteristics of the event have been studied. Sensitivity experiments have been conducted with the WRF model to test the impact of microphysical and cumulus parameterization schemes in capturing the extreme weather event. NCEP FNL data were used for the initial and boundary condition. The model ran for 72 h using initial data at 0000 UTC of 7 October 2007. The simulated rainfall shows that WSM6–KF combination gives better results for all combinations and after that Lin–KF combination. WSM3–KF has simulated, less area average rainfall out of all MP schemes that were coupled with KF scheme. The sharp peak of relative humidity up to 300 hPa has been simulated along the vertical line where maximum updraft has been found for all MPs coupled with KF and BMJ schemes. The simulated rain water and cloud water mixing ratio were maximum at the position where the vertical velocity and reflectivity has also been maximum. The production of rain water mixing ratio depends on MP schemes as well as CP schemes. Rainfall depends on rain water mixing ratio between 950 and 500 hPa. Rain water mixing ratio above 500 hPa level has no effect on surface rain.  相似文献   

5.
The present study describes an analysis of Asian summer monsoon forecasts with an operational general circulation model (GCM) of the European Centre for Medium Range Weather Forecasts (ECMWF), U.K. An attempt is made to examine the influence of improved treatment of physical processes on the reduction of systematic errors. As some of the major changes in the parameterization of physical processes, such as modification to the infrared radiation scheme, deep cumulus convection scheme, introduction of the shallow convection scheme etc., were introduced during 1985–88, a thorough systematic error analysis of the ECMWF monsoon forecasts is carried out for a period prior to the incorporation of such changes i.e. summer monsoon season (June–August) of 1984, and for the corresponding period after relevant changes were implemented (summer monsoon season of 1988). Monsoon forecasts of the ECMWF demonstrate an increasing trend of forecast skill after the implementation of the major changes in parameterizations of radiation, convection and land-surface processes. Further, the upper level flow is found to be more predictable than that of the lower level and wind forecasts display a better skill than temperature. Apart from this, a notable increase in the magnitudes of persistence error statistics indicates that the monsoon circulation in the analysed fields became more intense with the introduction of changes in the operational forecasting system. Although, considerable reduction in systematic errors of the Asian summer monsoon forecasts is observed (up to day-5) with the introduction of major changes in the treatment of physical processes, the nature of errors remain unchanged (by day-10). The forecast errors of temperature and moisture in the middle troposphere are also reduced due to the changes in treatment of longwave radiation. Moreover, the introduction of shallow convection helped it further by enhancing the vertical transports of heat and moisture from the lower troposphere. Though, the hydrological cycle in the operational forecasts appears to have enhanced with the major modifications and improvements to the physical parameterization schemes, certain regional peculiarities have developed in the simulated rainfall distribution over the monsoon region. Hence, this study suggests further attempts to improve the formulations of physical processes for further reduction of systematic forecast errors.  相似文献   

6.
In the present study, diagnostic studies were undertaken using station-based rainfall data sets of selected stations of Guyana to understand the variability of rainfall. The multidecadal variation in rainfall of coastal station Georgetown and inland station Timehri has shown that the rainfall variability was less during the May–July (20–30%) of primary wet season compared to the December--January (60–70%) of second wet season. The rainfall analysis of Georgetown based on data series from 1916 to 2007 shows that El Niño/La Niña has direct relation with monthly mean rainfall of Guyana. The impact is more predominant during the second wet season December--January. A high-resolution Weather Research and Forecasting model was made operational to generate real-time forecasts up to 84 h based on 00 UTC global forecast system (GFS), NCEP initial condition. The model real-time rainfall forecast during July 2010 evaluation has shown a reasonable skill of the forecast model in predicting the heavy rainfall events and major circulation features for day-to-day operational forecast guidance. In addition to the operational experimental forecast, as part of model validation, a few sensitivity experiments are also conducted with the combination of two cloud cumulus (Kain--Fritsch (KF) and Betts–Miller–Janjic (BMJ)) and three microphysical schemes (Ferrier et al. WSM-3 simple ice scheme and Lin et al.) for heavy rainfall event occurred during 28–30 May 2010 over coastal Guyana and tropical Hurricane ‘EARL’ formed during 25 August–04 September 2010 over east Caribbean Sea. It was observed that there are major differences in the simulations of heavy rainfall event among the cumulus schemes, in spite of using the same initial and boundary conditions and model configuration. Overall, it was observed that the combination of BMJ and WSM-3 has shown qualitatively close to the observed heavy rainfall event even though the predicted amounts are less. In the case of tropical Hurricane ‘EARL’, the forecast track in all the six experiments based on 00 UTC of 28 August 2010 initial conditions for the forecast up to 84 h has shown that the combination of KF cumulus and Ferrier microphysics scheme has shown less track errors compared to other combinations. The overall average position errors for all the six experiments taken together work out to 103 km in 24, 199 km in 48, 197 km in 72 and 174 km in 84 h.  相似文献   

7.
Orissa is one of the most flood prone states of India. The floods in Orissa mostly occur during monsoon season due to very heavy rainfall caused by synoptic scale monsoon disturbances. Hence a study is undertaken to find out the characteristic features of very heavy rainfall (24 hours rainfall ≥125 mm) over Orissa during summer monsoon season (June–September) by analysing 20 years (1980–1999) daily rainfall data of different stations in Orissa. The principal objective of this study is to find out the role of synoptic scale monsoon disturbances in spatial and temporal variability of very heavy rainfall over Orissa. Most of the very heavy rainfall events occur in July and August. The region, extending from central part of coastal Orissa in the southeast towards Sambalpur district in the northwest, experiences higher frequency and higher intensity of very heavy rainfall with less interannual variability. It is due to the fact that most of the causative synoptic disturbances like low pressure systems (LPS) develop over northwest (NW) Bay of Bengal with minimum interannual variation and the monsoon trough extends in west-northwesterly direction from the centre of the system. The very heavy rainfall occurs more frequently with less interannual variability on the western side of Eastern Ghat during all the months and the season except September. It occurs more frequently with less interannual variability on the eastern side of Eastern Ghat during September. The NW Bay followed by Gangetic West Bengal/Orissa is the most favourable region of LPS to cause very heavy rainfall over different parts of Orissa except eastern side of Eastern Ghat. The NW Bay and west central (WC) Bay are equally favourable regions of LPS to cause very heavy rainfall over eastern side of Eastern Ghat. The frequency of very heavy rainfall does not show any significant trend in recent years over Orissa except some places in north-east Orissa which exhibit significant rising trend in all the monsoon months and the season as a whole.  相似文献   

8.
Summer monsoon rainfall was simulated by a global 20 km-mesh atmospheric general circulation model (AGCM), focusing on the changes in the summer monsoon rainfall of Bangladesh. Calibration and validation of AGCM were performed over Bangladesh for generating summer monsoon rainfall scenarios. The model-produced summer monsoon rainfall was calibrated with a ground-based observational data in Bangladesh during the period 1979–2003. The TRMM 3B43 V6 data are also used for understanding the model performance. The AGCM output obtained through validation process made it confident to be used for near future and future summer monsoon rainfall projection in Bangladesh. In the present-day (1979–2003) climate simulations, the high-resolution AGCM produces the summer monsoon rainfall better as a spatial distribution over SAARC region in comparison with TRMM but magnitude may be different. Summer monsoon rainfall projection for Bangladesh was experimentally obtained for near future and future during the period 2015–2034 and 2075–2099, respectively. This work reveals that summer monsoon rainfall simulated by a high-resolution AGCM is not directly applicable to application purpose. However, acceptable performance was obtained in estimating summer monsoon rainfall over Bangladesh after calibration and validation. This study predicts that in near future, summer monsoon rainfall on an average may decrease about ?0.5 % during the period 2015–2034 and future summer monsoon rainfall may increase about 0.4 % during the period 2075–2099.  相似文献   

9.
The change in the type of vegetation fraction can induce major changes in the local effects such as local evaporation, surface radiation, etc., that in turn induces changes in the model simulated outputs. The present study deals with the effects of vegetation in climate modeling over the Indian region using the MM5 mesoscale model. The main objective of the present study is to investigate the impact of vegetation dataset derived from SPOT satellite by ISRO (Indian Space Research Organization) versus that of USGS (United States Geological Survey) vegetation dataset on the simulation of the Indian summer monsoon. The present study has been conducted for five monsoon seasons (1998–2002), giving emphasis over the two contrasting southwest monsoon seasons of 1998 (normal) and 2002 (deficient). The study reveals mixed results on the impact of vegetation datasets generated by ISRO and USGS on the simulations of the monsoon. Results indicate that the ISRO data has a positive impact on the simulations of the monsoon over northeastern India and along the western coast. The MM5-USGS has greater tendency of overestimation of rainfall. It has higher standard deviation indicating that it induces a dispersive effect on the rainfall simulation. Among the five years of study, it is seen that the RMSE of July and JJAS (June–July–August–September) for All India Rainfall is mostly lower for MM5-ISRO. Also, the bias of July and JJAS rainfall is mostly closer to unity for MM5-ISRO. The wind fields at 850 hPa and 200 hPa are also better simulated by MM5 using ISRO vegetation. The synoptic features like Somali jet and Tibetan anticyclone are simulated closer to the verification analysis by ISRO vegetation. The 2 m air temperature is also better simulated by ISRO vegetation over the northeastern India, showing greater spatial variability over the region. However, the JJAS total rainfall over north India and Deccan coast is better simulated using the USGS vegetation. Sensible heat flux over north-west India is also better simulated by MM5-USGS.  相似文献   

10.
The impact of different land-surface parameterisation schemes for the simulation of monsoon circulation during a normal monsoon year over India has been analysed. For this purpose, three land-surface parameterisation schemes, the NoaH, the Multi-layer soil model and the Pleim-Xiu were tested using the latest version of the regional model (MM5) of the Pennsylvania State University (PSU)/National Center for Atmospheric Research (NCAR) over the Indian summer monsoon region. With respect to different land-surface parameterisation schemes, latent and sensible heat fluxes and rainfall were estimated over the Indian region. The sensitivity of some monsoon features, such as Somali jet, tropical easterly jet and mean sea level pressure, is discussed. Although some features of the Indian summer monsoon, such as wind and mean sea level pressure, were fairly well-simulated by all three schemes, many differences were seen in the simulation of the typical characteristics of the Indian summer monsoon. It was noticed from the results that the features of the Indian summer monsoon, such as strength of the low-level westerly jet, the cross-equatorial flow and the tropical easterly jet were better simulated by NoaH compared with verification analysis than other land-surface schemes. It was also observed that the distribution of precipitation over India during the peak period of monsoon (July) was better represented with the use of the NoaH scheme than by other schemes.
U. C. MohantyEmail:
  相似文献   

11.
通过数值模拟方法,研究了降水对区域尺度、积云对流参数化等的敏感性.结果表明:由于较小区域尺度的模式内部场和大尺度分析场激发的外强迫之间有更强的束缚,这种束缚使得内外强迫更容易达到一致.小区域尺度模拟的降水型比大的区域尺度的模拟更好,但同时,大的区域尺度消弱了由于模式侧边界效应产生的虚假动力效应,模拟的降水在量值上更加接近于观测值.因此,进行区域气候模拟时,须根据需要对模式区域进行仔细的选择.结果同时表明,由于Grell方案倾向于模拟更多的对流降水,因此Kuo-Anthes方案对西北地区降水型和量值的模拟比Grell方案更接近于实际.由于地形对于降水的重要意义,在复杂地形下进行区域气候模拟时有必要在模式中仔细描述地形.  相似文献   

12.
RegCM3 (REGional Climate Model) simulations of precipitation in China in 1991 and 1998 are very sensitive to the cumulus parameterization. Among the four schemes available, none has superior skills over the whole of China, but each captures certain observed signals in distinct regions. The Grell scheme with the Fritsch-Chappell closure produces the smallest biases over the North; the Grell scheme with the Arakawa-Schubert closure performs the best over the southeast of 100°E; the Anthes-Kuo scheme is superior over the northeast; and the Emanuel scheme is more realistic over the southwest of 100°E and along the Yangtze River Basin. These differences indicate a strong degree of independence and complementarity between the parameterizations. As such, an ensemble is developed from the four schemes, whose relative contributions or weights are optimized locally to yield overall minimum root-mean-square errors from observed daily precipitation. The skill gain is evaluated by applying the identical distribution of the weights in a different period. It is shown that the ensemble always produces gross biases that are smaller than the individual schemes in both 1991 and 1998. The ensemble, however, cannot eliminate the large rainfall deficits over the southwest of 100°E and along the Yangtze River Basin that are systematic across all schemes. Further improve-ments can be made by a super-ensemble based on more cumulus schemes and/or multiple models.  相似文献   

13.
Prediction of the track and intensity of tropical cyclones is one of the most challenging problems in numerical weather prediction (NWP). The chief objective of this study is to investigate the performance of different cumulus convection and planetary boundary layer (PBL) parameterization schemes in the simulation of tropical cyclones over the Bay of Bengal. For this purpose, two severe cyclonic storms are simulated with two PBL and four convection schemes using non-hydrostatic version of MM5 modeling system. Several important model simulated fields including sea level pressure, horizontal wind and precipitation are compared with the corresponding verification analysis/observation. The track of the cyclones in the simulation and analysis are compared with the best-fit track provided by India Meteorological Department (IMD). The Hong-Pan PBL scheme (as implemented in NCAR Medium Range Forecast (MRF) model) in combination with Grell (or Betts-Miller) cumulus convection scheme is found to perform better than the other combinations of schemes used in this study. Though it is expected that radiative processes may not have pronounced effect in short-range forecasts, an attempt is made to calibrate the model with respect to the two radiation parameterization schemes used in the study. And the results indicate that radiation parameterization has noticeable impact on the simulation of tropical cyclones.  相似文献   

14.
A five-level primitive equation model in a (x, y, p, t) coordinate system has been developed. A fairly sophisticated scheme of physical processes has been incorporated in the model. The model physics include air-sea interaction, cumulus parametrization, large scale condensation, dry convective adjustment, horizontal and vertical diffusion and simulated radiation. The initial balance between mass and motion fields has been obtained through a dynamic initialization scheme. The model has been integrated upto 48 hr using input data of a case of monsoon depression. The results of initialization and forecast have been presented and discussed. Wind, temperature and vertical velocity fields have been found to retain the observed map features; after the initialization, however, the surface pressure has been considerably modified. The model produced a reasonably good forecast up to 24 hr as far as the flow fields, rainfall region, structure of the depression and the movement of cyclonic circulation were concerned and beyond that damped rapidly. The rainfall rates were underestimated. Some of the shortcomings of the model are also discussed.  相似文献   

15.
Between 1941 and 2002 there has been a decreasing trend in the frequency of monsoon disturbances (MDs) during the summer monsoon season (June–September). This downwards trend is significant at the 99.9% level for the main monsoon phase (July–August) and the withdrawal phase (September); however, it is not significant during the onset phase (June). The variability in rainfall over the homogeneous regions of India on the sub-seasonal scale also shows a significant decreasing trend with respect to the amount of rainfall over Northwest India (NWI) and Central India (CEI) during all three phases of the monsoon. Meteorological observations reveal that there has been an eastward shift of the rainfall belt with time over the Indian region on the seasonal scale and that this shift is more prominent during the withdrawal phase. This decreasing trend in MDs together with its restricted westerly movement seem to be directly related to the decreasing trend in rainfall over CEI during both the main monsoon and withdrawal phases and over NWI during the withdrawal phase. The low-level circulation anomalies observed during two periods (period-I: 1951–1976; period-ii: 1977–2002) are in accordance with the changes in rainfall distribution, with comparatively more (less) rainfall falling over NWI, CEI and Southern Peninsular India (SPI) during period-I (period-ii), and are accompanied by a stronger (weaker) monsoon circulation embedded with an anomalous cyclonic (anti-cyclonic) circulation over CEI during the main monsoon and withdrawal phases. During the onset phase, completely opposite circulation anomalies are observed during both periods, and these are associated with more (less) rainfall over NWI, CEI and SPI during period-ii (period-I).  相似文献   

16.
Spatial variability of aridity over northern India (north of 20°N) is studied by examining variations in the arid area. Area with an objectively determined summer monsoon rainfall (June to September total) of less than 500 mm is identified as arid area. The summer monsoon rainfall of 212 rain-gauges from 212 districts of the region for the period 1871–1984 are used in the analysis. An interesting feature of the arid area series is that it shows decreasing trend from beginning of the present century. The summer monsoon rainfall fluctuations over five subjectively divided zones over northern India are examined to understand the association between rainfall and the arid area variations. The rainfall series for northwest India shows a significant increasing trend and that for northeast India a significant decreasing trend from the beginning of this century. Rainfall fluctuations over the remaining zones can be considered intermediate stages of a systematic spatial change in the rainfall pattern. This suggested that the recent decreasing trend in the arid area is due to a westward shift in the monsoon rainfall activities. From correlation analyses it is inferred that perhaps the recent decreasing trend in the arid area and increasing trend in the monsoon rainfall over northwest India are associated with a warming trend of the northern hemisphere.  相似文献   

17.
Large-scale interannual variability of the northern summer southwest monsoon over India is studied by examining its variation in the dry area during the period 1871–1984. On the mean summer monsoon rainfall (June to September total) chart the 800 mm isohyet divides the country into two nearly equal halves, named as dry area (monsoon rainfall less than 800 mm) and wet area (monsoon rainfall greater than 800 mm). The dry area/wet area shows large variations from one year to another, and is considered as an index for assessing the large-scale performance of the Indian summer monsoon. Statistical and fluctuation characteristics of the summer monsoon dry area (SMDA) are reported. To identify possible causes of variation in the Indian summer monsoon, the correlation between the summer monsoon dry area and eleven regional/global circulation parameters is examined. The northern hemisphere surface air temperature, zonal/hemispheric/global surface air and upper air temperatures, Southern Oscillation, Quasi-biennial oscillation of the equatorial lower stratosphere, April 500-mb ridge along 75°E over India, the Indian surface air temperature and the Bombay sea level pressure showed significant correlation. A new predictor parameter that is preceding year mean monsoon rainfall of a few selected stations over India has been suggested in the present study. The stations have been selected by applying the objective technique ‘selecting a subset of few gauges whose mean monsoon rainfall of the preceding year has shown the highest correlation coefficient (CC) with the SMDA’. Bankura (Gangetic West Bengal), Cuddalore (Tamil Nadu) and Anupgarh (West Rajasthan) entered the selection showing a CC of 0.724. Using a dependent sample of 1951–1980 a predictive model (multiple CC = 0.745) has also been developed for the SMDA with preceding year mean monsoon rainfall of the three selected stations and the sea level pressure tendency at Darwin from Jan–Feb to Mar–May as independent parameters.  相似文献   

18.
黄安宁  张耀存  朱坚 《地球科学进展》2008,23(11):1174-1184
系统地分析了不同陆面过程、辐射传输以及积云对流参数化方案对区域气候模式模拟中国夏季降水日变化能力的影响,发现日内最大标准化降水及其出现时刻的模拟对不同模式物理过程的组合方案敏感。陆面过程、辐射传输参数化方案只影响降水强度的模拟,而对降水日变化形式和峰值出现时间模拟的影响较小, 降水日变化形式的模拟对积云对流参数化方案敏感且与模拟区域的选择关系密切。Grell方案对青藏高原东部、长江中游地区夏季降水的日变化特征具有较好模拟能力,Kuo和Anthes Kuo方案较好地模拟出了东北、华南地区夏季降水的日变化特征,BM方案仅能模拟华南地区夏季降水的日变化特征。4种积云对流参数化方案均不能模拟出江淮—华北地区夏季降水日变化的双峰值结构。  相似文献   

19.
The Weather Research and Forecasting model was used to test the sensitivity of Typhoon Haiyan (2013) to the use of a cumulus parameterization scheme, specifically the revised Kain–Fritsch (rKF) scheme, at high horizontal resolutions with grid spacing varying from 9 to 2 km. The rKF scheme simulated the typhoon in best agreement with the observation compared with other schemes, but some fundamental drawbacks relating the rKF scheme, e.g., neglecting the momentum adjustment and being less applicable to high-resolution modeling than multi-scaled schemes, could influence the results and were discussed. Initial results showed that the typhoon track simulations benefited little from the use of the rKF scheme or a fine resolution, partially because of the similar large-scale steering flows induced by the analyzed boundary conditions used in each simulation. The influences of using the rKF scheme on typhoon intensity, size, structure, and precipitation were dependent on the grid spacing, and the most apparent changes occurred near a grid length of 4 km. At 9–4-km grid spacings, using the rKF scheme produced typhoons much stronger with more rainfall and surface latent heat flux than did using no cumulus parameterization scheme. At 3- or 2-km grid spacing, using the rKF scheme caused little changes on typhoon intensity, and the changes in precipitation and surface latent heat flux were relatively small. These results suggested that the grid spacing of 2 km for simulations using no cumulus parameterization scheme or the grid spacing of 4 km for simulations using the rKF scheme facilitated reproducing the observed Typhoon Haiyan.  相似文献   

20.
The present study explored the effect of assimilation of Advanced TIROS Vertical Sounder (ATOVS) temperature and humidity profiles and Spectral sensor microwave imager (SSM/I) total precipitable water (TPW) on the simulation of a monsoon depression which formed over the Arabian Sea during September 2005 using the Weather Research and Forecast model. The three-dimensional variational (3DVAR) data assimilation technique has been employed for the purpose of assimilation of satellite observations. Statistical scores like “equitable threat score,” “bias score,” “forecast impact,” and “improvement parameter” have been used to examine the impact of the above-mentioned satellite observations on the numerical simulation of a monsoon depression. The diagnostics of this study include verification of the vertical structure of depression, in terms of temperature anomaly profiles and relative vorticity profiles with observations/analysis. Additional diagnostics of the study include the analysis of the heat budget and moisture budget. Such budget studies have been performed to provide information on the role of cumulus convection associated with the depression. The results of this study show direct and good evidence of the impact of the assimilation of the satellite observations using 3DVAR on the dynamical and thermodynamical features of a monsoon depression along with the effect of inclusion of satellite observation on the spatial pattern of the simulated precipitation associated with the depression. The “forecast impact” parameter calculated for the wind speed provides good evidence of the positive impact of the assimilation of ATOVS temperature and humidity profiles and SSM/I TPW on the model simulation, with the assimilation of the ATOVS profiles showing better impact in terms of a more positive value of the “forecast impact” parameter. The results of the study also indicate the improvement of the forecast skill in terms of “equitable threat score” and “bias score” due to the assimilation of satellite observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号