首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the interaction between Cr(VI) and a Fe-rich soil in the presence of low-molecular-weight organic acids as a function of pH. Oxalic and tartaric acids were chosen since they existed in soils commonly. Batch experiments showed that adsorption of Cr(VI) by the soil within the pH range examined was inhibited in the presence of oxalic acid, which was more pronounced when the initial ratio of [oxalic acid]/[Cr(VI)] was raised from 1:1 to 2:1. With the addition of tartaric acid, concentration of Cr(VI) in equilibrium solutions was far less than that of single adsorbate system across the pH wide (2.5–5.5), which was noticeable especially at low pH. The results were attributed to Cr(VI) adsorption and, particularly, the soil surface catalyzed reduction of Cr(VI) to Cr(III) by tartaric acid. The data reported in this paper suggested that the mobility, the bioavailability, and the toxicity of Cr(VI) in soil environments might be greatly affected by pH, the presence and nature of low-weight-molecular organic acids (oxalic and tartaric acids).  相似文献   

2.
In water repellent soil, Cr, Pb and Cu showed higher adsorption intensities than Zn, Cd and Ni did. Soil water repellency is much more widespread than formerly thought. In order to promote fertility and productivity, the irrigation of recycled water onto water repellent soil may be an applied technology to be used in some areas of Southern Australia. Therefore, heavy metals in recycled water potentially enter into the soil. The competitive sorption and retention capacity of heavy metals in soil are important to be determined, especially considering the special geochemical origin of water repellent soil that was caused by waxes on or between the soil particles. Batch equilibrium sorption experiments on Cd, Cr, Cu, Ni, Pb and Zn in their typical proportion in recycled water were conducted in water repellent soil. The sorption intensity, sorption isotherm in the experiments together showed that Cr, Pb and Cu have higher sorption intensity than those of Zn, Ni and Cd in the competitive system. The risk assessment for the application of recycled water onto water repellent soil is definitely necessary, especially for the metal cations with relatively weak sorption.  相似文献   

3.
 The potential use of treated solid by-product of oil shale to treat aqueous solutions containing several heavy metals, i.e., Cd(II), Cu(II), Cr(III), Ni(III), Pb(II) and Zn(II), was explored. Different experimental approaches including equilibrium batch mode experiments and X-ray fluorescence (XRF) were used to explore the feasibility of this material as a cheap adsorbent for the removal of these heavy metals from predetermined solutions. Results indicate that the solid by-product of oil shale removes Cd(II), Cu(II), Ni(II), and Pb(II), from aqueous solutions by adsorption, but did not remove the other heavy metals investigated in this study. Received: 20 April 1998 · Accepted: 20 November 1998  相似文献   

4.
Kinetics and equilibrium study of chromium adsorption on zeoliteNaX   总被引:2,自引:1,他引:1  
This study aims to report Batch adsorption study of hexavalent chromium, Cr (VI) on zeoliteNaX. Kinetics of Cr (VI) adsorption and adsorption isotherms were determined by varying operating parameters such as pH, initial concentration, temperature and contact time. ZeoliteNaX was found to remove Cr (VI) in acidic solutions down to ppm level at pH of about 4. Removal rate of Cr (VI) was found to decrease as pH rises above 4.0. Langmuir, Freundlich, Temkin and Redlich-Peterson models were applied to adsorption equilibrium data to find the best amongst these models. Langmuir model with R2 = 0.9711 best fits the adsorption data. The kinetics of adsorption was found to follow the first order reversible reaction. The separation parameter, RL values of less than 1.0 i.e., 0.7369, 0.5834 and 0.4828 corresponding to initial concentrations of 10, 20 and 30 mg/L, respectively indicated that adsorption of Cr (VI) on zeoliteNaX is favoured. The estimated values of thermodynamic parameters such as heat of adsorption and standard gibbs free energy confirmed the exothermic nature of adsorption of Cr (VI) on zeoliteNaX.  相似文献   

5.
In most mining areas, significant concentrations of metals such as Pb, Cu, Cr, Zn, Cd, Fe, Mn, Co, Ni, Hg, Ar, halogenated organic compounds and radionuclides are found. Of those, Cr is one of the well-known heavy metals that forms toxic species. It is necessary to study the mobilization and accumulation of Cr at the sediment water interface in an electric field at varying different positions and conditions of the electrode arrangement. The tests were carried out with a natural sediment containing heavy metals from the river Weisse Elster (Germany). The electrokinetic experiments have been performed in columns filled with sediment using electrodes made of conductive polymers (polyethylene with carbon black) at a maximum current density of 0.5 mA/cm2. The experimental results suggest that the mobilization and accumulation of Cr highly depends on chemical factors for e.g., pH value, redox potential, respectively redox status and the content of Fe, A1 and organic matter in the soil or sediment. The sorption of Cr (III, VI) is very high in the pH range > 4.5. As expected, a high mobilization of Cr (III, VI) was seen in the case of the experiments with the anode at the sediment, because the pH value was lower than mentioned above. On the opposite, the best conditions for the Cr (III, VI) immobilization is high pH values (cathode at the sediment).  相似文献   

6.
Reducing heavy metal concentrations to allowable levels in landfill leachate before discharge is an extremely important process to prevent environmental pollution. Iron oxide-coated gravel was used in order to remove Cd(II), Cu(II), Pb(II), Fe(III) and Al(III) simultaneously in high-strength synthetic leachate samples. Batch and column studies were performed to determine the kinetics and mechanism of adsorption process. The experimental data obtained from batch study satisfactorily fitted to the Freundlich model indicating surface heterogeneity and multilayer adsorption process. The data obtained from kinetic studies followed the pseudo-second-order kinetics indicating adsorption governed by chemisorption. The metal adsorption order observed in the batch study was Pb(II)(99.72%) ≈ Cu(II)(99.61%) ≈ Cd(II)(99.51%) ≈ Fe(III)(99.3%) > Al(III)(93.3%) at pH 7. Average metal removals in the fixed-bed column were found to be 96.5% for Cu(II), 94.8% for Pb(II), 90% for Cd(II), 84% for Fe(III) and 67% for Al(III). Iron oxide-coated gravel column adsorption capacity ranged from 0.56 to 66.82 mg/g. Recovery efficiency of adsorbed metals via desorption was between 5–97.75% in first cycle and 2–80.3% in second cycle.  相似文献   

7.
The development of a fast, effective, simple and low-cost procedure for chromium speciation is an analytical challenge. In this work, a new and simple method for speciation and determination of chromium species in different matrices was developed. Sepia pharaonis endoskeleton nano-powder was used as an adsorbent for the dispersive micro-solid-phase extraction. Finally, the desorbed chromium was determined using a graphite furnace atomic absorption spectrometer. The experimental results showed that Cr(III) could be quantitatively extracted by the adsorbent, while Cr(VI) adsorption was negligible. Concentrated H2SO4 and ethanol reduced Cr(VI)–Cr(III), and total chromium content was assessed as Cr(III). Then, the Cr(VI) concentration in the sample was calculated as the difference. The optimum conditions were obtained in terms of pH, adsorbent amount, contact time, and type, concentration and volume of eluent. Under the optimum conditions that involved the speciation of chromium ions from 25 mL of the water samples at pH 7.0 using 0.025 g of the adsorbent with contact time of 5 min, the method was validated in terms of linearity, precision and accuracy. The calibration curve was linear over the concentration range of 0.01–25.00 μg L?1 for Cr(III). The obtained limit of detection for the proposed method was 0.003 µg L?1. The maximum adsorption capacity of the adsorbent was found to be 995.57 mg g?1. The proposed method was validated by the speciation of Cr(III) and Cr(VI) in different real water and wastewater samples with satisfactory results.  相似文献   

8.
During the manufacturing of chromate salts (1972–1992) large quantities of Chromite Ore Processing Residue (COPR) were released into a decantation pond east of the former chemical plant of Porto-Romano (Durres, Albania), giving rise to yellow colored pond sediments. These Cr(VI) bearing sediments were deposited upon Quaternary silty-clay lagoonal sediments rich in iron oxides and organic matter. The pH values in these lagoonal sediments vary around 6.6, while in the pond sediments, it is mainly acidic (due to the presence of the sulfur stock piles in the area and the release of the H2SO4 from the activity of the former chemical plant), varying between 1.4 and 3.8. Continuous leaching of the COPR waste resulted in yellow-colored surface water runoff. The prediction of pH changes in the different types of sediments based upon acid/base neutralizing capacity (ANC/BNC) jointly with the quantitative data on release of heavy metals and especially Cr is considered an important advantage of the pHstat leaching test if compared to conventional leaching procedures. Thus, factors controlling the leaching of Cr(VI), Cr(III), Ca, Al, Fe, Mg from the COPR were investigated by means of pHstat batch leaching tests and mineralogical analysis. Moreover, mathematical and geochemical modeling complemented the study. The COPR in the area contain very high concentrations of chromium 24,409 mg/kg, which mainly occurs as Cr(III) (75–90%) as well as Cr(VI) (25–10%). The leaching of Cr(VI) occurs in all the range (2–10) of the tested pH values, however, it decreases under acidic conditions. Beside some reduction of Cr(VI) to Cr(III), the Cr(VI) content of the leachtes remains relatively high in the acidic environment, while the limning of Cr(VI) pond sediments will increase the release of the latter specie. The leaching of the Cr(III) occurs strictly under acidic conditions, whereby limning of these sediments will give rise to the lower solubility of Cr(III). The key mineral phases responsible for the fast release of the Cr(VI) are: the chromate salts (i.e. sodium chromate and sodium dichromate), while sparingly soluble chromatite (CaCrO4) and hashemite (BaCrO4) release Cr(VI) very slowly. Thus, pH and mineral solubility have been identified as key factors in the retention and the release of the hexavalent CrO4 2− and Cr2O7 from the COPR-rich pond sediments.  相似文献   

9.
Sorption of metals on humic acid   总被引:1,自引:0,他引:1  
The sorption on humic acid (HA) of metals from an aqueous solution containing Hg(II). Fe(III), Pb, Cu, Al, Ni, Cr(III), Cd, Zn, Co and Mn, was investigated with special emphasis on effects of pH, metal concentration and HA concentration. The sorption efficiency tended to increase with rise in pH, decrease in metal concentration and increase in HA concentration of the equilibrating solution. At pH 2.4. the order of sorption was: Hg? Fe? Pb? CuAl ? Ni ? CrZnCdCoMn. At pH 3.7. the order was: Hg and Fe were always most readily removed, while Co and Mn were sorbed least readily. There were indications of competition for active sites (CO2H and phenolic OH groups) on the HA between the different metals. We were unable to find correlations between the affinities of the eleven metals to sorb on HA and their atomic weights, atomic numbers, valencies, and crystal and hydrated ionic radii. The sorption of the eleven metals on the HA could be described by the equation Y = 100[1 + exp ? (A + BX)], where Y = % metal removed by HA; X = mgHA; and A and B are empirical constants.  相似文献   

10.
Tropical peat soils present higher ash content than those generated at temperate climate areas. Therefore, this study evaluated the characteristics of a Brazilian organic soil (OS), commercialized as peat, as well as its capacity in removing Cr(VI) from contaminated waters. The OS is composed of 35.5 wt% of organic matter and 56 wt% of inorganic fraction (ash), which is formed by minerals and phytoliths rich in silica (29.2 wt%) and alumina (23.6 wt%). The Cr(VI) removal tests were carried out in batch and column systems using OS and solutions of Cr(VI) prepared with distilled water and groundwater. Batch tests revealed that the organic substances in the OS caused the reduction of Cr(VI) to Cr(III), with an efficiency depending on solution pH. At pH 5.0 the Cr(VI) removal was 0.45 mg g?1 in 24 h; whereas at pH 2.0, this removal increased to 1.10 mg g?1. Since this redox reaction is very slow, the removal of Cr(VI) at pH 5.0 increased to around 2 mg g?1 after 5 days. The removal of Cr(VI) was more effective in the column tests than in the batch test due to the greater solid/solution ratio, and their half-lives were 4.4 and 26.2 h, respectively. Chemical analysis indicated that Cr(VI) was reduced by the humic substances of OS, followed by the precipitation and/or adsorption of Cr(III) into the organic and inorganic components, as anatase. The presence of Cr(III) increased the stability of anatase structure, avoiding its transformation into rutile, even after being heated at 800 °C/2 h.  相似文献   

11.
唐晓武  刘晶晶  王艳 《岩土力学》2013,34(8):2136-2142
铬是一种重金属痕量元素,人体通过食物链摄入过量的铬会在人体内富集,随之产生中毒反应。研究Cr(III)的浓度、反应时间、反应温度、pH值等因素对Cr(III)在黄土上吸附特性的影响,结果表明黄土对Cr(III)的吸附非常迅速,并且吸附量非常大,等温吸附模型Freundlich和Dubinin-Radushkevich(D-R)模型都能很好地解释Cr(III)在黄土上的吸附过程。热动力学分析表明,吸附是一个自发的过程,升温可促进吸附作用的进行。随着温度的不断升高,Cr(III)的吸附量逐渐增大。溶液的pH值是影响Cr(III)吸附效果的一个重要因素,当pH>6时,Cr(III)几乎完全被去除。利用X光衍射图谱和红外光谱分析,探讨黄土与Cr(III)的结合机制,黄土中的高岭土、石英等黏土矿物以及有机质成分对吸附过程起重要作用。  相似文献   

12.
A novel adsorbent for heavy metal remediation in aqueous environments   总被引:9,自引:8,他引:1  
The objective of this study was to investigate the possibility of using maize tassel as an alternative adsorbent for the removal of chromium (VI) and cadmium (II) ions from aqueous solutions. The effect of pH, solution temperature, contact time, initial metal ion concentration and adsorbent dose on the adsorption of chromium (VI) and cadmium (II) by tassel was investigated using batch methods. Adsorption for both chromium (VI) and cadmium (II) was found to be highly pH dependent compared to the other parameters investigated. Obtained results gave an adsorption capacity of 79.1 % for chromium (VI) at pH 2, exposure time of 1h at 25 °C. Maximum capacity of cadmium of 88 % was obtained in the pH range of 5-6 at 25 °C after exposure time of 1 h. The adsorption capacities of tassel for both chromium (VI) and cadmium (II) were found to be comparable to those of other commercial adsorbents currently in use for the removal of heavy metals from aqueous wastes. These results have demonstrated the immense potential of maize tassel as an alternative adsorbent for toxic metal ions remediation in polluted water and wastewater.  相似文献   

13.
An investigation on spatial distribution, possible pollution sources, and affecting factors of heavy metals in the urban–suburban soils of Lishui city (China) was conducted using geographic information system (GIS) technique and multivariate statistics. The results indicated that the topsoils in urban and suburban areas were enriched with metals, such as Cd, Cu, Pb, and Zn. Spatial distribution maps of heavy metal contents, based on geostatistical analysis and GIS mapping, indicated that Cd, Cr, Cu, Mn, Ni, Pb, and Zn had similar patterns of spatial distribution. Their hot-spot areas were mainly concentrated in the densely populated old urban area of the city. Multivariate statistical analysis (correlation analysis, principal component analysis, and clustering analysis) showed distinctly different associations among the studied metals, suggesting that Cr, Cu, Ni, Pb, Cd, and Zn had anthropogenic sources, whereas Co and V were associated with parent materials and therefore had natural sources. The Cd, Cr, Ni, Pb, and Zn contents were positively correlated with soil organic matter, pH, and sand content (p < 0.01). It is concluded that GIS and multivariate statistical methods can be used to identify hot-spot areas and potential sources of heavy metals, and assess soil environment quality in urban–suburban areas.  相似文献   

14.
We have used synchrotron-based soft X-ray core-level photoemission and adsorption spectroscopies to study the reaction of aqueous sodium chromate solutions with freshly fractured pyrite surfaces. Pyrite surfaces were reacted with 50 μM sodium chromate solution at pH 7 for reaction times between 1 min and 37 hr. Additional experiments were performed at pH 2 and pH 4 with 50 μM sodium chromate solutions and at pH 7 with 5 mM solutions. At chromate concentrations of 50 μM, all chromium present on the pyrite surface was in the form of Cr(III), while at 5 mM, both Cr(III) and Cr(VI) were present at the pyrite surface. Minor quantities of oxidized sulfur species (sulfate, sulfite, and zero-valent sulfur) were identified as reaction products on the pyrite surface. The amount of oxidized sulfur species observed on the surface was greater when pyrite was reacted with 5 mM Cr(VI) solutions because the rate of chromium deposition exceeded the rate of dissolution of pyrite oxidation products, effectively trapping Cr(VI) and oxidized sulfur species in an overlayer of iron(III)-containing Cr(III)-hydroxide. This work shows that pyrite, an extremely cheap and readily available waste material, may be suitable for the removal of hexavalent chromium from acidic to circumneutral waste streams. The reduced chromium ultimately forms a coating on the pyrite surface, which passivates the pyrite surface towards further oxidation.  相似文献   

15.
The mobility of toxic metals in soils or sediments is of great concern to scientists and environmentalists since it directly affects the bioavailability of metals and their movement to surface and ground waters. In this study, a multi-surface soil speciation model for Cd (II) and Pb (II) was developed to predict the partition of metals on various soil solid components (e.g. soil organic matter (SOM), oxide mineral, and clay mineral). In previous study, the sorption of metal cations on SOM and oxide minerals has been evaluated by thermodynamically based surface complexation model. However, metal binding to soil clay fractions was normally treated in a simplistic manner: only cation exchange reactions were considered and exchange coefficient was assumed unity. In this study, the binding of metals onto clays was described by a two-site surface sorption model (a basal surface site and an edge site). The model was checked by predicting the adsorption behavior of Cd (II) and Pb (II) onto three selected Chinese soils as a function of pH and ionic strengths. Results showed that the proposed model more accurately predicted the metal adsorption on soils under studied condition, especially in low ionic strength condition, suggesting that adsorption of metals to soil clay fractions need to be considered more carefully when modeling the partition of trace elements in soils. The developed soil speciation model will be useful when evaluating the movement and bioavailability of toxic metals in soil environment.  相似文献   

16.
The historical disposal of acidic chromium sulfate solutions into unlined lagoons between 1953 and 1970 at an industrial site resulted in formation of a dense aqueous phase liquid (DAPL) plume [specific gravity 1.11 g/cm3, pH 3, up to 4700 mg/L Cr(III), and up to 90,000 mg/L SO4]. The DAPL sank through the shallow glacial till aquifer to an underlying impermeable gneissic bedrock from where it migrated downgradient along buried channels incised in the bedrock. Because of its high density, the plume chemistry is sharply stratified vertically. Chromium(III) predominates in the DAPL because excess Cr(VI) not reduced in the original process has been reduced by Fe(II) derived from silicates, while Cr(OH)3(am) occurs as surface coatings on silicate minerals and as discrete particles mixed with Fe(OH)3(am) and Al(OH)3(am). The solubility of Cr(OH)3(am) accurately describes Cr(III) concentrations in the plume and nearby groundwater, while Al and Fe in solution are also consistent with solubility-controlling oxyhydroxides. Because of these solubility controls, metal cations are attenuated relative to more mobile Cl and SO4, resulting in a chromatographic separation of solutes downgradient from the plume origin. The good agreement between predicted and observed solution concentrations illustrates the utility of equilibrium modeling when interpreting metal transport characteristics and in determining the efficacy of natural attenuation in subsurface systems.  相似文献   

17.
Soil samples from chromite mining site and its adjacent overburden dumps and fallow land of Sukinda, Odisha, were analysed for their physico-chemical, microbial and metal contents. Chromite mine soils were heterogenous mixture of clay, mud, minerals and rocks. The pH of the soils ranges between 5.87 and 7.36. The nutrient contents of the mine soils (N, P, K and organic C) were found to be extremely low. Analysis of chromite mine soils revealed accumulation of a number of metals in high concentrations (Fe > Cr > Mn > Ni > Zn > Pb > Sr) which exceeded ecotoxicological limits in soil. Correlation and cluster analysis of metals revealed a strong relation between Cr, Ni, Fe, Mn among the different attributes studied. Assessment of different microbial groups such as fungi, actinomycetes and bacteria (heterotrophic, spore forming, free-living nitrogen fixing, phosphate solubilising and cellulose degrading) from mine soils were found to be either extremely low or absent in some soil samples. Further chromium tolerant bacteria (CTB) were isolated using 100 mg/L Cr(VI) enriched nutrient agar medium and were screened for their tolerance towards increasing concentrations of hexavalent chromium and other toxic metals. Out of 23 CTB isolates, three bacteria tolerated up to 900 mg/L, 6 up to 500 mg/L, 20 up to 200 mg/L of Cr(VI). These bacteria were also found to be sensitive towards Cu > Co > Cd and very few CTB strains could show multiple metal tolerance. These strains have great scope for their application in bioremediation of toxic chromium ions in presence of other metals ions, which needs to be explored for their biotechnological applications.  相似文献   

18.
Many studies have been conducted on model transfer in soil–plant systems. However, relatively little information is available on modeling metal transfer in soil–rice system and associated risk assessment in real paddy fields. Based on a random sampling method from Nanxun, Shengzhou and Wenling in Zhejiang province, China, 15 pairs of rice and the corresponding soil samples were respectively collected for analysis of heavy metals and soil pH. The results showed that the accumulation ability of rice for different heavy metals was significantly different (p < 0.05), and was in the order of Cd > Zn > Cu > Ni > Cr > Pb. The relationships of heavy metals in rice with those in soil, along with soil pH, were well described by linear regression models. Except for Pb, the contents of most metals in rice were positively correlated with those of the soil. Soil pH was negatively correlated with the contents of Cd, Zn and Ni in rice, and positively correlated with Pb in rice; however, it had less effect on Cr and Cu. Based on risk reference dose (RfD), the risk assessment data indicated that the rice grown in Zhejiang paddy fields does pose some potential Cd and Cr contamination risk to food safety; rice in Shengzhou posed light Ni risk.  相似文献   

19.
 The Yamuna River sediments, collected from Delhi and Agra urban centres, were analysed for concentration and distribution of nine heavy metals by means of atomic adsorption spectrometry. Total metal contents varied in the following ranges (in mg/kg): Cr (157–817), Mn (515–1015), Fe (28,700–45,300), Co(11.7–28.4), Ni (40–538), Cu (40–1204), Zn (107–1974), Pb (22–856) and Cd (0.50–114.8). The degree of metal enrichment was compared with the average shale concentration and shows exceptionally high values for Cr, Ni, Cu, Zn, Pb and Cd in both urban centres. In the total heavy metal concentration, anthropogenic input contains 70% Cr, 74% Cu, 59% Zn, 46% Pb, 90% Cd in Delhi and 61% Cr, 23% Ni, 71% Cu, 72% Zn, 63% Pb, 94% Cd in Agra. A significant correlation was observed between increasing Cr, Ni, Zn, and Cu concentrations with increasing total sediment carbon and total sediment sulfur content. Based on the Müller's geoaccumulation index, the quality of the river sediments can be regarded as being moderately polluted to very highly polluted with Cr, Ni, Cu, Zn, Pb and Cd in the Delhi and Agra urban centres. The present sediment analysis, therefore, plays an important role in environmental measures for the Yamuna River and the planning of these city centres. Received: 21 June 1999 · Accepted: 1 October 1999  相似文献   

20.
The adsorption of five toxic metallic cations, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), onto montmorillonite was investigated as a function of pH and ionic strength and a two-site surface complexation model was used to predict the adsorption data. The results showed that in the lower pH range, 3∼6 for Cd, Cu, Ni and Zn, and 3∼4.5 for Pb, the adsorption was greatly affected by ionic strength, while in the higher pH range, the adsorption was not. In the lower pH range, the metallic cations were mainly bound through the formation of outer-sphere surface on the permanently charged basal surface sites (≡X), while in the higher pH range the adsorption occurred mainly on the variably charged edge sites (≡SOH) through the formation of inner-sphere surface complexes. Acid-base surface constants and metal binding constants for the two sites were optimized using FITEQL. The adsorption affinity of the five metallic cations to the permanently charged sites of montmorillonite was Pb > Cu > Ni ≈ Zn ≈ Cd, while that to the variable charged sites was Pb ? Cu > Zn > Cd > Ni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号