首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
将WGS-84坐标转为北京54坐标的一种实用方法   总被引:1,自引:0,他引:1  
在野外地质工作中,空间信息的采集离不开GPS(Global Positioning System),对其数据结果的利用,需要进行坐标转换。这里详细讨论了将WGS-84坐标转换为北京54坐标的转换原理。在讨论了空间坐标转换模型和平面坐标转换模型的基础上,给出了一种简洁适用的坐标转换方法,并通过实例验证了这种转换方法的可行性。  相似文献   

2.
北京54坐标系转换西安80坐标系的Cass方法   总被引:2,自引:0,他引:2  
在一个地区内查找3个或3个以上北京54坐标系和西安80坐标系的已知重合点的坐标,然后利用Cass软件中坐标转换系统求解54坐标系与80坐标系转换的7个参数。此方法简单准确,用此参数可以进行该地区两个坐标系之间的转换。  相似文献   

3.
利用布尔莎七参数转换模型对全国矿业权实地核查中的北京54坐标系和西安80坐标系间坐标的转换进行了实例演算。介绍了布尔莎七参数转换函数模型、坐标转换方法及公共点的选取和精度评定。  相似文献   

4.
李华平  张红梅  章捷 《安徽地质》2009,19(4):311-313
在工程测量中我们会遇到很多关于两个坐标系统之间的坐标转换,为了更好的解决这个问题,该文通过宁安城际铁路工程实例,运用Powercoor转换软件,快速计算实现铁路系统北京54坐标与芜湖当地坐标之间的转换。  相似文献   

5.
用手持式GPS自带的数据传输软件Mapsource,计算其坐标系转换参数,以追求最佳转换参数为目的,将计算由野外转到室内,通过转换参数与坐标误差之间的线性关系,建立转换参数的计算模型并优化,可达到任意区域WGS-84坐标与北京54、西安80坐标的简便转换,本文还对参数的适用范围做出分析。该计算模型简单,方法可靠,转换精度良好,适用范围分析合理。  相似文献   

6.
54与80坐标系转换数学模型研究   总被引:3,自引:0,他引:3  
张书煌 《福建地质》2004,23(1):9-20
54北京坐标系与80西安坐标系转换计算,属54系与80系不同参考椭球下高斯—克吕格投影数据转换计算,因全国不同区域重力场的变化而无法用一个固定的参数或公式推算,能否另辟途径实现其精确算法。应用多元统计分析基础理论,研究二者互换随机数学模型,以福建省区域为例,成功实现大批数据坐标转换。  相似文献   

7.
手持GPS坐标系转换方法   总被引:7,自引:0,他引:7  
导航型手持GPS目前在中小比例地质调查等领域得到广泛应用,由于坐标系之间存在差异,在实际应用过程中,必须将手持机的WGS84坐标系转换为我国应用的BJ54或西安80坐标系。坐标转换的准确与否,直接影响到工程测量定位的精度,传统的坐标转换计算所需要的起算资料不易收集,计算过程过于繁琐,非专业人员难以掌握。本文根据收集的三角点BJ54坐标(或西安80坐标),和现场测定的过渡坐标,求出各参数在本工作地区的变化率,建立参数方程,反向求出适合于当地的各项改正参数,方法简便易行,为手持GPS定位的坐标转换方法提出一种新的思路。  相似文献   

8.
我国常用的大地坐标系有北京54、西安80、国家2000、WGS84等,在实际工作中,常常会遇到测量点野外采集坐标与实际提交成果坐标的坐标系不一致、不同坐标系的数据资料需要匹配,选择适当的换算方法进行坐标系转换后才能使用。本文结合工作实际,将野外GPS采集到测量点的WGS84坐标,选用布尔莎七参数法转换,并阐述了坐标转换的原理和流程,浅析了坐标系转换中常见的认识误区,有一定的实用意义。  相似文献   

9.
由于历史原因,现阶段已有的地质、物化探成果的坐标系统基本为WGS84、BJ54或Xi'an80系统,而根据国家测绘局关于全面使用CGCS2000坐标的要求,今后取得的各类成果的坐标系统应为CGCS2000坐标,这为已有成果的利用和综合研究的工作带来不便。Arc GIS作为一款专业的地理信息系统软件,在各行各业有着广泛的应用。笔者在简要介绍了Arc GIS内置坐标系统的同时,研究并推导了Arc GIS软件中莫洛金斯基坐标转换方法的计算公式,提出了不同椭球之间转换参数的求取及转换精度评定的方法,并通过实例进行验证。在此基础上,分析了各坐标系统在Arc GIS软件中向CGCS2000转换的具体思路及注意事项。  相似文献   

10.
田昊  李艳 《吉林地质》2014,(1):138-140
在野外地质测量工作中,使用手持GPS(它属于WGS-84大地坐标系)导航时,当需要尽可能高精度的测量时,需要根据已知道的当地参数,和最近的已知点坐标(1954年北京坐标系或1980西安坐标系),通过计算,求取坐标转换的3个参数。  相似文献   

11.
GPS测量在石油物探中的应用探讨   总被引:1,自引:0,他引:1  
石油物探GPS测量的主要任务是建立平面、高程控制,作为石油物探测量的控制依据,为石油地球物理勘探提供1954年北京坐标系和1956年黄海高程系的野外点位、成果数据及相关图件。GPS测量采用的是WGS-84坐标系统,阐述如何将GPS测量成果转换为高斯正投影成果的应用。  相似文献   

12.
我国于2008年7月1日正式启用了CGCS2000坐标系,而地矿部门一直以来仍沿用1954年北京坐标系。为实现不同坐标系图件成果的有效共享,必须对地质物化探图件进行不同坐标系的相互转换。为此,笔者介绍利用MapGIS实现不同坐标系图件成果相互转换的方法,并通过真实数据对转换精度进行分析。试验结果表明,这种方法用于不同坐标系图件的转换是完全可行的。  相似文献   

13.
矿业权实地核查工作流程主要包括前期准备工作、控制测量、矿权坐标转换、矿区控制加密与工程测量、问题分析-报告与处理、露天采矿权界桩测设、内业数据整理、提交成果等8个环节.其中控制测量、矿权坐标转换、矿区控制加密与工程测量是矿业权核查工作过程中的关键环节.  相似文献   

14.
Global Mapper支持多种格式的光栅、高程、矢量数据的读取与输出,并内置多种坐标投影方式。尝试挖掘其支持多种数据格式、多种投影模式的功能,快速实现测绘图形数据的转换。通过设置当前工作空间的坐标投影模式,然后打开任何其支持的、含有坐标投影信息的数据,所有数据均自动转换成当前的投影模式,最后将文件输出(另存为)为所需的格式,即可快速完成数据转换。转换的内容主要包括不同格式的DTM(Digital Terrain Model,数字地面模型)数据转换、相同格式但不同坐标投影之间的相互转换,以及卫星影像配准等  相似文献   

15.
在物探化探工作中,所有的测点在陆地、海洋、空中均有它唯一的空间位置。在工作的不同阶段,测点位置按工作设计要求采用不同的方式予以标示。在实地观测时,测点定位采用全球定位系统GPS(DGPS),由大地坐标系的大地坐标标示测点位置。在展示工作成果时,则采用投影坐标系的平面直角坐标标示测点位置。这里介绍了大地坐标系、常用投影坐标系的建立与特征,投影坐标系的选择与应用,不涉及具体的计算公式。  相似文献   

16.
利用不同的解算软件,采用三维七参坐标转换模型和二维四参坐标转换模型,把1980西安坐标系成果转换成2000坐标系成果,利用大量检核点进行坐标转换成果精度检查,并对检查点点位精度做了详细的统计、分析;不仅阐述坐标转换方法和要求,而且得出在2种坐标转换模型应用的条件与要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号