首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
郭宏 《天文学进展》2011,(1):120-121
本文分别从数值模拟、理论和观测的角度研究和分析了三点相关函数以及双谱对尺度、形状和光度等的依赖性,并比较了数值模拟与二阶扰动理论以及暗晕模型的差别。我们发现二阶扰动理论即使在线性尺度上也是与数值模拟存在明显偏差的,它并不足以很好地描述暗物质双谱在大尺度上的行为。如果要与数值模拟更好地吻合,我们需要引入更高阶的修正。我们用其他人的半解析模型构建了对应于我们数值模拟的模拟星系样本,并计算了不同光度星系样本的双谱从而得到了相应的星系偏袒值。我们发现,对星系密度场的泰勒二阶展开是可以适用到准线性尺度k(?)0.15h/Mpc上的,但是要通过三点相关来获得准确的星系偏袒值,我们需要拥有对暗物质密度场的准确估计,这却是二阶非线性扰动理论所无法做到的。暗晕模型在定性描述双谱行为方面是十分有效的,但是它与数值模拟的定量比较还是存在很多不同。要用暗晕模型来精确描述双谱,我们需要对模型的各种设定做出精细的调节和改进。最后,我们还利用了SDSS的最新观测数据测量了红移空间的三点相关函数以及投影三点相关函数,并研究它们对于星系光度、颜色和恒星质量等性质的依赖关系。我们发现,不同于之前的许多工作,星系的归约三点相关函数对光度存在明显的依赖性,而这种依赖性却是与三角形的形状和尺度耦合在一起。三点相关对恒星质量的依赖与光度依赖性十分类似。而颜色的依赖性在小尺度上则比光度和恒星质量更显著一些。  相似文献   

2.
We investigate the stability of stationary integral solutions of an ideal irrotational fluid in a general static and spherically symmetric background, by studying the profile of the perturbation of the mass accretion rate. We consider low angular momentum axisymmetric accretion flows for three different accretion disk models and consider time dependent and radial linear perturbation of the mass accretion rate. First we show that the propagation of such perturbation can be determined by an effective 2 × 2 matrix, which has qualitatively similar acoustic causal properties as one obtains via the perturbation of the velocity potential. Next, using this matrix we analytically address the stability issues, for both standing and travelling wave configurations generated by the perturbation. Finally, based on this general formalism we briefly discuss the explicit example of the Schwarzschild spacetime and compare our results of stability with the existing literature, which instead address this problem via the perturbation of the velocity potential.  相似文献   

3.
We use three different dynamical models for describing the motion in the meridian plane of an elliptical galaxy. Orbital characteristics of two polynomial models are compared with those given by a logarithmic potential for a fixed axial ratio of the equipotential surfaces, We also study the effects of an asymmetric perturbation caused by a companion galaxy on the orbital behaviour of the above models. Finally we present some theoretical arguments in order to support the numerical results.  相似文献   

4.
We study, by means of a spherical collapse model, the effect of shear, rotation, and baryons on a generalized Chaplygin gas (gCg) dominated universes. We show that shear, rotation, and the baryon presence slow down the collapse with respect to the simple spherical collapse model. The slowing down in the growth of density perturbation is able to solve the instability of the unified dark matter (UDM) models described in previous papers (e.g., Sandvik et al. 2004) at the linear perturbation level, as also shown by a direct comparison of our model with previous results.  相似文献   

5.
I. Lerche  B. C. Low 《Solar physics》1981,69(2):327-342
Using a Lagrangian approach to the equations describing small amplitude departures from equilibrium of solar prominences, we derive seven quantities which, by analogy to the concepts of energy, momentum and angular momentum, are conserved under circumstances corresponding to ignorable coordinates of classical mechanics. In a pragmatic sense it is expected that these conservation laws will be useful as criteria of accuracy in obtaining eigen-frequencies for the perturbation equations when numerical techniques are employed.We also demonstrate that: (i) the perturbation equations (which are not self-adjoint) follow from an external variation of a Lagrangian; (ii) the equations adjoint to the perturbation equations also follow from an extremal variation of the same Lagrangian; (iii) the Lagrangian approach automatically gives the conserved quantities, together with a variational principle for computing the eigen-frequencies of the perturbation equations.In view of the paucity of analytic solutions (and their eigen-frequencies) to the perturbation equations (due essentially to the complicated spatial dependence of thermodynamic quantities describing the equilibria) we believe that the technique developed here - which is capable of handling complicated spatial dependences and which has internal criteria for assessing accuracy of any given numerical convergence scheme - is a valuable addition to the arsenal of methods used for discussing the equilibria, and their stability, of models thought to represent the basic physical processes underlying the quiescent solar prominence phenomenon.  相似文献   

6.
Properties of the so-called strange modes occurring in linear stability calculations of stellar models are discussed. The behaviour of these modes is compared for two different sets of stellar models, for very massive zero-age main-sequence stars and for luminous hydrogen-deficient stars, both with high luminosity-to-mass ratios. We have found that the peculiar behaviour of the frequencies of the strange modes with the change of a control parameter is caused by the pulsation amplitude of a particular eigenmode being strongly confined to the outer part of the envelope, around the density inversion zone. The frequency of a strange mode changes because the depth of the confinement zone changes with the control parameter. Weakly non-adiabatic strange modes tend to be overstable because the amplitude confinement quenches the effect of radiative damping. On the other hand, extremely non-adiabatic strange modes become overstable because the perturbation of radiation force (gradient of radiation pressure) provides a restoring force that can be out of phase with the density perturbation. We discuss this mechanism by using a plane-parallel two-zone model.  相似文献   

7.
The problem of slowly rotating cosmological viscous fluid universe in a homogeneous and isotropic models has been investigated by considering the perturbation in the metric rotation function to the first order of smallness associated with certain physical restrictions imposed on the metric rotation function and matter angular velocity. Some more general solutions for the metric rotation function have been obtained and physical interpretation of the solutions have been investigated.  相似文献   

8.
Using numerical simulations, we studied several coupled translational and rotational solutions of the two-finite-body problem with one spherical and one triaxial body. The aim was to investigate which types of orbits and planetary bodies could produce spin-induced orbital perturbations relevant enough to add to models dealing with other perturbations. To fully assess the strengths and consequences of this perturbation, we did not include any other perturbation even when a more realistic scenario would have required it. Interesting results concern planet–star mass ratios like a hot Jupiter or a super-Jupiter around a star like the Sun or the red dwarf Proxima Centauri. The short-period chaotic effect of the gravitational spin–orbit perturbation on highly eccentric orbits in the vicinity of the Roche limit can be a prominent feature. It should be taken into account when studying the tidal evolution of such a planet or its interactions with any companion in the neighborhood of the star.  相似文献   

9.
The effect of convection on the strength of coupling is examined. It is found that in Cepheid models the inclusion of convection smooths the sharp peak of entropy perturbation in the ionization region and reduces significantly the coupling.  相似文献   

10.
We present a new calculation for the evolution of the one-point probability distribution function (PDF) of the cosmological density field based on an exact statistical treatment. Using the Chapman–Kolmogorov equation and second-order Eulerian perturbation theory we propagate the initial density distribution into the non-linear regime. Our calculations yield the moment generating function, allowing a straightforward derivation of the skewness of the PDF to second order. We find a new dependence on the initial perturbation spectrum. We compare our results with other approximations to the one-point PDF, and with N -body simulations. We find that our distribution accurately models the evolution of the one-point PDF of dark matter.  相似文献   

11.
在不同的轨道预报场景中, 使用的动力学模型也不同. 例如, 在低轨空间碎片的预报中大气阻力是十分重要的摄动力, 而到了中高轨, 大气阻力就可以忽略不计. 如何为不同轨道类型的空间碎片选择最优(满足精度要求下的最简)动力学模型还没有系统、详尽的研究. 将对不同精度需求、不同轨道类型下的大批量轨道进行预报, 通过比较不同动力学模型下的预报结果, 给出各种预报场景的最优动力学模型建议. 可以为不同轨道类型的空间碎片在轨道预报时选择基准动力学模型提供参考或标准.  相似文献   

12.
The continuous spectrum of linear ideal MHD is determined analytically in 2D magnetostatic models for coronal loops and arcades by means of a perturbation expansion. Poloidal mode coupling, induced by non-circularity of the cross-sections of the magnetic surfaces and/or variation of the plasma density along the magnetic field lines, is shown to occur in first order. The coupling is most pronounced on and near rational surfaces for particular poloidal and toroidal mode numbers and produces gaps in the continuous spectrum of ideal MHD.  相似文献   

13.
We calculate the higher order moments in a sequence of models where the initial density fluctuations are drawn from a     distribution with a power-law power spectrum. For large values of , the distribution is approximately Gaussian, and we reproduce the values known from perturbation theory. As is lowered the distribution becomes progressively more non-Gaussian, approximating models with rare, high-amplitude peaks. The limit   =1  is a realization of recently proposed isocurvature models for producing early galaxy formation, where the density perturbations are quadratic in a Gaussian field.  相似文献   

14.
This is an examination of the gravitational instability of the major large-scale perturbation modes for a fixed value of the azimuthal wave number m = 1 in nonlinearly nonstationary disk models with isotropic and anisotropic velocity diagrams for the purpose of explaining the displacement of the nucleus away from the geometric center (lopsidedness) in spiral galaxies. Nonstationary analogs of the dispersion relations for these perturbation modes are obtained. Critical diagrams of the initial virial ratio are constructed from the rotation parameters for the models in each case. A comparative analysis is made of the instability growth rates for the major horizontal perturbation modes in terms of two models, and it is found that, on the average, the instability growth rate for the m = 1 mode with a radial wave number N = 3 almost always has a clear advantage relative to the other modes. An analysis of these results shows that if the initial total kinetic energy in an isotropic model is no more than 12.4% of the initial potential energy, then, regardless of the value of the rotation parameter Ω, an instability of the radial motions always occurs and causes the nucleus to shift away from the geometrical center. This instability is aperiodic when Ω = 0 and is oscillatory when Ω ≠ 0 . For the anisotropic model, this kind of structure involving the nucleus develops when the initial total kinetic energy in the model is no more than 30.6% of the initial potential energy.  相似文献   

15.
A modified perturbation technique, developed earlier by the authors, has been used to study the effect of rapid uniform and differential rotation on the equilibrium structure of early type stars. The models are in convective equilibrium with significant radiation pressure. The effect of both uniform and differential rotation on various structural parameters like mass, radius, central condensation etc., are calculated for different values ofy c (the ratio of central radiation pressure to central gas pressure).  相似文献   

16.
Gravitational instability of the dust layer formed after the aggregates of dust particles settle toward the midplane of a protoplanetary disk under turbulence is considered. A linearized system of hydrodynamic equations for perturbations of dust (monodisperse) and gas phases in the incompressible gas approximation is solved. Turbulent diffusion and the velocity dispersion of solid particles and the perturbation of gas azimuthal velocity in the layer upon the transfer of angular momentum from the dust phase due to gas drag are taken into account. Such an interaction of the particles and the gas establishes upper and lower bounds on the perturbation wavelength that renders the instability possible. The dispersion equation for the layer in the case when the ratio of surface densities of the dust phase and the gas in the layer is well above unity is obtained and solved. An approximate gravitational instability criterion, which takes the size-dependent stopping time of a particle (aggregate) in the gas into account, is derived. The following parameters of the layer instability are calculated: the wavelength range of its subsistence and the dependence of the perturbation growth rate on the perturbation wavelength in the circumsolar disk at a radial distance of 1 and 10 AU. It is demonstrated that at a distance of 1 AU, the gas–dust disk should be enriched with solids by a factor of 5–10 relative to the initial abundance as well as the particle aggregates should grow to the sizes higher than about 0.3 m in order for the instability to emerge in the layer in the available turbulence models. Such high disk enrichment and aggregate growth is not needed at a distance of 10 AU. The conditions under which this gravitational instability in the layer may be examined with no allowance made for the transfer of angular momentum from the gas in the layer to the gas in a protoplanetary disk outside the layer are discussed.  相似文献   

17.
Kubo (Celest Mech Dyn Astron 110:143–168, 2011) investigated the kinematical structure of the perturbation in the rotation of the elastic Earth due to the deformation caused by the outer bodies. In that paper, while the mechanism for the perturbation of the figure axis was made clear, that for the rotational axis was not shown explicitly. In the present study, following the same method, the structure of the perturbation of the rotational axis is investigated. This perturbation consists of the direct perturbation and the convective perturbation. First the direct perturbation is shown to be (AC)/A times as large as that of the figure axis, coinciding with the analytical expressions obtained in preceding studies by other authors. As for the convective perturbation, which appears only in the perturbation of the rotational axis but not in that of the figure axis, it is shown to be (AC)/A times the angular separation between the original figure axis and the induced figure axis produced by the elastic deformation, A and C being the principal moments of inertia of the Earth. If the perturbing bodies are motionless, the conclusion of Kubo (Celest Mech Dyn Astron 105:261–274, 2009) holds strictly, i.e. the sum of the direct and the convective perturbations of the rotational axis coincides with the perturbation of the figure axis.  相似文献   

18.
We present three-dimensional numerical simulations on binary formation through fragmentation. The simulations follow gravitational collapse of a molecular cloud core up to growth of the first core by accretion. At the initial stage, the gravity is only slightly dominant over the gas pressure. We made various models by changing initial velocity distribution (rotation speed, rotation law, and bar-mode perturbation). The cloud fragments whenever the cloud rotates sufficiently slowly to allow collapse but faster enough to form a disk before first-core formation. The latter condition is equivalent to Ω0 t ff ? 0.05, where Ω0 and t ff f denote the initial central angular velocity and the freefall time measured from the central density, and the condition is independent of the initial rotation law and bar-mode perturbation. Fragmentation is classified into six types. When the initial cloud rotates rigidly the cloud collapses to form a adiabatic disk supported by rotation. When the bar-mode perturbation is very minor, the disk deforms to a rotating bar, and the bar fragments. Otherwise, the adiabatic disk evolves into a central core surrounded by a circumstellar disk, and the the circumstellar disk fragments. When the initial cloud rotates differentially, the cloud deforms to a ring or bar in the isothermal collapse phase. The ring fragments into free or more cores, while the bar fragments into only two cores. In the latter case, the core merges due to low orbital angular momentum and new satellite cores form in the later stages.  相似文献   

19.
The secular stellar mass loss causes an amplification of the orbital separation in fragile, common proper motion, binary systems with separations of the order of 1000 A.U. In these systems, companions evolve as two independent coeval stars as they experience negligible mutual tidal interactions or mass transfer. We present models for how post-main sequence mass-loss statistically distorts the frequency distribution of separations in fragile binaries. These models demonstrate the expected increase in orbital separation resulting from stellar mass-loss, as well as a perturbation of associated orbital parameters. Comparisons between our models and observations resulting from the Luyten survey of wide visual binaries, specifically those containing MS and white-dwarf pairs, demonstrate a good agreement between the calculated and the observed angular separation distribution functions.  相似文献   

20.
Hydrodynamic instability of an accelerating ionization front (IF) is investigated with 2D hydrodynamic simulations, including absorption of incident photoionizing photons, recombination in the HII region, and radiative molecular cooling. When the amplitude of the perturbation is large enough, nonlinear dynamics of the IF triggered by the separation of the IF from the cloud surface is observed. This causes the second harmonic of the imposed perturbation to appear on the cloud surfaces, whereas the perturbation in density of ablated gas in the HII region remains largely single mode. This mismatch of modes between the IF and the density perturbation in the HII region prevents the strong stabilization effect seen in the linear regime. Large growth of the perturbation caused by Rayleigh-Taylor-like instability is observed late in time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号