首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study investigated physico-chemical characteristics of the water column and chemistry of suspended particulate material (SPM) under quiescent, high-wind and high-wind/heavy-rainfall conditions in Homebush Bay, a highly contaminated embayment of Port Jackson (Australia) to distinguish source and possible adverse effects to benthic and pelagic animals. Mean concentrations in surficial sediment were <1, 14, 181, 141, 37, 290 and 685 μg g−1 for Cd, Co, Cr, Cu, Ni, Pb and Zn, respectively. Sediment chemistry indicated these metals had multiple sources, i.e. the estuary, stormwater and industry. Mean total suspended solids (TSS) were 7, 17 and 20 mg L−1 during quiescent, high-rainfall and heavy rainfall/high wind conditions, respectively, whereas SPM Cd, Co, Cr, Cu, Ni, Pb and Zn concentrations varied between 13–25, 166–259, 127–198, 38–82, 236–305 and 605–865 μg g−1, respectively under these conditions. TSS and total water metal concentrations were lowest during quiescent conditions. High TSS and metal loads in surface water characterised high-rainfall events. Wind-induced resuspension contributed the greatest mass of SPM and metals to the water column. Benthic animals may be adversely affected by Pb and Zn in sediment. Total water Cu and Zn concentrations may pose a risk to filter-feeding animals in the water column due to resuspension of contaminated sediment.  相似文献   

2.
Combining in situ diffusion and column ion-exchange equilibration, we measured free metal ion concentrations (Cd, Cu and Zn) in water samples collected from the epilimnion of 14 lakes in the Rouyn-Noranda area (600 km north-west of Montreal, QC, Canada). Lakes were selected to represent a wide range of physico-chemical characteristics (hardness, pH, dissolved organic matter—DOM, degree of metal contamination), to determine the influence of these parameters on metal speciation. Total dissolved metal concentrations, as determined within the diffusion cells, varied over one to two orders of magnitude: [Cd] 0.19–2.9 nM; [Cu] 36–190 nM; [Zn] 7–2,800 nM. The proportion of total dissolved metal present as free Cd2+ and Zn2+ was relatively constant for the 14 selected lakes, despite the wide pH (4.5–8) and DOM (3–23 mg C/L) ranges, probably reflecting the inverse relationship observed between pH and DOM; this proportion did, however, vary with DOM and pH for Cu. Our experimental free metal ion concentrations were compared with those calculated with the thermodynamic models WHAM (Windermere Humic Aqueous Model VI) and ECOSAT 4.7 (incorporating the NICA-Donnan model). Measured and calculated values were in reasonable agreement for both Cd and Zn although measured values were generally slightly higher, i.e. less than one order of magnitude. For several lakes, measured free Cu concentrations were, however, much higher than the calculated values, suggesting that these models overestimate Cu complexation. The gap between measured and calculated free metal ion concentration becomes more important as the total metal concentration decreases and as pH increases.  相似文献   

3.
Eleven surface soil samples from calcareous soils of industrial areas in Hamadan Province, western Iran were analyzed for total concentrations of Zn, Cd, Ni, Cu and Pb and were sequentially extracted into six fractions to determine the bioavailability of various heavy metal forms. Total Zn, Cd, Ni, Cu and Pb concentrations of the contaminated soils were 658 (57–5,803), 125.8 (1.18–1,361), 45.6 (30.7–64.4), 29.7 (11.7–83.5) and 2,419 (66–24,850) mg kg−1, respectively. The soils were polluted with Zn, Pb, and Cu to some extent and heavily polluted with Cd. Nickel values were not above regulatory limits. Copper existed in soil mainly in residual (RES) and organic (OM) fractions (about 42 and 33%, respectively), whereas Zn occurred essentially as RES fraction (about 69%). The considerable presence of Cd (30.8%) and Pb (39%) in the CARB fraction suggests these elements have high potential biavailability and leachability in soils from contaminated soils. The mobile and bioavailable (EXCH and CARB) fractions of Zn, Cd, Ni, Cu, and Pb in contaminated soils averaged (7.3, 40.4, 16, 12.9 and 40.8%), respectively, which suggests that the mobility and bioavailability of the five metals probably decline in the following order: Cd = Pb > Ni > Cu > Zn.  相似文献   

4.
The Mike Horse Mine tailings dam in western Montana was partially breached in 1975 due to heavy rainfall and a failed drainage bypass. Approximately 90,000 tons of metal and arsenic-enriched tailings flowed into Beartrap Creek and the Blackfoot River. The spatial distribution of trace elements As, Cd, Cu, Mn, Pb, and Zn in floodplain alluvium of the upper Blackfoot River were examined along 20 transects in the upper 105 river kilometers downstream from the tailings dam. Trace element concentrations decrease with distance from the failed dam, with As reaching background concentrations 15 km from the Mike Horse dam, Cd and Pb at 21 km, Cu at 31 km, and Mn and Zn at 37 km. Distance from the Mike Horse tailings dam and mine area is the dominating factor in explaining trace element levels, with R 2 values ranging from 0.67 to 0.89. Maximum floodplain trace element concentrations in the upper basin exceed US. EPA ecological screening levels for plants, birds and other mammals, and reflect adverse hazard quotients for exposure to As and Mn for ATV/motorcycle use. Trace element concentrations in channel bank and bed alluvium are similar to concentrations in floodplain alluvium, indicating active transport of trace elements through the river and deposition on the floodplain. The fine fraction (<2 mm) of floodplain alluvium is dominated by sand-sized particles (2.0–0.05 mm), with Cu and Mn significantly correlated with silt-sized (0.05–0.002 mm) alluvium. Ongoing remediation in the headwaters area will not address metal contamination stored downstream in the channel banks and on the floodplain. Additionally, some trace elements (Cu, Mn and Zn) were conveyed farther downstream than were others (As, Cd, Pb).  相似文献   

5.
An investigation on spatial distribution, possible pollution sources, and affecting factors of heavy metals in the urban–suburban soils of Lishui city (China) was conducted using geographic information system (GIS) technique and multivariate statistics. The results indicated that the topsoils in urban and suburban areas were enriched with metals, such as Cd, Cu, Pb, and Zn. Spatial distribution maps of heavy metal contents, based on geostatistical analysis and GIS mapping, indicated that Cd, Cr, Cu, Mn, Ni, Pb, and Zn had similar patterns of spatial distribution. Their hot-spot areas were mainly concentrated in the densely populated old urban area of the city. Multivariate statistical analysis (correlation analysis, principal component analysis, and clustering analysis) showed distinctly different associations among the studied metals, suggesting that Cr, Cu, Ni, Pb, Cd, and Zn had anthropogenic sources, whereas Co and V were associated with parent materials and therefore had natural sources. The Cd, Cr, Ni, Pb, and Zn contents were positively correlated with soil organic matter, pH, and sand content (p < 0.01). It is concluded that GIS and multivariate statistical methods can be used to identify hot-spot areas and potential sources of heavy metals, and assess soil environment quality in urban–suburban areas.  相似文献   

6.
Cd, Pb, Cu and Zn were measured in vegetables in Xiguadi village around Lechang Pb/Zn mine in Guangdong province, South China. The daily intake (DI) of these metals from vegetables by local people was also determined. The respective Cd, Pb, Cu and Zn concentration was 0.05–0.90 (mean 0.25), 1.04–5.82 (2.64), 0.53–7.07 (2.00) and 3.87–25.20 (11.68) mg kg−1, of which Cd concentration in all vegetables exceeded the safe limit given by FAO/WHO. The DI was found to be 49.76, 475.56, 360.36 and 2,102.63 μg, respectively. The present results indicated local mining activity caused vegetable heavy metal contamination and Cd concentration exceeding the stipulated standards for all vegetables indicating potentially serious dietary risks for local people.  相似文献   

7.
Sixteen soil samples were collected from the vicinity of an abandoned lead–zinc mine in Shangyu City, eastern China, and the heavy-metal speciation and wheat phytotoxicity in the soils were studied. The results showed that the concentrations of free Cu2+, Zn2+, Cd2+ and Pb2+ were highly variable and ranged from <0.01 to 0.32, 0.06 to 10.62, <0.01 to 1.40 and 0.02 to 37.10 μmol l−1, respectively. The concentrations of soluble Cu, Zn, Cd and Pb ranged from 0.38 to 3.24, 0.72 to 78.74, <0.01 to 1.95 and 0.15 to 639.34 μmol l−1, respectively. The general trend of mean solid/liquid partition coefficient and percentage of free metal ion to total soluble metal concentration were Cu > Pb > Zn > Cd and Cd > Zn > Cu > Pb, respectively. Stepwise multiple linear regression with pH, log(total metal) and log(organic matter) showed that log(total metal) was an important factor that controlled log(free metal ion) and log(soluble metal). Of the variability in log(free Cu2+), log(free Cd2+) and log(free Pb2+), 55.2, 58.6 and 64.3% could be explained by log(total Cu), log(total Cd) and log(total Pb) alone, respectively. Of the variability in log(soluble Cu) and log(soluble Cd), 77.1 and 72.5% could be explained by log(total Cu) and log(total Cd) alone, respectively. Wheat root length was controlled by the various metals with different free and soluble concentrations, and 99.2% of the variability in root length could be explained by concentrations of free and soluble Pb, soluble Cu and total Zn in the soils.  相似文献   

8.
Nador lagoon sediments (East Morocco) are contaminated by industrial iron mine tailings, urban dumps and untreated wastewaters from surrounding cities. The lagoon is an ecosystem of biological, scientific and socio-economic interests but its balance is threatened by pollution already marked by biodiversity changes and a modification of foraminifera and ostracods shell structures. The aim of the study is to assess the heavy metal contamination level and mobility by identifying the trapping phases. The study includes analyses by ICP-AES and ICP-MS, of, respectively, major (Si, Al, Mg, Ca, Fe, Mn, Ti, Na, K, P) and trace elements (Sr, Ba, V, Ni, Co, Cr, Zn, Cu, As, Pb, Cd) in sediments and suspended matter, heavy metals enrichment factors calculations and sequential extractions. Results show that sediments contain Zn, Cu, Pb, V, Cr, Co, As, Ni with minimum and maximum concentrations, respectively, of 4–1190 μg/g, 4–466 μg/g, 11–297 μg/g, 11–194 μg/g, 9–139 μg/g, 1–120 μg/g, 4–76 μg/g, 2–62 μg/g. High concentrations in Zn are also present in suspended matter. The enrichment factors show contamination in Zn, Pb and As firstly induced by the mining industry and secondly by unauthorized dumps and untreated wastewaters. Cr and Ni are bound to clays, whereas V, Co, Cu and Zn are related to oxides. Thus, the risk in metal mobility is for the latter elements and lies in the oxidation–reduction-changing conditions of sediments.  相似文献   

9.
An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40–80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.  相似文献   

10.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

11.
 The Yamuna River sediments, collected from Delhi and Agra urban centres, were analysed for concentration and distribution of nine heavy metals by means of atomic adsorption spectrometry. Total metal contents varied in the following ranges (in mg/kg): Cr (157–817), Mn (515–1015), Fe (28,700–45,300), Co(11.7–28.4), Ni (40–538), Cu (40–1204), Zn (107–1974), Pb (22–856) and Cd (0.50–114.8). The degree of metal enrichment was compared with the average shale concentration and shows exceptionally high values for Cr, Ni, Cu, Zn, Pb and Cd in both urban centres. In the total heavy metal concentration, anthropogenic input contains 70% Cr, 74% Cu, 59% Zn, 46% Pb, 90% Cd in Delhi and 61% Cr, 23% Ni, 71% Cu, 72% Zn, 63% Pb, 94% Cd in Agra. A significant correlation was observed between increasing Cr, Ni, Zn, and Cu concentrations with increasing total sediment carbon and total sediment sulfur content. Based on the Müller's geoaccumulation index, the quality of the river sediments can be regarded as being moderately polluted to very highly polluted with Cr, Ni, Cu, Zn, Pb and Cd in the Delhi and Agra urban centres. The present sediment analysis, therefore, plays an important role in environmental measures for the Yamuna River and the planning of these city centres. Received: 21 June 1999 · Accepted: 1 October 1999  相似文献   

12.
An attempt was made to evaluate background concentrations of Cd, Cu, Pb and Zn by means of geochemical and statistical approach. As many as 753 samples taken from 51 profiles located in Eastern Poland were analysed. For the estimation of geochemical background values, direct geochemical methods and a statistical analysis for the whole population of samples were applied. Average values of heavy metal concentration in loess sediments (bedrock) as well as in profiles not affected by human activity were measured. The iterative 2σ technique and calculated distribution function were chosen as statistical methods. The resulting values (background concentrations range) were as follows: Cd 0.5–0.9 mg kg−1, Cu 5–16 mg kg−1, Pb 12–26 mg kg−1 and Zn 31–47 mg kg−1. All the methods applied gave similar results. The highest deviation of the background was noted for Cu and the lowest for Zn. The lowest values of background were obtained for loess sediments and the highest in the case of the multiple 2σ method.  相似文献   

13.
The concentration of heavy metals such as Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn, Zr were studied in soils of Balanagar industrial area, Hyderabad to understand heavy metal contamination due to industrialization and urbanization. This area is affected by the industrial activities like steel, petrochemicals, automobiles, refineries, and battery manufacturing generating hazardous wastes. The assessment of the contamination of the soils was based on the geoaccumulation index, enrichment factor (EF), contamination factor, and degree of contamination. Soil samples were collected from Balanagar industrial area from top 10–50 cm layer of soil. The samples were analyzed using X-ray fluorescence spectrometer for heavy metals. The data revealed that the soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Cr (82.2–2,264 mg/kg), Cu (31.3–1,040 mg/kg), Ni (34.3–289.4 mg/kg), Pb (57.5–1,274 mg/kg), Zn (67.5–5819.5 mg/kg), Co (8.6–54.8 mg/kg), and V (66.6–297 mg/kg). The concentration of above-mentioned other elements was similar to the levels in the earth’s crust pointed to metal depletion in the soil as the EF was <1. Some heavy metals showed high EF in the soil samples indicating that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may results in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

14.
Vertical profiles of trace metal (Cd, Pb, Zn, Cu, Ni) concentrations, organic matter content, carbonate content and granulometric composition were determined in two sediment cores from the submarine pit Dragon Ear (Middle Adriatic). Concentrations of the analyzed metals (Cd: 0.06–0.12 mg kg−1, Pb: 28.5–67.3 mg kg−1, Zn: 17.0-65.4 mg kg−1, Cu: 21.1–51.9 mg kg−1, Ni: 27.8–40.2 mg kg−1) were in usual range for Adriatic carbonate marine sediments. Nevertheless, concentrations of Cu, Zn, and especially Pb in the upper layer of sediments (top 12 cm) were higher than in bottom layer, while Cd and Ni concentration profiles were uniform. Regression analysis and principal component analysis were used to interpret distribution of trace metals, organic matter and carbonate content in sediment cores. Results of both analysis showed that concentrations of all trace metals in the core below the entrance to the pit were significantly positively correlated with organic matter and negatively correlated with carbonate, while in the core more distant from the entrance only Pb showed significant positive correlation with organic matter. Obtained results indicated that, except for lead which was enriched in surface sediment, in the time of sampling (before the building of the nautical marina) investigated area belonged to unpolluted areas.  相似文献   

15.
This paper reports a geochemical study of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan province (P. R. China). Trace metals Ba, Bi, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, Sb, Pb, Tl, Th, U, Zr, Hf, Nb and Ta were analyzed using ICP-MS, and Pb isotopes of the bulk sediments were measured by MC-ICP-MS. The results show that trace metals Cd, Bi, Sn, Sc, Cr, Mn, Co, Ni, Cu, Zn, Sb, Pb and Tl are enriched in the sediments. Among these metals, Cd, Bi and Sn are extremely highly enriched (EF values >40), metals Zn, Sn, Sb and Pb significantly highly (5 < EF < 20), and metals Sc, Cr, Mn, Co, Ni, Cu and Tl moderately highly (2 < EF < 5) enriched in the river sediments. All these metals, however, are moderately enriched in the lake sediments. Geochemical results of trace metals Th, Sc, Co, Cr, Zr, Hf and La, and Pb isotopes suggest that metals in the river sediments are of multi-sources, including both natural and anthropogenic sources. Metals of the natural sources might be contributed mostly from weathering of the Indosinian granites (GR) and Palaeozoic sandstones (PL), and metals of anthropogenic sources were contributed from Pb–Zn ore deposits distributed in upper river areas. Metals in the lake sediments consist of the anthropogenic proportions, which were contributed from automobile exhausts and coal dusts. Thus, heavy-metal contamination for the river sediments is attributed to the exploitation and utilization (e.g., mining, smelting, and refining) of Pb–Zn ore mineral resources in the upper river areas, and this for the lake sediments was caused by automobile exhausts and coal combustion. Metals Bi, Cd, Pb, Sn and Sb have anthropogenic proportion of higher than 90%, with natural contribution less than 10%. Metals Mn and Zn consist of anthropogenic proportion of 60–85%, with natural proportion higher than 15%. Metals Sc, Cr, Co, Cu, Tl, Th, U and Ta have anthropogenic proportion of 30–70%, with natural contribution higher than 30%. Metals Ba, V and Mo might be contributed mostly from natural process.  相似文献   

16.
Urban roadside soils are important environmental media for assessing heavy metal concentrations in urban environment. However, among other things, heavy metal concentrations are controlled by soil particle grain size fractions. In this study, two roadside sites were chosen within the city of Xuzhou (China) to reflect differences in land use. Bulk soil samples were collected and then divided by particle diameter into five physical size fractions, 500–250, 250–125, 125–74, 74–45, < 45 μm. Concentrations of metals (Ti, Cr, Al, Ga, Pb, Ba, Cd, Co, Cu, Mn, Ni, V, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) were determined for each individual fraction. These metals could be roughly classified into two groups: anthropogenic element (Pb, Ba, Cd, Cu, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) and lithophile element (Ti, Cr, Al, Ga, Co, Mn, Ni, V) in terms of values of enrichment factor. As expected, higher concentrations of anthropogenic heavy metals (Cu, Zn, Mo, As, Hg, Bi, Ag) are observed in the finest particle grain size fraction (i.e. < 45 μm). However, heavy metals Se, Sb and Ba behave independently of selected grain size fractions. From the viewpoint of mass loading, more than 30% of the concentrations for all anthropogenic heavy metals are contributed by the particle grain size fractions of 45–74 μm at site 1 and more than 70% of the concentrations for all heavy metals are contributed by the particle grain size fractions of 45–74 and 74–125 μm at site 2. These results are important for transport of soil-bound heavy metals and pollution control by various remedial options.  相似文献   

17.
In order to avoid the pollution of trace metals in marine environment, it is necessary to establish the data and understand the mechanisms influencing the distribution of trace metals in marine environment. The concentration of heavy metals (Fe, Mn, Cr, Cu, Ni, Pb, Zn, Co and Cd) were studied in sediments of Ennore shelf, to understand the metal contamination due to heavily industrialized area of Ennore, south-east coast of India. Concentration of metals shows significant variability and range from 1.7 to 3.7% for Fe, 284–460 μg g−1 for Mn, 148.6–243.2 μg g−1 for Cr, 385–657 μg g−1 for Cu, 19.8–53.4 μg g−1 for Ni, 5.8–11.8 μg g−1 for Co, 24.9–40 μg g−1 for Pb, 71.3–201 μg g−1 for Zn and 4.6–7.5 μg g−1 for Cd. For various metals the contamination factor (CF) and geoaccumulation index (I geo) has been calculated to assess the degree of pollution in sediments. The geoaccumulation index shows that Cd, Cr and Cu moderately to extremely pollute the sediments. This study shows that the major sources of metal contamination in the Ennore shelf are land-based anthropogenic ones, such as discharge of industrial wastewater, municipal sewage and run-off through the Ennore estuary. The intermetallic relationship revealed the identical behavior of metals during its transport in the marine environment.  相似文献   

18.
It is well established through field observations, experiments, and chemical models that oxidation (redox) state and pH exert a strong influence on the speciation of dissolved components and the solubility of minerals in hydrothermal fluids. log –pH diagrams were used to depict the influence of oxygen fugacity and pH on monocarboxylate- and dicarboxylate-transport of Pb and Zn in low-temperature (100°C) hydrothermal ore fluids that are related to diagenetic processes in deep sedimentary basins, and allow a first-order comparison of Pb and Zn transport among proposed model fluids for Mississippi Valley-type (MVT) and red-bed related base metal (RBRBM) deposits in terms of their approximate pH and conditions. To construct these diagrams, total Pb and Zn concentrations and Pb and Zn speciation were calculated as a function of log and pH for a composite ore-brine with concentrations of major elements, total sulfur, and total carbonate that approximate the composition of MVT and RBRBM model ore fluids and modern basinal brines. In addition to acetate and malonate complexation, complexes involving the ligands Cl-, HS-, H2S, and OH- were included in the model of calculated total metal concentration and metal speciation. Also, in the model, Zn and Pb are competing with the common-rock forming metals Ca, Mg, Na, Fe, and Al for the same ligands. Calculated total Pb concentration and calculated total Zn concentration are constrained by galena and sphalerite solubility, respectively. Isopleths, in log –pH space, of the concentration of Pb and concentration of Zn in carboxylate (acetate + malonate) complexes illustrate that the oxidized model fluids of T. H. Giordano (in Organic Acids in Geological Processes, ed. E. D. Pittman and M. D. Lewan, Springer-Verlag, New York, 1994, pp. 319–354) and G. M. Anderson (Econ. Geol., 1975, 70, 937–942) are capable of transporting sufficient amounts of Pb (up to 10 ppm) and Zn (up to 100 ppm) in the form of carboxylate complexes to form economic deposits of these metals. On the other hand, the reduced ore fluid models of D. A. Sverjensky (Econ. Geol., 1984, 79, 23–37) and T. H. Giordano and H. L. Barnes (Econ. Geol., 1981, 76, 2200–2211) can at best transport amounts of Pb and Zn, as carboxylate complexes, that are many orders of magnitude below the 1 to 10 ppm minimum required to form economic deposits. Lead and zinc speciation (mol% of total Pb or Zn) in the model ore fluid was calculated at specific log –pH conditions along the 100, 0.01, and 0.001 ppm total Pb and total Zn isopleths. Along the 100 ppm isopleth conditions are oxidized (∑SO4 >> ∑H2S) with Pb and Zn predominantly in the form of chloride complexes under acid to mildly alkaline conditions (pH from 3 to approximately 7.5), while hydroxide complexes dominate Pb and Zn speciation under more alkaline conditions. Sulfide complexes are insignificant under these oxidized conditions. For more reduced conditions along the 0.01 and 0.001 ppm isopleths chloride complexes dominate Pb and Zn speciation in the SO4 2- field and near the SO4 2--reduced sulfur boundary from pH = 4 to approximately 7.5, while hydroxide complexes dominate Pb and Zn speciation under alkaline conditions above pH = 7.5 in the SO4 2- field. In the most reduced fluids (∑H2S >> ∑SO4) along the 0.01 and 0.001 isopleths, sulfide complexes account for almost 100% of the Pb and Zn in the model fluid. Acetate (monocarboxylate) complexation is significant only under conditions of chloride and hydroxide complex dominance and its effect is maximized in the pH range 5 to 7, where it complexes 2 to 2.6% of the total Pb and 1 to 1.25% of the total Zn. Malonate (dicarboxylate) complexes are insignificant along all isopleths. The speciation results from this study show that deep formation waters characterized by temperatures near 100°C, high oxidation states and ∑H2S < 0.03 mg L-1 (), high chlorinities (~ 100000 mg L-1), and high but reasonable concentrations of carboxylate anions can mobilize up to 3% of the total Pb and up to 1.3% of the total Zn as carboxylate complexes. Furthermore, these percentages, under the most favorable conditions, correspond to approximately 1 to 100 ppm of these metals in solution; concentrations that are adequate to form economic deposits of these metals. However, the field evidence suggests that all of these optimum conditions for carboxylate complexation are rarely met at the same time. A comparison of the composite ore fluid compositions from this study and modern brine data shows that the ore brines, corresponding to log –pH conditions based on the Anderson (1975) and Giordano (1994) model fluids, are similar in many respects to modern, high trace-metal petroleum-field brines. The principal differences between modern high trace-metal brines and the composite ore fluids of Anderson (1975) and Giordano (1994) relate to their carboxylate anion content. The reported concentrations of monocarboxylate anions (∑monocbx) and dicarboxylate anions (Edicbx) in high trace-metal petroleum-field brines (< 1 to 300 mg L-1 and < 1 mg L-1, respectively) are significantly lower than the concentrations assumed in the modelled brines of this study (∑monocbx = 7 700 mg L-1 and ∑dicbx = 300 mg L-1). There are also major differences in the corresponding total chloride to carboxylate ratio (∑m Cl/∑m cbx) and monocarboxylate to dicarboxylate ratio (∑m monocbx/∑m dicbx). Modern high trace-metal brines have much higher ∑m Cl/∑m cbx values and, therefore, the contribution of carboxylate complexes to the total Pb and Zn content in these modern brines is likely to be significantly less than the 1 to 3 percent for the composite ore fluids of Anderson (1975) and Giordano (1994). The composite ore-brine based on the Giordano and Barnes (1981) MVT ore fluid is comparable to the high salinity (> 170 000 mg L-1 TDS) subset of modern brines characterized by low trace-metal content and high total reduced sulfur (∑H2S). A comparison of the Sverjensky (1984) composite ore-brine with modern petroleum-field brines in terms of ∑H2S and Zn content, reveals that this ore fluid corresponds to a "border-type" brine, between modern high trace-metal brines and those with low trace-metal content and high ∑H2S. A brine of this type is characterized by values of ∑H2S, ∑Zn, and/or ∑Pb within or near the 1 to 10 mg L-1 range. Based on brine-composition data from numerous references cited in this paper, border-type brines do exist but are rare. The model results and field evidence presented in this study are consistent with other chemical simulation studies of carboxylate complexation in modern petroleum-field brines. Thus, it appears that carboxylate complexation plays a minor, if not insignificant, role as a transport mechanism for Pb and Zn in high salinity Na–Cl and Na–Ca–Cl basinal brines and related ore fluids.  相似文献   

19.
Concentration and distribution of heavy metals (Cd, Cu, Pb and Zn) in urban soils of Hangzhou, China, were measured based on different land uses. The contamination degree of heavy metals was assessed on the basis of pollution index (PI), integrated pollution index (IPI) and geoaccumulation index (I geo). The 0.1 mol l−1 HCl extraction procedure and gastric juice simulation test (GJST) were used to evaluate the potential mobility and environmental risk of heavy metals in urban soils. The average concentration of Cd, Cu, Pb and Zn in urban soils was measured at 1.2 (with a range of 0.7–4.6), 52.0 (7.4–177.3), 88.2 (15.0–492.1) and 206.9 (19.3–1,249.2) mg kg−1, respectively. The degree of contamination increased in the order of industrial area (IA) > roadside (RS) > residential and commercial areas (RC) > public park and green areas (PG). The PIs for heavy metals indicated that there is a considerable Cd, Cu, Pb and Zn pollution, which originate from traffic and industrial activities. The IPI of these four metals ranged from 1.6 to 11.8 with a mean of 3.5, with the highest IPI in the industrial area. The assessment results of I geo also supported that urban soil were moderately contaminated with Cd and to a lesser extent also with Cu, Pb and Zn. The IP and I geo values reveal the pollution degree of heavy metal was the order of Cd > Pb > Zn ≈ Cu. It was shown that mobility and bioavailability of the heavy metals in urban soils increased in the order of Cd > Cu > Zn ≈ Pb. Owing to high mobility of Cd and Cu in the urban soils, further investigations are needed to understand their effect on the urban environment and human health. It is concluded that industrial activities and emissions from vehicles may be the major source of heavy metals in urban contamination. Results of this study present a rough guide about the distribution and potential environmental and health risk of heavy metals in the urban soils.  相似文献   

20.
Metal fluxes to the sediments of the Moulay Bousselham lagoon,Morocco   总被引:2,自引:0,他引:2  
The metal content in surface sediments (0–2 cm, 26 samples), in a sediment core (120, 1 cm slices), taken from Moulay Bousselham (Morocco) was investigated. Concentrations of Al, Fe, Mn, Pb, Zn, Cu, Ni, Cr, Cd, As, and Hg were evaluated in surface and cored sediments of Moulay Bousselham lagoon. Significantly high concentrations in μg g−1 dw of Pb (31.7–6.2), Zn (758.9–167), Cu (310.7–22), Ni (96–10.5), Cr (113–18.9), Cd (0.84–0.02), As (1–0.1), and Hg (0.61–0.02) were found in sediment samples from Moulay Bousselham lagoon. Calculated enrichment factors [EFMe = (Me/Al)sample/(Me/Al)background], using Al as a normalizer, and correlation matrices showed that metal pollution in Merja Zerga of Moulay Bousselham lagoon was the product of anthropogenic sources, while the metal content in Merja Kehla was of natural origins. The results suggest that a major change in the sedimentary regime of the lagoon, associated with internal trapping and re-distribution of heavy metal, has been occurring in the past few decades. The cause would appear to be the construction of a Nador Canal at the lagoon. Probable effects concentrations (PEC) were often exceeded for heavy metals in the lagoon sediments, especially for Zn, Cu, Ni, and Cr, and four stations, stations MZ-11, MZ-12, MZ-13, MZ-14, MZ-16, and MZ-17, had multiple metals at presumptively toxic levels. These comparisons suggest that sediment metal levels in the river are clearly high and probably pose an environmental risk at some stations. The levels of most of the metals were not greatly enriched, a consideration that is of the utmost importance when contamination issues are at stake. Metal concentrations found in Moulay Bousselham lagoon were comparable to aquatic systems classified as contaminated from other regions of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号