首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data on small active regions on the Sun collected over three years (2007–2009) are analyzed. Under very quiescent conditions (a low X-ray background level), the shapes of the coronal loops of some active regions correspond fairly well to the shapes of magnetic-field lines calculated in a potential approximation. This is true of several active regions (e.g., the group AR 10999 in June 2008) in which no flares more powerful than B3 were observed. The radio emission of this active region detected by the RATAN-600 telescope was very weak and virtually no polarization was detected. Subflares were observed in most groups. It is demonstrated using AR 10933 (January 2007) as an example that a growth in the soft X-ray emission by up to factors of ten simultaneous with an increase in the radio flux is characteristic for such active regions. A source with the opposite polarization developed to the Northwest of the main spot in AR 10933. A series of SOHO/MDI (and also Hinode) magnetograms shows the emergence of new magnetic flux before the development of this polarized source, which continued for several hours on January 8, 2007. The current density at surfaces located at various heights is estimated based on observations of the total vector magnetic field (Hinode data) and a non-linear, force-free magnetic-field extrapolation. The height-integrated current becomes appreciably stronger at two nodes above a field neutral line, near the location of the main emerging flux. This supports the idea that the emergence of new magnetic flux is a key factor in the evolution of active regions at all stages of their existence. The development of this picture could help in elucidating the inter-relationship between current enhancements, plasma heating, and particle acceleration, in both weak active regions and strong activity complexes.  相似文献   

2.
A topological method for detecting the new emergence of magnetic flux using SOHO/MDI magnetograms of the full solar disk is proposed. This method uses the number of pixels in the image that can be distinguished from a specified value to within a predetermined threshold (the number of disconnected components). We study more than ten very powerful active regions (ARs) with very high flare activity and show that the number of disconnected components increases directly before the development of a series of M and X flares, or accompanies this process. This behaviour is evident not only when there is an explicit emergence of a new flux and a series of fast flares, such as in AR 9236 (November 2000), but also in groups with many non-stationary processes developing along a neutral line of the large-scale magnetic field. We also discuss the possibility of using the obtained results for flare prediction.  相似文献   

3.
A detailed study of two major solar flares that occurred in Group 10786 at the time of its disappearance behind the western limb is presented. The flares of July 14, 2005 were previously studied fairly poorly, as no RHESSI hard X-ray observations were available for themaxima of the twomost powerful of these flares. Observations carried out using the HEND equipment (on the Mars Odyssey spacecraft) developed at the Institute for Space Research in Moscow are used here to fill this gap. In the first flare, an intense, impulsive burst occurred at 07:23 UT, about 1.5 h after the onset of a weak, prolonged event. While processes in the neighborhood of the northern spot dominated in the flares of July 5–9, a powerful impulsive energy release on July 14 emerged when the flare process that originated in the North reached the southern spot. Our analysis of the flare activity of this medium-sized group reveals a gradual enhancement of the flare activity and a strong interaction between the acceleration above the magnetic-field neutral line and in the immediate vicinity of the spots. At the time of the culmination of the flare activity in the group on July 13 and 14, the pattern of nonstationary processes changes: fast coronal mass ejections form after a series of impulsive energy-release events. Spacecraft observations of the burst of July 14 after 11 UT at points separated in longitude (on RHESSI and Mars Odyssey) revealed clear anisotropy of the flare emission at energies exceeding 80 keV.  相似文献   

4.
Multi-wavelength observations and magnetic-field data for the solar flare of May 10, 2012 (04: 18 UT) are analyzed. A sign change in the line-of-sight magnetic field in the umbra of a small spot has been detected. This is at least partly associated with the emergence of a new magnetic field. A hard X-ray flare was recorded at almost the same time, and a “sunquake” was generated by the impact of the disturbance in the range of energy release on the photosphere. A sigmoid flare was recorded at the beginning of the event, but did not spread, as it usually does, along the polarity inversion (neutral) line. SDO/HMI full vectormagnetic-fieldmeasurements are used to extrapolate the magnetic field of AR 11476 into the corona, and to derive the distribution of vertical currents jz in the photosphere. The relationship between the distribution of currents in the active region and the occurrence of flares is quite complex. The expected “ideal” behavior of the current system before and after the flare (e.g., described by Sharykin and Kosovichev) is observed only in the sigmoid region. The results obtained are compared with observations of two other flares recorded in this active region on the same day, one similar to the discussed flare and the other different. The results confirm that the formation and eruption of large-scale magnetic flux ropes in sigmoid flares is associated with shear motions in the photosphere, the emergence of twisted magnetic tubes, and the subsequent development of the torus instability.  相似文献   

5.
The flare source of thermal X-rays above a magnetic arch in the corona arises from the dissipation of the magnetic energy of the current sheet formed at the reconnection of magnetic-field lines. The sources of hard X-rays emitted from the footpoints of the magnetic arch are beams of electrons accelerated in field-aligned currents induced by the Hall electric field generated in the current sheet. Both the hard X-rays detected above the active region and the type III radio emission are radiated by electrons accelerated in the field-aligned currents induced by Alfven waves. The solar cosmic rays are emitted promptly at the instant of the flare. It is important that the Lorentz electric field accelerates protons along the singular magnetic X line. The relativistic protons propagate along the interplanetary magnetic field. These protons have exponential spectra, typical for acceleration occurring in current sheets. A mechanism that is relevant for the generation of delayed cosmic rays, which demonstrate significant anisotropy and a power-law spectrum with γ ∼5, is also discussed.  相似文献   

6.
Volvach  L. N.  Volvach  A. E.  Larionov  M. G.  Wolak  P.  Kramer  B.  Menten  K.  Kraus  A.  Brand  J.  Zanichelli  A.  Poppi  S.  Rigini  S.  Ipatov  A. V.  Ivanov  D. V.  Mikhailov  A. G.  Mel’nikov  A. 《Astronomy Reports》2019,63(8):652-665

The most powerful flare ever registered in the Galactic water-maser source W49N has been detected in long-term monitoring data in the 616–523 transition with line frequency f = 22.235 GHz carried out on the 22-m Simeiz, 32-m Toruń, 100-m Effelsberg, and 32-m Medicina radio telescopes, beginning in September 2017 and continuing in 2018. Some stages of the flare were monitored daily. Detailed variations of the source spectral flux density with time have been obtained. At the flare maximum, the flux exceeded P ≈ 8 × 104 Jy, and this was record highest flux registered over the entire history of observations of this source. Important conclusions related to details of the mechanism for the H2O line emission have been drawn. An exponential increase in the flare flux density was detected during both the rise and decline of the flare. The data obtained indicate that the maser is unsaturated, and remained in this state up to the maximum observed flux densities. Additional support for the idea that the maser is unsaturated is the shape of the dependence of the line width on the flux. The characteristics of the variations of the spectral flux density are probably associated with a sharp increase in the density of the medium and the photon flux that led to an increase in the temperature from an initial level of 10–40 K to hundreds of Kelvins. Interferometric maps of the object during the increase in the spectral flux density of the flare have been obtained. A possible mechanism for the primary energy release in W49N is considered.

  相似文献   

7.
The complex active region NOAA 9672 is studied when it was near the central meridian, from October 21–26, 2001. At that time, there was an emergence of new magnetic flux, with the ongoing formation of a filament. The dynamics of the magnetic field are studied in order to search for their possible manifestations in the filament structure, using SOHO MDI magnetograms, SOHO EIT and TRACE filtergrams in the 171 Å line, and Hα filtergrams available via the Internet. Our earlier conclusion that filaments form at the boundaries of supergranules near polarity-inversion lines is confirmed. The conclusion of Chae that sinistral filaments have positive magnetic helicity is also confirmed. New information about magnetic-field decay processes is obtained. The direction of motion of the magnetic poles and their relative positions suggest that the axial field of a filament forms as a result of either reconnection of cancelling magnetic poles, or emergence of horizontal magnetic-flux tubes.  相似文献   

8.
The dynamics of active regions have been investigated using multi-fractal analysis methods, based on magnetograms of the full solar disk in the 630.2 nm line obtained with the SOLIS vector spectromagnetograph of Kitt Peak Observatory (USA) during 2006?C2007 and January 1, 2009?CApril 12, 2010. The applied method of multi-fractal segmentation reveals the appearance of new magnetic fluxes on the Sun disk. A comparison of these fluxes with flare activity shows that the flares are generated in areas of interaction of emerging fluxes with existing structures.  相似文献   

9.
The formation of filaments in solar bipolar active regions is investigated, giving particular attention to the relationship between this process and the pattern of supergranular convection. SOHO MDI and Kitt Peak magnetograms and Hα filtergrams are used. The large decaying active region NOAA 8525 is considered over the period May 4–7, 1999. The boundaries of supergranules are identified as concentrations of the line-of-sight photospheric field in magnetograms. Filaments in the central part of the active region are studied; as a whole, they are aligned with the supergranule boundaries. Variations in the magnetic field in this period were manifest primarily in the form of “cancellations” and spatial-redistribution processes consistent with the pattern of developing supergranules. These factors created the conditions necessary for the formation of a filament stretched across the entire active region; i.e., the straightening of the polarity-inversion line and reduction of the horizontal gradients of the magnetic field. One possible explanation of the results is that the magnetic-field component along the filament axis is associated with the vortical structure of horizontal flows in the supergranulation cells.  相似文献   

10.
SOHO/MDI magnetograms are used to analyze the time variations in the magnetic parameters of the active region (AR) NOAA 10486, which was part of a large activity complex that passed over the solar disk from October 26 to 31, 2003, during solar cycle 23. The results are compared with X-ray flares in the AR and the parameters of coronal mass ejections associated with the AR. The time variations in the distributions of themagnetic-field strengths associated with the total magnetic flux (Fa), the flux imbalance between the northern and southern polarities (Im), the complexity of the field, as a measure of the mutual overlapping of the opposite polarities (Co), and the tilt angle of the magnetic axis (An) are considered. The time variations in the free energy accumulated in current sheets of ARs were traced using a parameter introduced for this purpose (Sh). The following results were obtained. First, the parameters Fa, Im, Co, An, and Sh quantitatively describe the current state of the AR and can be used to trace and analyze the dynamical evolution of its magnetic field. Second, variations in the magnetic-field-strength distributions and the mean values of Fa, Im, Co, An, and Sh are associated with flares and coronal mass ejections, and the variations have considerable amplitudes. Third, the parameter Sh characterizing the degree to which the magnetic field is non-potential in regions adjacent to the main neutral line increases before eruptive events, and is thus particular interest for monitoring the states of ARs in real time. Fourth, the magnetic field of the AR manifests a sort of quasi-elasticity, so that the field structure is restored after active events, on average, within 1–3 h.  相似文献   

11.
Structural magnetic elements observed in sunspot penumbrae are employed as indicators of motions occurring in and around penumbrae. The analysis presented here is base on SDO/HMI continuum images and magnetograms of the line-of-sight field obtained for the active region NOAA 11117. In a first approximation, the penumbral magnetic fields can be considered alternating spines and interspine filaments. In the plane of the sky, spines are thin radial elements with higher field strengths and lower magnetic-field inclinations compared with those in surrounding areas. It is confirmed that spines first appear as protrusions of the umbra magnetic fields visible in magnetograms, and then develop simultaneously with the growth of the penumbra. The departure of magnetic elements from penumbrae as a result of the detachment of the ends of spines begin 1–1.5 h after the spine formation. Inmature penumbrae, magnetic elements emerge fairly often, and the departure of groups of field elements sometimes generates structures resembling moving ribbons. The velocities of magnetic elements that have separated from spines are a factor of two to three lower than those of elements that have separated from inter-spine filaments. The results obtained agree well with an “uncombed” model for the penumbral magnetic fields.  相似文献   

12.
We have carried out a search for compact radio sources in the cores of 16 nearby radio galaxies. We detected compact components in four radio galaxies, and found upper limits for the flux density in compact components in ten radio galaxies. VLBI observations enabled the detection of a turnover in the spectra of the two nearby radio galaxies 3C 111 and 3C 465. Using a method based on an inhomogeneous model for a synchrotron source, we estimate the magnetic-field strength and the energy densities in the magnetic field and relativistic electrons in the cores of these radio galaxies. Strong inhomogeneity in the distribution of the magnetic fields in the cores of 3C 111 and 3C 465 is implied by our analysis. The magnetic-field strengths in the central regions of these galactic nuclei, on scales of ~0.1 pc, exceed the mean strength by four to five orders of magnitude, and lie in the range 102 G < H < 104 G.  相似文献   

13.
The results of a study of the maser source IRAS 18316?0602 in the H2O line at λ = 1.35 cm are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) from June 2002 until March 2017. Three superflares were detected, in 2002, 2010, and 2016, with peak flux densities of >3400, 19 000, and 46 000 Jy, respectively. An analysis of these superflares is presented. The flares took place during periods of high maser activity in a narrow interval of radial velocities (40.5–42.5 km/s), and could be associated with the passage of a strong shock. The emission of three groups of features at radial velocities of about 41, 42, and 43 km/s dominated during themonitoring. The flare in 2016 was accompanied by a considerable increase in the flux densities of several features with velocities of 35–56 km/s.  相似文献   

14.
Radio and optical data are used to analyze the development of the flare in the blazar 3C 454.3 observed in 2004–2007. A detailed correspondance between the optical and radio flares is established, with a time delay that depends on the observing frequency. The variation of the delay of the radio flare relative to the optical flare is opposite to the dispersion delay expected for the propagation of radiation in the interstellar medium, testifying to an intrinsic origin for the observed outburst. Small-scale flux variations on time intervals of 5–10 days in the millimeter and optical are also correlated, with a time delay of about ten months. This may provide evidence for a single source generating the radiation at all wavelengths. Rapid flux fluctuations in the radio and optical that are correlated with the indicated time delays could be associated with inhomogeneities in the accretion disk. Detailed studies of the flux variations of Active Galactic Nuclei (AGN) can be used to analyze the structure of the accretion disk. A model for the energy release in AGN that is not associated purely with accretion onto supermassive black holes is proposed. As is the case for other active members of the AGN family, estimates of the lifetime of the binary black-hole system in 3C 454.3 suggest that this object is in a stage of its evolution that is fairly close to the coalescence of its black holes. The energy that is released as the companion of the central black hole loses orbital angular momentum is sufficient to explain the observed AGN phenomena. The source of primary energy release could be heating of the gas behind shock fronts that arise due to the friction between the companion black hole and the ambient gaseous medium. The orbit of the companion could be located at the periphery of the accretion disk of the central body at its apocenter and plunge more deeply into the accretion disk at its pericenter, inducing flares at all wavelengths. Energy-release parameters such as the temperature and density of the heated gas are estimated for 3C 454.3. The model considered assumes omnidirectional radiation of the medium in the presence of a magnetic field. The radiation corresponding to the minimum flux level (base level) could represent omnidirectional radiation due to the orbit of the moving companion. The fraction of the energy that is transferred to directed jets is small, comprising 1–2% of the total energy released due to the loss of orbital angular momentum by the companion.  相似文献   

15.
Based on long-term monitoring at five radio frequencies between 4.8 and 37 GHz performed at the Radio Astronomy Laboratory of the Crimean Astrophysical Observatory, the University of Michigan Radio Astronomy Observatory, and the Metsähovi Radio Observatory, we have analyzed two flare events in the blazar S5 0716+714 during the last five years. The time separation between the flares is in agreement with data derived earlier from a spectral analysis of flux variations at the above frequencies, which revealed a periodic component with a period of about four years in the variations. We consider the dynamics of strong flares in 2003 and 2007 and determine the delays between the development of the event at various radio frequencies. Our data can be used to draw conclusions about the kinematic and dynamical properties of the source.  相似文献   

16.
The results of radio observations of the afterglow produced by a giant gamma-ray flare from the magnetar SGR 1806-20 on December 27, 2004 are reported. The observations were carried out on the 32-m radio telescope of the Zelenchuk Observatory of the Institute of Applied Astronomy, Russian Academy of Sciences, at a wavelength of 3.5 cm. The observations confirm the enhanced radio brightness of the nebula around the magnetar in the period from 25 to 31 days after the flare. A comparison of the Zelenchuk observations with other data have enabled us to estimate the magnetic-field intensity in the radio-afterglow region using a model of synchrotron radiation with self-absorption in a relativistic plasma. The kinetic energy of the blast wave produced by the giant explosion of the magnetar is estimated.  相似文献   

17.
A method for studying the physical conditions in compact components of extragalactic radio sources displaying variability on time scales of hundreds of days is proposed. The method can be used to estimate the relative variations of the magnetic-field strength and number density of relativistic electrons in superluminal jets from the cores of quasars and radio galaxies. Results are presented for the jets of the quasars 3C 120, 3C 273, 3C 279, and 3C 345. The energies of the magnetic field and relativistic particles in these objects are not in equipartition. As a rule, the magnetic-field strength decreases appreciably during the evolution of an expanding jet, while the number of relativistic electrons grows.  相似文献   

18.
Magnetic Hα synoptic maps of the Sun for 1915–1999 are analyzed and the intensities of spherical harmonics of the large-scale solar magnetic field computed. The possibility of using these Hα maps as a database for investigations of long-term variations of solar activity is demonstrated. As an example, the magnetic-field polarity distribution for the Hα maps and the analogous polarity distribution for the magnetographic maps of the Stanford observatory for 1975–1999 are compared. An activity index A(t) is introduced for the large-scale magnetic field, which is the sum of the magnetic-moment intensities for the dipole and octupole components. The 11-year cycle of the large-scale solar magnetic field leads the 11-year sunspot cycle by, on average, 5.5 years. It is concluded that the observed weak large-scale solar magnetic field is not the product of the decay of strong active-region fields. Based on the new data, the level of the current (23rd) solar-activity cycle and some aspects of solar-cycle theory are discussed.  相似文献   

19.
The effect of curvature of open magnetic-field tubes on the death lines of radio pulsars is studied. The solution is obtained in the framework of a Goldreich-Julian model for both dipolar and asymmetric magnetic fields. The tube-axis curvature can shift the death line appreciably toward either longer or shorter periods. If the field is dipolar and gamma rays are generated by the inverse Compton effect, the formation of secondary plasma is more efficient near the death line. In the case of an asymmetric magnetic field, the generation of radio emission beyond the tube of open field lines is possible.  相似文献   

20.
The locations of sites of primary energy release of solar flares are studied. Magnetic singularities revealed earlier—self-intersections (reconnections) of F = 0 surfaces, where F is a differential factor determining the structural singularity in a potential magnetic field—are considered as possible sites of energy release. Six flare events demonstrating paired sources of non-thermal hard X-rays emission observed on March 17, 2002, July 17, 2002, April 6, 2004, November 4, 2004, November 6, 2004, and December 1, 2004 are analyzed for probable singularities. In each event analyzed, each source of non-thermal hard X-rays emission can be associated with an individual magnetic singularity; in other words, there is a magnetic-field line passing near the singularity and ending near (i.e. within about 10″) the source located on the photosphere (in the chromosphere). For the homologous flares observed on November 4 and 6, 2004, the same magnetic singularity is responsible for the source of non-thermal hard X-rays emission observed in the eastern sector of the flare region on November 4 and the source observed in the western part on November 6. A proposed interpretation associates these observations with a reversal of the electric field generated in the magnetic singularity on November 6, compared with the electric field generated on November 4, attributed to corresponding changes occurring in the photospheric magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号