首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Pan Bo 《中国地震研究》2007,21(3):281-292
On the basis of previous study of the 1679 Sanhe-Pinggu(M8.0) earthquake,the biggest event in history ever recorded in Beijing and its adjacent area,we made a 3-D strong ground motion simulation utilizing the staggered-grid finite differences method to study the distributions of peak ground velocity with different earthquake source models in the Beijing region.In the paper,earthquake source models and a transmission medium velocity model are established and the corresponding parameters are given in accordance to the results from a related previous study.Then,using a three-dimensional finite difference computing program of near-fault strong ground motion developed by Graves,the peak ground velocity caused by a destructive earthquake in the Beijing area is simulated.In our computation model,the earthquake source is 3km in depth,and a total number of 21,679 observation points on the ground surface are figured out.The transmission medium velocity model is composed of four stratums which are the Quaternary deposit,the upper crust,the upper part of the middle crust and the lower part of the middle crust.With the minimum grid spacing of 0.15km,a total of 2.28×106 grids are generated.Using a time step of 0.02 seconds we calculated the peak ground velocity for a duration of 8 seconds.After the analysis of the simulation results,we observed some basic characteristics of near-fault strong ground motion such as the concentration effect of near-fault peak ground velocity,rupture directivity effect,hanging wall effect,and basin effect.The results from our simulation and analysis suggest that the source and transmitting medium parameters in our model are suitable and the finite difference method is applicable to estimate the distribution of strong ground motion in the study region.  相似文献   

2.
Many studies have focused on horizontal ground motion, resulting in many coherency functions for horizontal ground motion while neglecting related problems arising from vertical ground motion. However, seismic events have demonstrated that the vertical components of ground motion sometimes govern the ultimate failure of structures. In this paper, a vertical coherency function model of spatial ground motion is proposed based on the Hao model and SMART 1 array records, and the validity of the model is demonstrated. The vertical coherency function model of spatial ground motion is also compared with the horizontal coherency function model, indicating that neither model exhibits isotropic characteristics. The value of the vertical coherency function has little correlation with that of the horizontal coherency function. However, the coherence of the vertical ground motion between a pair of stations decreases with their projection distance and the frequency of the ground motion. When the projection distance in the wave direction is greater than 800 meters, the coherency between the two points can be neglected.  相似文献   

3.
It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of sli  相似文献   

4.
In this study, a composite source model has been used to calculate the realistic strong ground motions in Beijing area, caused by 1679 MS8.0 earthquake in Sanhe-Pinggu. The results could provide us the useful physical parame-ters for the future seismic hazard analysis in this area. Considering the regional geological/geophysical background, we simulated the scenario earthquake with an associated ground motions in the area ranging from 39.3°N to 41.1°N in latitude and from 115.35°E to 117.55°E in longitude. Some of the key factors which could influence the characteristics of strong ground motion have been discussed, and the resultant peak ground acceleration (PGA) distribution and the peak ground velocity (PGV) distribution around Beijing area also have been made as well. A comparison of the simulated result with the results derived from the attenuation relation has been made, and a suf-ficient discussion about the advantages and disadvantages of composite source model also has been given in this study. The numerical results, such as the PGA, PGV, peak ground displacement (PGD), and the three-component time-histories developed for Beijing area, have a potential application in earthquake engineering field and building code design, especially for the evaluation of critical constructions, government decision making and the seismic hazard assessment by financial/insurance companies.  相似文献   

5.
In the analysis and design of important structures with relatively long life spans, there is a need to generate strong motion data for possible large events. The source of an earthquake is characterized by the spatial distribution of slip on the fault plane. For future events, this is unknown. In this paper, a stochastic earthquake source model is developed to address this issue. Here, 1D and 2D stochastic models for slip distribution developed by Lavallée et al.(2006) are used. The random field associated with the slip distribution is heavy-tailed stable distribution which can be used for large events. Using 236 past rupture models, the spectral scaling parameter and the four stable or Levy's parameters against empirical relationship for known quantities like magnitude or fault length are developed. The model is validated with data from 411 stations of 1999 Chi-Chi earthquake. The simulated response spectrum showed good agreement to actual data. Further the proposed model is used to generate ground motion for the 1993 Killari Earthquake where strong motion data is not available. The simulated mean peak ground velocity was in turn related to the intensity(MSK) and compared against values in the literature.  相似文献   

6.
In this study, the broadband ground motions of the 2021 M7.4 Maduo earthquake were simulated to overcome the scarcity of ground motion recordings and the low resolution of macroseismic intensity map in sparsely populated high-altitude regions. The simulation was conducted with a hybrid methodology, combining a stochastic high-frequency simulation with a low-frequency ground motion simulation, from the regional 1-D velocity structure model and the Wang WM et al.(2022) source rupture model,respect...  相似文献   

7.
In this paper,the process of dynamic variation of the wave velocity ratio that occurred at a single station,such as Lancang,Tengchong,and Eryuan stations,8 years before the Lancang-Gengma earthquakes(Ms=7.6 and 7.2),is studied by applying the synthetic method as a whole.It is found that the moderately strong and strong earthquakes 250 km away that occurred since 1983 may lead to mutation anomalies of the wave velocity ratio in the Lancang region.The mutation amplitude is increased with the approaching time and distance of a large event.The reliability of mutation data for the wave velocity ratio has been demonstrated in many ways.The application of mutation of the wave velocity ratio to earthquake prediction and its physical explanation are discussed.  相似文献   

8.
112 short-period seismographs were set up in the 400km2 area of Pingtan Island and its surrounding areas in Fujian. The combined observations of the airgun source and ambient noise source were carried out using a dense array to receive the 387 airgun signals excited around the island and one month of continuous ambient noise recording. The 1-D P-wave and S-wave shallow velocity model of Pingtan Island is obtained by the inversion of the airgun body wave''s first arrival time data, and the reliability of the velocity model is verified by using the surface wave phase velocity dispersion curve, which can provide initial model for subsequent 3-D imaging. The experimental results show that this experiment is a successful demonstration of local scale green non-destructive detection, which can provide basic data for shallow surface structure research and strong vibration simulation of the Pingtan Island.  相似文献   

9.
In this study, the North China seismic region was selected as the study area, and evaluation of seismic hazard using the spatial smoothing seismicity model was performed. Firstly, the study area is divided into grids, and some parameters (e.g. b-value, M0, Mu, azimuth and M-L relationship) for each seismotectonic model were assigned. Secondly, using elliptical smoothing based on a seismotectonic background model, the statistical earthquake incidence rate in each grid is successively calculated. Lastly, the relevant ground motion attenuation relationship is chosen to assess seismic hazard of general sites. The maps for the distribution of horizontal peak ground acceleration with 10% probability of exceedance in 50 years were obtained by using the seismic hazard analysis method based on grid source. This seismicity model simplifies the methodology of probabilistic seismic hazard analysis, especially appropriate for those places where seismic tectonics is not yet clearly known. This method can provide valuable references for seismic zonation and seismic safety assessment for significant engineering projects.  相似文献   

10.
This article provides the application of the high-order, staggered-grid, finite-difference scheme to model elastic wave propagation in 3-D isotropic media. Here, we use second-order, temporal-and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-D elastic wave equations of motion. The set of absorbing boundary conditions based on paraxial approximations of 3-D elastic wave equations are applied to the numerical boundaries. The trial resuits for the salt model show that the numerical dispersion is decreased to a minimum extent, the accuracy high and diffracted waves abundant. It also shows that this method can be used for modeling wave propagation in complex media with the lateral variation of velocity.  相似文献   

11.
基于活动断层的地震危害性综合评价可为城市规划和工程建设提供科学依据, 强地面运动数值模拟则是进行地震危害性预测和评价的重要方法, 而建立以第四系为主体的符合真实地层结构的三维物理模型是保证数值模拟结果可靠性的必要条件之一. 本文以昆明盆地为例, 综合利用地震地质、钻孔、地形地貌、DEM、地震勘探、波速测试等资料,以剪切波速为主要分层指标,参考地层层序, 结合ArcGIS等多种软件和相关的编程技术,采用将相邻介质分界面(层网)在深度方向上逐层叠加的方法建立三维物理模型;详细阐述了建立三维物理模型的主要技术思路和实现过程, 同时建立三维物理模型的数据库,为强地面运动数值模拟提供模型数据和参数. 文中还针对不同类型的探测、实验数据,总结了相应的技术处理方法和需要注意的问题.   相似文献   

12.
2014年8月3日云南省昭通市鲁甸县发生了Ms6.5级地震.在已知的三维介质模型、地形数据基础上,利用震源运动学初步反演模型(张勇等,2014),作者采用曲线坐标网格三维曲线有限差分方法模拟了鲁甸地震波场传播过程,并计算了模拟区域地震烈度分布.结果表明:地震最大烈度为Ⅶ度,破坏主要集中在鲁甸县以及巧家县、会泽县靠近鲁甸县的边界.另外,模拟结果还显示地震动在山峰、山脊处具有较大的幅度.计算表明断层东北侧的低速沉积盆地的波动放大效应加强了该地区的地震灾害.  相似文献   

13.
建立包含震源、沉积盆地和表层低速沉积层的二维模型,采用交错网格有限差分/伪谱混合方法求解地震波传播,讨论沉积层厚度和速度对地震地面运动的作用。结果表明:沉积层内产生的地震波的多重反射以及转换会引起地面运动持续时间的延长,它们的相干叠加会造成地面运动峰值的放大;随着沉积层速度的增加,多重反射与转换波的能量减小,地面运动持续时间减小,但是不同速度或者不同厚度的低速层模型均显示出一致的地面运动峰值放大特征。结果说明,在包含震源、沉积盆地和沉积层的模型中,沉积层对地面运动的作用机理更复杂。在实际应用中有必要同时考虑这些因素的综合作用。  相似文献   

14.
近断层速度脉冲地震动的三维有限差分模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
根据台湾西部地质地貌特征和1999年集集MW7.6地震的研究成果,建立三维速度结构模型和震源模型,并采用三维有限差分法对双冬断层可能产生的近断层脉冲型地震动进行数值模拟。结果表明,方向性效应引起的双向速度脉冲集中在垂直于断层滑动分量的方向上,而滑冲效应引起的单向速度脉冲则集中在平行于断层滑动分量的方向上。受方向性效应和上盘效应的共同调制,近断层脉冲型地震动反映出不对称带状分布的特征,速度脉冲主要分布在距离断层面约10 km的范围内。凹凸体的特性影响着地震动的时空分布,由地震波场显示南投和台中处于强地震动危险区。近场脉冲型地震动的研究对分析速度脉冲形成机理以及地震危险性有一定的参考意义。  相似文献   

15.
IntroductionIntheroutineprobability-consistentmethodofseismicsafetyevaluation,theworkdeterminingdesigngroundmotionofsitecanb...  相似文献   

16.
以Ⅱ类场地为例,选取了山东地区2个场地的工程地质勘探及剪切波速等资料,通过改变不同深度段波速,分别建立土层模型,计算分析了不同深度段、不同概率水平条件下剪切波速的变化对场地地震动参数的影响。研究结果表明,剪切波速的变化对场地地震动加速度峰值影响在浅层影响最大,基岩输入面处次之,深层最小;对特征周期的影响,在浅层影响最大,深层次之、基岩输入面处最小。研究结果为进一步研究土层剪切波速测试中的不确定性对场地地震动参数的影响及合理确定场地地震动参数提供一定的参考。  相似文献   

17.
基于运动学震源模型,进行了不同震源参数情形下强地面震动数值模拟.结果表明,不同的破裂过程会产生差别甚大的强地面运动分布,一次确定性震源参数的模拟结果不能作为活动断层地震危害性评价的指标,只有通过大量三维地震动场模拟计算,给出地面震动评估的统计结果,才是比较合理的发展方向.由于一次三维地震动场计算耗时很大,因此解决问题的关键是如何考虑合理的震源参数.  相似文献   

18.
断层带附近地震动场分布的研究,是当前地震工程领域研究的热点问题之一。近断层地震动场的分布对在断层附近进行抗震结构设计时,不仅是提供地震动输入,也是确定建设场地避让范围的重要依据之一。以区域地震构造背景分析、目标断层活动性鉴定、地震危险性评价为基础,结合断层探测结果,利用统计经验关系等最终确定发震断层,并建立相应的震源模型。采用显式有限元和并行计算技术计算目标区域场地的长周期地震动。利用有限断层随机合成的方法,计算高频地震动。将低频和高频地震动合成为目标区域内的宽频带地震动时程。对局部特殊场地条件地区,基于场地调查和勘探的数据,利用等效线性化等方法进行一维土层的非线性反应计算,给出这些特殊场地的宽频带地震动时程。最后,根据地震动时程获得设定地震发生时,目标区域的峰值加速度分布预测图和相应的反应谱。以长春市为例预测了在设定地震发生时,近断层地震动场的分布情况。当长春尖山子—卡伦断层发生6.0级地震时,潜在破坏性地震动的影响范围集中在附近,沿断层走向分布。加速度峰值沿断层垂直变化,主要为90 Gal~140 Gal。只是在长春市南部加速度峰值达到200 Gal。本研究的预测结果具备断层附近地震动的一些最基本的特征,符合当前对断层附近地震动的基本认识。  相似文献   

19.
地震强地面运动预测对工程的抗震设计,地震危害性分析以及减轻特定地区可能发生的大地震所造成的灾害具有重要的作用.本文根据辽宁省海城地区的地质资料和发生于1975年2月4日辽宁省海城市的MS7.3地震资料,分别构造了海城地区的地下速度结构和海城地震的震源模型,并且使用可以准确描述地形起伏的曲线网格有限差分方法计算了海城地震的波场传播过程.通过对计算得到的波场快照、合成理论地震图以及地震烈度的分析表明:(1)震源模型、地下的速度结构和地形起伏对海城地震的波场传播模拟具有重要的影响,它们所产生的近断层效应、方向性效应和盆地效应明显;(2)通过计算得到的海城地震的理论烈度分布与通过震后调查得到的烈度分布大体符合,验证了本文所构造的震源模型和速度结构的合理性.  相似文献   

20.
基于时间相依的地震复发间隔混合概率模型,开展山东地区中、短期尺度上的中小地震的概率预测实践,1年的检验结果显示,3、4级中小地震基本发生在此前给出的地震危险性高概率区。研究认为,该方法在日常地震会商中应用效果较好,并有望为破坏性地震的概率预测提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号