首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 767 毫秒
1.
In the final decades of the last century, an increasing number of strandings of male sperm whales (Physeter macrocephalus) around the North Sea led to an increase in public interest. Anthropogenic influences (such as contaminants or intensive sound disturbances) are supposed to be the main causes, but natural environmental effects may also explain the disorientation of the animals. We compared the documented sperm whale strandings in the period from 1712 to 2003 with solar activity, especially with sun spot number periodicity and found that 90% of 97 sperm whale stranding events around the North Sea took place when the smoothed sun spot period length was below the mean value of 11 years, while only 10% happened during periods of longer sun spot cycles. The relation becomes even more pronounced (94% to 6%, n = 70) if a smaller time window from November to March is used (which seems to be the main southward migration period of male sperm whales). Adequate chi-square tests of the data give a significance of 1% error probability that sperm whale strandings can depend on solar activity. As an alternative explanation, we suggest that variations of the earth's magnetic field, due to variable energy fluxes from the sun to the earth, may cause a temporary disorientation of migrating animals.  相似文献   

2.
A new population of vestimentiferan tubeworms was discovered during a recent expedition to a mud volcano field in the Alboran Sea, western Mediterranean Sea. Morphological data and mitochondrial cytochrome-c-oxidase subunit 1 (COI) sequences show that the Alboran tubeworm is essentially identical to Lamellibrachia sp. found in the eastern Mediterranean. This is the first record of a vestimentiferan species in the western basin of the Mediterranean, an area with direct connection to the Atlantic via the Strait of Gibraltar and therefore of great importance to the study of distributional patterns and evolution of Mediterranean species. We examine the current hypotheses on the biogeographic distribution of vestimentiferan species in the eastern Atlantic and Mediterranean Sea and conclude that independently of when Lamellibrachia colonized the Mediterranean, neither the present hydrological settings of both Mediterranean Sea and Atlantic Ocean, nor vestimentiferans reproductive biology are impeditive to the presence of the Mediterranean species of Lamellibrachia in the NE Atlantic. The West African and Lusitanian margins are the most likely places to find living populations of this species in the NE Atlantic.  相似文献   

3.
The sequential megafaunal collapse hypothesis: Testing with existing data   总被引:4,自引:1,他引:4  
Springer et al. [Springer, A.M., Estes, J.A., van Vliet, G.B., Williams, T.M., Doak, D.F., Danner, E.M., Forney, K.A., Pfister, B., 2003. Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling? Proceedings of the National Academy of Sciences 100 (21), 12,223–12,228] hypothesized that great whales were an important prey resource for killer whales, and that the removal of fin and sperm whales by commercial whaling in the region of the Bering Sea/Aleutian Islands (BSAI) in the late 1960s and 1970s led to cascading trophic interactions that caused the sequential decline of populations of harbor seal, northern fur seal, Steller sea lion and northern sea otter. This hypothesis, referred to as the Sequential Megafaunal Collapse (SMC), has stirred considerable interest because of its implication for ecosystem-based management. The SMC has the following assumptions: (1) fin whales and sperm whales were important as prey species in the Bering Sea; (2) the biomass of all large whale species (i.e., North Pacific right, fin, humpback, gray, sperm, minke and bowhead whales) was in decline in the Bering Sea in the 1960s and early 1970s; and (3) pinniped declines in the 1970s and 1980s were sequential. We concluded that the available data are not consistent with the first two assumptions of the SMC. Statistical tests of the timing of the declines do not support the assumption that pinniped declines were sequential. We propose two alternative hypotheses for the declines that are more consistent with the available data. While it is plausible, from energetic arguments, for predation by killer whales to have been an important factor in the declines of one or more of the three populations of pinnipeds and the sea otter population in the BSAI region over the last 30 years, we hypothesize that the declines in pinniped populations in the BSAI can best be understood by invoking a multiple factor hypothesis that includes both bottom–up forcing (as indicated by evidence of nutritional stress in the western Steller sea lion population) and top–down forcing (e.g., predation by killer whales, mortality incidental to commercial fishing, directed harvests). Our second hypothesis is a modification of the top–down forcing mechanism (i.e., killer whale predation on one or more of the pinniped populations and the sea otter population is mediated via the recovery of the eastern North Pacific population of the gray whale). We remain skeptical about the proposed link between commercial whaling on fin and sperm whales, which ended in the mid-1960s, and the observed decline of populations of northern fur seal, harbor seal, and Steller sea lion some 15 years later.  相似文献   

4.
The shore stranding of mesopelagic fauna is a recurrent phenomenon in the Strait of Messina (Central Mediterranean Sea). The aim of this paper is to test the influence of lunar phases, winds and seasons upon the frequency of occurrence of strandings of mesopelagic fish. Species abundance in relation to these factors was quantified for the first time. Specimens were collected stranded on the shore along the Sicilian coast of the Strait of Messina between 2008 and 2016. Overall 32 species belonging to seven families (Gonostomatidae, Microstomatidae, Myctophidae, Paralepididae, Phosichthyidae, Sternoptychidae, Stomiidae) were found stranded. Myctophidae was the family including the highest number of species (16), whereas Gonostomatidae was the most abundant in terms of total number of individuals (47.2%), mainly thanks to the species Cyclothone braueri. The moon, which influences the strength of currents (highest during full and new moon phases) and irradiance (higher in some lunar phases, such as the full moon), affected the abundance of stranded mesopelagic fish in the study area. The highest number of stranding events was recorded during the new moon: 34.6% of the total relative abundance of stranded mesopelagic fish. Wind blowing from the sea towards the coastline (southeasterly and easterly winds) created the best conditions for strandings. The highest abundance of stranded specimens was recorded during the winter season.  相似文献   

5.
Sighting and catch data on sperm whales accumulated during a whale survey by the New Zealand Marine Department and whaling operations by the Tory Channel whaling company in 1963–4 were examined.

The results showed a unimodal rise and fall in numbers of sperm whales in the Cook Strait region throughout the year. From a peak between December and April whale numbers declined steadily until November, when they rose again sharply.

It is suggested from these results that the best choice for an eight‐month sperm whaling season would be one extending from November to July.

It was concluded that the mean speed of sperm whales in the area was not likely to exceed 1 knot.  相似文献   

6.
The Mediterranean Sea transforms surface Atlantic Water (AW) into a set of cooler and saltier typical Mediterranean Waters (tMWs) that are formed in different subbasins within the sea and thus have distinct hydrological characteristics. Depending on the mixing conditions along their route and on their relative amounts, the tMWs are more or less differentiated at any given place, and some mix together up to forming new water masses. We emphasise the fact that any of these Mediterranean Waters (MWs) must outflow from the sea, even if more or less identifiable and/or in a more or less continuous way. Historical data from the 1960s–1980s showed that the densest MW outflowing through the Strait of Gibraltar at Camarinal Sill South (CSS) was a relatively cool and fresh tMW formed in the western basin, namely the Western Mediterranean Deep Water (WMDW). At these times, the sole other tMW identified in the strait was the Levantine Intermediate Water (LIW); no mention was made there of, in particular, the two densest tMWs formed in the eastern basin (in the Aegean and the Adriatic) that are now named Eastern Overflow Water (EOW) when they reach the Channel of Sicily (where they cannot be differentiated). A fortiori, no mention was made of the Tyrrhenian Dense Water (TDW) that results from the mixing of EOW with waters resident in the western basin (in particular WMDW) when it cascades down to ∼2000 m from the channel of Sicily. New measurements (essentially temperature and salinity time series) collected at CSS since the mid-1990s indicate that the densest MWs outflowing through the strait have been continuously changing; temperature and salinity there have been increasing, being actually (early 2000s) much warmer (∼0.3 °C) and saltier (0.06) than ∼20 years ago. These changes are one order of magnitude larger than the decadal trends shown for WMDW in particular. We thus demonstrate that, in the early 2000s, (i) the densest MW outflowing at Gibraltar is TDW and (ii) TDW is mainly composed of EOW (the percentage of MWs from the western basin, in particular WMDW, is lower): the densest part of the outflow is thus “more eastern than western”. This Mediterranean Sea Transient (a shift from the western basin to the eastern one) could be linked to the Eastern Mediterranean Transient (a shift from the Adriatic subbasin to the Aegean one). Whatever the case, we demonstrate that the proper functioning of the Mediterranean Sea leads to a variability in its outflow's composition that can have consequences for the mid-depth water characteristics in the North-Atlantic much more dramatic than previously thought.  相似文献   

7.
Three-year investigations into sperm whale-fall ecosystems in Japan   总被引:2,自引:0,他引:2  
We report the first study of sperm whale‐fall ecosystems, based on mass sinking of whale carcasses at shelf depths in the northwest Pacific. We conducted three observations over a 2‐year period on replicate sperm‐whale carcasses implanted at depths of 219–254 m off the southern part of Japan from July 2003 to August 2005. The study was made possible by a mass stranding of sperm whales in January 2002, and the subsequent sinking of 12 carcasses in the waters off Cape Nomamisaki. Dense aggregations of unique chemosynthesis‐based fauna had formed around the whale carcasses after 18 months (July 2003). The mytilid mussel Adipicola pacifica was the most abundant macrofaunal species and covered most of the exposed bone surfaces. The general composition of the fauna was similar to that of deep‐water reducing habitats, but none of the species appearing in this study has been found at hydrothermal vents, cold seeps or deep‐water whale falls. A new species of lancelet, which was the first record of the subphylum Cephalochordata from reducing environments, a new species of Osedax; a rarely encountered benthic ctenophore, and a rare gastropod species were discovered at this sperm whale‐fall site. Benthic communities were similar across all the carcasses studied, although the body sizes of the whales were very different. The succession of epifaunal communities was relatively rapid and the sulphophilic stage was considerably shorter than that of other known whale falls.  相似文献   

8.
Sperm whales (Physeter macrocephalus) are widely distributed in all oceans, but they are clumped geographically, generally in areas associated with high primary and secondary productivity. The warm, clear waters of the Sargasso Sea are traditionally thought to be low in productivity, however recent surveys have found large numbers of sperm whales there. The New England Seamount Chain bisects the north-western portion of the Sargasso Sea, and might influence the mesoscale eddies associated with the Gulf Stream; creating areas of higher productivity within the Sargasso Sea. We investigated the seasonal occurrence of sperm whales over Kelvin Seamount (part of the New England Seamount Chain) and how it is influenced by oceanographic variables. An autonomous recording device was deployed over Kelvin Seamount from May to June 2006 and November 2006 to June 2007. A total of 6505 hourly two-minute recordings were examined for the presence of sperm whale echolocation clicks. Sperm whales were more prevalent around Kelvin in the spring (April to June: mean=51% of recordings contained clicks) compared to the winter (November to March: mean=16% of recordings contained clicks). Sperm whale prevalence at Kelvin was related to chlorophyll-a concentration four weeks previous, eddy kinetic energy and month. The mesoscale activity associated with the Gulf Stream and the Gulf Stream׳s interaction with the New England Seamount Chain likely play an important role in sperm whale occurrence in this area, by increasing productivity and perhaps concentration of cephalopod species.  相似文献   

9.
台湾海峡盆地的地质构造特征及演化   总被引:4,自引:0,他引:4  
分析了台湾海峡盆地形成的区域地质背景,将其纳入东海和南海盆地形成的框架内考虑,研究其区域演化阶段和盆地演化特征。结果表明,以台湾海峡盆地为中心的包括南海北部陆缘和东海在内的中国东南沿海地区在古新世—始新世期间处于统一的边缘海盆构造背景之下,而自晚始新世起,南海北部大陆边缘与其北部的台湾海峡地区、东海逐渐走上了不同的演化道路,前者向非典型的被动大陆边缘演变,而后者则继续其自古新世—始新世以来的演化进程,形成了自古新世至晚中新世间的4个有序分布的裂陷盆地群和相应的盆间弧体系。台湾海峡盆地有两次独特的前陆盆地经历,分别发生于晚渐新世—早中新世和晚中新世末至今,并且以第二次前陆最为强烈。  相似文献   

10.
黄海海底地貌分区及地貌类型   总被引:6,自引:0,他引:6  
林美华 《海洋科学》1989,13(6):7-15
本文通过多年来大量的实际调查资料,将黄海划分成北黄海海湾潮流脊与岛礁、山东半岛沿岸水下堆积岸坡及水下阶地、南黄海西部弱堆积侵蚀平原、旧黄河-古长江三角洲堆积平原、海峡等七个地貌区,它们都各具特有的地貌类型。北黄海和南黄海原为两个大型的山间盆地,尔后由于海侵、被大量沉积物充填,成为今日连成一体的黄海浅海平原。  相似文献   

11.
《Oceanologica Acta》1999,22(3):281-290
The hydrological structure and the seasonal variability of marine currents in the Tyrrhenian Sea, off the coasts of Latium, are analysed using a data set obtained during several cruises between February 1988 and August 1990. Of particular interest is the fact that the hydrological surveys show the intermittent presence of a current of Levantine Intermediate Water (LIW) flowing anticlockwise along the Italian slope, at 250–700 m. This current is of particular importance in inferring the pathways of the Levantine Intermediate Water in the western Mediterranean Sea and in particular in the Tyrrhenian basin, downstream of the Strait of Sicily. These phenomena remain an open problem: our observations give support to the Millot's proposed general scheme, on the existence of a general cyclonic circulation of the LIW from the Strait of Sicily to the western Mediterranean, as opposed to a direct injection of LIW towards the Algerian basin.  相似文献   

12.
Whale depredation occurs when whales steal fish, damage fish or damage fishing gear. In Alaska, killer whales (Orcinus orca) and sperm whales (Physeter macrocephalus) primarily depredate on demersal sablefish (Anoplopoma fimbria) and Pacific halibut (Hippoglossus stenolepis) longline fisheries. Quantitative data on whale depredation in Alaska is limited due to low fishery observer coverage and minimal depredation evidence left on longline fishing gear. This study utilized semidirected interviews (n=70) and written questionnaires (n=95) with longline fishermen to examine: (1) perceptions and experiences of whale–fishery interactions in Alaska, (2) effects of depredation on fishing practices, and (3) potential depredation mitigation measures. Eighty-seven percent of fishermen surveyed agreed that whale depredation became worse between 1990 and 2010. Respondents reported changing their fishing practices in response to depredating whales in several ways, including: traveling up to 50 nautical miles and ceasing hauling operations up to 24 h until the whales left the fishing grounds. Respondents fishing in western Alaska, primarily encountering killer whales, were forced to wait longer and travel greater distances than fishermen operating in central and southeast Alaska, regions more affected by sperm whales. Deterrent research, gear modifications and real-time tracking of depredating whales were solutions favored by study participants. Survey respondent answers varied based on areas fished, quota owned, years involved in the fishery and vessel size. This study presents the first statewide evaluation of fishermen's perception and knowledge of whale interactions with the Alaskan longline fleet and is a critical step toward developing baseline data and feasible depredation mitigation strategies.  相似文献   

13.
The present investigation focuses on population structure analysis of the purple sea urchin Paracentrotus lividus across the African Mediterranean coast, with the main aim of assessing the influence of the Siculo-Tunisian Strait on gene flow disruption in this highly dispersive echinoid species. For this purpose, patterns of morphological and genetic variation were assessed among its populations from the western and eastern Mediterranean coasts. A total of 302 specimens from seven Tunisian sites were collected and examined for morphometric variability at twelve morphometric traits. Concordant results, inferred from CDA (canonical discriminant analyses), pairwise NPMANOVA (non parametric multivariate analysis of variance) comparisons and MDS (multidimensional scaling) plot, unveiled significant inter-population differences in the measured traits among the studied populations. Furthermore, the combined use of the one way ANOSIM (analysis of similarities) and the Discriminant/Hotelling analysis allowed unravelling two morphologically differentiated groups assigned to both western and eastern Mediterranean basins. The SIMPER (similarity percentages) routine analysis showed that total dry weight, test diameter and spine length were major contributors to the morphometric separation between locations and between groups. Pattern of phenotypic divergence discerned in P. lividus across the Siculo-Tunisian Strait is interestingly in congruence with that inferred from the genetic investigation of the purple sea urchin populations from the same region based on the analysis of the mtDNA COI (cytochrome oxidase I) gene in 314 specimens from nineteen locations covering a wider geographic transect, streching westward to the Algerian coast and eastward to the Libyan littoral. The specific haplotypic composition characterizing each Mediterranean basin, as inferred from the minimum spanning network, confirmed the geographic partioning of genetic variation, as revealed by F-statistics and AMOVA (analysis of molecular variance) analyses, yielding significant genetic differentiation between eastern and western Mediterranean populations. The newly detected phylogeographic patterns, observed for the first time in P. lividus throughout the explored distribution range, suggest the involvement of different biotic and abiotic processes in shaping such variation, and provide evidence that a large and geographically exhaustive dataset is necessary to unveil phylogeographic structure within widespread marine species, previously cathegorized as panmictic in part of their distribution range.  相似文献   

14.
The variability of the water transport through three major straits of the Mediterranean Sea (Gibraltar, Sicily and Corsica) was investigated using a high-resolution model. This model of the Mediterranean circulation was developed in the context of the Mercator project.The region of interest is the western Mediterranean between the Strait of Gibraltar and the Strait of Sicily. The major water masses and the winter convection in the Gulf of Lions were simulated. The model reproduced the meso-scale and large-scale patterns of the circulation in very good agreement with recent observations. The western and the eastern gyres of the Alboran Sea were observed but high interannual variability was noticed. The Algerian Current splits into several branches at the longitude of the Strait of Sicily level, forming the Tyrrhenian branch, and, the Atlantic Ionian Stream and the Atlantic Tunisian Current in the eastern Mediterranean. The North Current retroflexed north of the Balearic Islands and a dome structure was observed in the Gulf of Lions. The cyclonic barotropic Algerian gyre, which was recently observed during the MATER and ELISA experiment, was evidenced in the simulation.From time-series of 10-day mean transport, the three straits presented a high variability at short time-scales. The transport was generally maximum, in April for the Strait of Gibraltar, in November for the Strait of Sicily, and in January for the Strait of Corsica. The amplitudes of the transport through the Straits of Gibraltar (0.11 Sv) and Sicily (0.30 Sv) presented a weaker seasonal variability than that of the Strait of Corsica (0.70 Sv).The study of the relation between transport and wind forcing showed that the transport through the Strait of Gibraltar is dependent on local zonal wind over short time-scales (70%), which was not the case for the other straits (less than 30%). The maximum (minimum) of the transport occurred for an eastward (westward) wind stress in the strait. An interannual event was noticed in November–December 2001, which corresponded to a very low transport (0.3 Sv), which was characterised by a cyclonic circulation in the western Alboran Sea. That circulation was also reproduced by the model for other periods than winter during the interannual simulation.The transport through the Strait of Sicily is not influenced by local wind.The wind stress curl of the northwestern Mediterranean influenced the transport through the Strait of Corsica.  相似文献   

15.
Since the heterogeneity of oceanographic conditions drives abundance, distribution, and availability of prey, it is essential to understand how foraging predators interact with their dynamic environment at various spatial and temporal scales. We examined the spatio-temporal relationships between oceanographic features and abundance of fin whales (Balaenoptera physalus), the largest free-ranging predator in the Western Mediterranean Sea (WM), through two independent approaches. First, spatial modeling was used to estimate whale density, using waiting distance (the distance between detections) for fin whales along ferry routes across the WM, in relation to remotely sensed oceanographic parameters. At a large scale (basin and year), fin whales exhibited fidelity to the northern WM with a summer-aggregated and winter-dispersed pattern. At mesoscale (20–100 km), whales were found in colder, saltier (from an on-board system) and dynamic areas defined by steep altimetric and temperature gradients. Second, using an independent fin whale satellite tracking dataset, we showed that tracked whales were effectively preferentially located in favorable habitats, i.e. in areas of high predicted densities as identified by our previous model using oceanographic data contemporaneous to the tracking period. We suggest that the large-scale fidelity corresponds to temporally and spatially predictable habitat of whale favorite prey, the northern krill (Meganyctiphanes norvegica), while mesoscale relationships are likely to identify areas of high prey concentration and availability.  相似文献   

16.
Data on the white whale distribution in Onega Bay of the White Sea obtained during route and stationary observations in the summer of 2003–2006 are given. The presence of three regions of summer habitation of local “nonmigratory” white whale reproductive schools is confirmed. The minimum abundance of the “zhizhginskoe” (northeastern) school is 60 individuals, and the minimum abundance of the “myagostrovskoe” (western) is 50 individuals. The abundance of the best studied “southern” school is close to 120–130 individuals. One more region of white whale concentration (with an abundance of up to 40 individuals) (the eastern one; Cape Letniy Orlov-Cape Chesmenskiy) was found. The localization of single reproductive schools (RS) is due to a number of factors: the morphometry of the shores and bottom, the hydrological regime, and the character of the coastal tidal currents. The white whale distribution in the southern part of Onega Bay in the summer (June–July) is of discontinuous character with concentrations near cape Glubokiy and some other adjacent parts. The coefficient of the white whale attendance in the Cape Glubokiy area varied from 42.5 to 67.4% during the years of the studies (2003–2006). The character of the distribution, the direction of the relocations, and the animals’ behavior peculiarities indicate that the white whales of the southern part of Onega Bay of the White Sea form a rather stable school community of a few (5–6) locally distributed small family groups during the summer.  相似文献   

17.
The Norwegian Sea is a migration and feeding ground for fin whales (Balaenoptera physalus) and humpback whales (Megaptera novaeangliae) in summer. During the last decade, significant structural changes in the prey community, including northerly expansion and movement in the distribution of pelagic fish species, have been reported from this ecosystem. However, little information on whale feeding ecology exists in the Norwegian Sea and surrounding waters. A total of 59 fin whales and 48 humpback whales were sighted during 864 h of observation over an observation distance of about 8200 nmi (15,200 km) in the Norwegian Sea from 15 July to 6 August 2006 and 2007. The fin whale group size, as mean (±SD), varied between one and five individuals (2.1 ± 1.2 ind.) and humpback whale group size varied between one and six individuals (2.5 ± 1.7 ind.). Fin‐ and humpback whales were observed mainly in the northern part of the study area, and were only found correlated with the presence of macro‐zooplankton in cold Arctic water. Humpback whales were not correlated with the occurrence of adult Norwegian spring‐spawning herring (Clupea harengus) except for the northernmost areas. Despite changes in the whale prey communities in the Norwegian Sea, no apparent changes in fin‐ or humpback whale distribution pattern could be found in our study compared to their observed summer distribution 10–15 years ago.  相似文献   

18.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60 m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

19.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60?m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

20.
We analysed samples taken through the euphotic zone from 18 stations between the Ligurian Sea (6°E) and the Levantin Basin (32°E) from 24 May to 25 June 1996. Both ciliate and chlorophyll concentrations ranged over a factor of about 7, but ciliate concentrations (0.4–2.8 mg C m3) varied irregularly compared to a longitudinal decline, west to east, in chlorophyll concentration (0.07–0.48 mg m3). The lower chlorophyll concentrations (0.1 mg m2) of the eastern basin stations corresponded with a relatively high stock of ciliates (0.5 mg C m2). Large mixotrophic ciliates were more abundant, in both absolute and relative terms, in the eastern Mediterranean stations with less chlorophyll. The species diversity of tintinnid ciliates appeared higher in the central and eastern basins compared to the west. Our results suggest a shift from the western to eastern Mediterranean in the planktonic food towards a microbially dominated system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号