首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An observed relation between line-of-sight velocities and the longitudinal component of the magnetic field in quiescent prominences is discussed. Weak fields in quiescent prominences are associated with large velocities determined from Doppler shifts of resolved emission knots and Doppler line widths measured in Ca ii K line. It is suggested that the observed irregular motions in prominences are driven by photospheric horizontal convection coupled by the prominence magnetic field. An energy flux of 3 × 105 ergs cm–2 sec–1 present in the form of Alfvén waves in quiescent prominences is consistent with the observations.  相似文献   

2.
A technique for high-sensitivity measurements of spectral line profile fluctuations is suggested. Observations with spectral lines most commonly used to study the oscillations have been carried out. It is found that 5-min and 3-min fluctuations of Fei 5123, 5250, 5434 and NaDi 5896 line profiles are able to produce signals equivalent to line-of-sight velocities of 1–5 m s–1 at a spatial resolution of 5 and 10–35 m s–1 at 1.5 × 4 resolution. Such observations permit a better understanding of the particular physical factors responsible for the oscillations of line-of-sight velocity signals and the magnetic field which are the subject of study of helioseismology.  相似文献   

3.
Regarding new bipolar magnetic regions as sources of flux, we have simulated the evolution of the radial component of the solar photospheric magnetic field during 1976–1984 and derived the corresponding evolution of the line-of-sight polar fields as seen from Earth. The observed timing and strength of the polar-field reversal during cycle 21 can be accounted for by supergranular diffusion alone, for a diffusion coefficient of 800 km2 s-1. For an assumed 300 km2 s-1 rate of diffusion, on the other hand, a poleward meridional flow with a moderately broad profile and a peak speed of 10 m s-1 reached at about 5° latitude is required to obtain agreement between the simulated and observed fields. Such a flow accelerates the transport of following-polarity flux to the polar caps, but also inhibits the diffusion of leading-polarity flux across the equator. For flows faster than about 10 m s-1 the latter effect dominates, and the simulated polar fields reverse increasingly later and more weakly than the observed fields.Laboratory for Computational Physics and Fluid Dynamics.E. O. Hulburt Center for Space Research.  相似文献   

4.
He i 10830 Å synoptic maps, obtained at the Kitt Peak National Observatory during 1974–1979, show that the Sun's polar coronal holes have contracted significantly during 1977–1978. Prior to the accelerated increase of sunspot activity in mid-1977, the area of each polar cap was on the order of 8% of the Sun's total surface area (4R 2), whereas toward the end of 1978 these areas fell below 2% of 4R 2. Synoptic polar plots show that the vestigual holes had irregular shapes and were often well removed from the poles themselves. These results are consistent with the changes that one would expect when the polar magnetic fields are weakening just prior to sunspot maximum.  相似文献   

5.
A study of supergranule motions confirms horizontal velocities with peak values of typically 0.36 km s–1 as observed in Fe i 8688 Å. These show no significant variation with height over the range of formation of C i 9111, Fe i 8688, and Mg i 8806, but there is a substantial reduction to about one-half of this at the level of Ca ii 8542.Near disk center, supergranule vertical velocities in Fe i 8688 have rms values ±0.01 km –1, after allowance for the residual effects of the line-of-sight component of the horizontal supergranule motions, the five-minute oscillations, granule motions, and detector drift. There is a marginally-significant association of magnetic elements, and hence of cell boundaries, with downward motions; but this requires further testing.Measurements of downward velocities 0.1 km–1 in regions of strong magnetic field when using unpolarized light are attributed to the much higher downflow inside the elements themselves and have nothing to do with supergranule motions.Visiting Astronomer, Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

6.
The spatial and temporal evolution of the high temperature plasma in the flare of 1973 June 15 has been studied using the flare images photographed by the NRL XUV spectroheliograph on Skylab.The overall event involves the successive activations of a number of different loops and arches bridging the magnetic neutral line. The spatial shifts and brightenings observed in the Fe xxiii–xxiv lines are interpreted as the activation of new structures. These continued for four or five minutes after the end of the microwave burst phase, implying additional energy-release unrelated to the nonthermal phase of the flare. A shear component observed in the coronal magnetic field may be a factor in the storage and release of the flare energy.The observed Fe xxiii–xxiv intensities define a post-burst heating phase during which the temperature remained approximately constant at 13 × 106 K while the Fe xxiv intensity and 0–3 Å flux rose to peak values. This phase coincided with the activation of the densest structure (N e = 2 × 1011 cm–3). Heating of higher loops continued into the decay phase, even as the overall temperature and flux declined with the fading of the lower Fe xxiv arches.The observed morphology of individual flaring arches is consistent with the idea of energy release at altitude in the arch (coincident with a bright, energetic core in the Fe xxiv image) and energy flow downward into the ribbons. The Doppler velocity of the Fe xxi 1354 Å line is less than 5 km s–1, indicating that the hot plasma region is stationary.The relation of this flare to the larger class of flares associated with filament eruptions and emerging magnetic flux is discussed.  相似文献   

7.
We used the Sacramento Peak Doppler-Zeeman Analyzer to study the velocity and magnetic fields in 60 × 300 areas on the solar disk. We map the steady component of the line-of-sight velocity and longitudinal magnetic fields and compare them with the coarse Ca+ network. The collective phase behavior of the 5-min oscillations is studied in detail. We find large scale phase coherence, including waves with typical horizontal phase velocities of 100 km/sec which can be followed up to 50 000 km. The important oscillatory features are interpreted in terms of the properties of modified sound waves. We find no apparent relationship between the steady and oscillatory fields.  相似文献   

8.
A time sequence of magnetograms and velocity-grams in the H and Fe i 6569 Å lines has been made at a rate of 12 h–1 of McMath Region 10385 from 26 to 29 October, 1969. The 14 flares observed during this period have been studied in relation to the configuration and changes in the magnetic and velocity fields. There was little correlation between flare position and the evolutionary changes in the photospheric magnetic and velocity field, except at large central meridian distances where the velocity observations suggested shearing taking place at flare locations. At central meridian distances > 30° we found that flares are located in areas of low line-of-sight photospheric velocity surrounded by higher velocity hills. The one exception to this was the only flare which produced a surge. Blue-shifted velocity changes in the photosphere of 0.3 to 1 km s–1 were observed in localized areas at the times of 8 of 14 flares studied.Visiting Astronomer, Kitt Peak National Observatory.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

9.
Polar Coronal Holes During Cycles 22 and 23   总被引:3,自引:0,他引:3  
Harvey  Karen L.  Recely  Frank 《Solar physics》2002,211(1-2):31-52
The National Solar Observatory/Kitt Peak synoptic rotation maps of the magnetic field and of the equivalent width of the He i 1083 nm line are used to identify and measure polar coronal holes from September 1989 to the present. This period covers the entire lifetime of the northern and southern polar holes present during cycles 22 and 23 and includes the disappearance of the previous southern polar coronal hole in 1990 and and formation of the new northern polar hole in 2001. From this sample of polar hole observations, we found that polar coronal holes evolve from high-latitude (60° ) isolated holes. The isolated pre-polar holes form in the follower of the remnants of old active region fields just before the polar magnetic fields complete their reversal during the maximum phase of a cycle, and expand to cover the poles within 3 solar rotations after the reversal of the polar fields. During the initial 1.2–1.4 years, the polar holes are asymmetric about the pole and frequently have lobes extending into the active region latitudes. During this period, the area and magnetic flux of the polar holes increase rapidly. The surface areas, and in one case the net magnetic flux, reach an initial brief maximum within a few months. Following this initial phase, the areas (and in one case magnetic flux) decrease and then increase more slowly reaching their maxima during the cycle minimum. Over much of the lifetime of the measured polar holes, the area of the southern polar hole was smaller than the northern hole and had a significantly higher magnetic flux density. Both polar holes had essentially the same amount of magnetic flux at the time of cycle minimum. The decline in area and magnetic flux begins with the first new cycle regions with the holes disappearing about 1.1–1.8 years before the polar fields complete their reversal. The lifetime of the two polar coronal holes observed in their entirety during cycles 22 and 23 was 8.7 years for the northern polar hole and 8.3 years for the southern polar hole.  相似文献   

10.
We define for observational study two subsets of all polar zone filaments, which we call polemost filaments and polar filament bands. The behavior of the mean latitude of both the polemost filaments and the polar filament bands is examined and compared with the evolution of the polar magnetic field over an activity cycle as recently distilled by Howard and LaBonte (1981) from the past 13 years of Mt. Wilson full-disk magnetograms. The magnetic data reveal that the polar magnetic fields are built up and maintained by the episodic arrival of discrete f-polarity regions that originate in active region latitudes and subsequently drift to the poles. After leaving the active-region latitudes, these unipolar f-polarity regions do not spread equatorward even though there is less net flux equatorward; this indicates that the f-polarity regions are carried poleward by a meridional flow, rather than by diffusion. The polar zone filaments are an independent tracer which confirms both the episodic polar field formation and the meridional flow. We find:
  1. The mean latitude of the polemost filaments tracks the boundary of the polar field cap and undergoes an equatorward dip during each arrival of additional polar field.
  2. Polar filament bands track the boundary latitudes of the unipolar regions, drifting poleward with the regions at about 10 m s-1.
  3. The Mt. Wilson magnetic data, combined with a simple model calculation, show that the filament drift expected from diffusion alone would be slower than observed, and in some cases would be equatorward rather than poleward.
  4. The observation that filaments drift poleward along with the magnetic regions shows that fields of both polarities are carried by the meridional flow, as would be expected, rather than only the f-polarity flux which dominates the strength. This leads to the prediction that in the mid-latitudes during intervals between the passage of f-polarity regions, both polarities are present in nearly equal amounts. This prediction is confirmed by the magnetic data.
  相似文献   

11.
The observational set-up for a detailed study of the velocity, intensity and magnetic-field fine structure in and around a sunspot is described. On highly resolved spectra we detected in the vicinity of a sunspot a large number of points with strong magnetic fields (magnetic knots). The magnetic field in these knots causes a striking decrease of the line depth (or a line gap after Sheeley, 1967). The properties of the magnetic knots are: (1) magnetic fields up to 1400 gauss; (2) diameter 1100 km; (3) coincidence with dark intergranular spaces; (4) generally downward material motion; (5) lifetime>30min; (6) estimated total number around an unipolar spot 2000; (7) combined magnetic flux comparable to the sunspot flux; (8) coincidence with Ca+ plages.For the smallest sunspots (pores) we obtained magnetic fields >1500 gauss. Hence a magnetic field of about 1400–1500 gauss appears to be a rather critical level for pore and spot formation.We found a large number of small areas producing line gaps without measurable magnetic field. These non-magnetic gap-regions coincide with bright continuum structures.Some aspects arising from the occurrence of hundreds of magnetic knots in an active region are discussed in the last section.Presently guest investigator at the Göttingen Observatory.Previously member of the High Altitude Observatory solar project at Sacramento Peak (Contract Nr. AF (628) - 4078).  相似文献   

12.
The present paper is devoted to the interpretation of linear polarization data obtained in 14 quiescent prominences with the Pic-du-Midi coronagraph-polarimeter by J. L. Leroy, in the two lines Hei D3 andH quasi-simultaneously. The linear polarization of the lines is due to scattering of the anisotropic photospheric radiation, modified by the Hanle effect due to the local magnetic field. The interpretation of the polarization data in the two lines is able to provide the 3 components of the magnetic field vector, and one extra parameter, namely the electron density, because the linear polarization of H is also sensitive to the depolarizing effect of collisions with the electrons and protons of the medium. Moreover, by using two lines with different optical thicknesses, namely Hei D3, which is optically thin, and H, which is optically thick ( = 1), it is possible to solve the fundamental ambiguity, each line providing two field vector solutions that are symmetrical in direction with respect to the line of sight in the case of the optically thin line, and which have a different symmetry in the case of the optically thick line.It is then possible to determine without ambiguity the polarity of the prominence magnetic field with respect to that of the photospheric field: 12 prominences are found to be Inverse polarity prominences, whereas 2 prominences are found to be Normal polarity prominences. It must be noticed that in 12 of the 14 cases, the line-of-sight component of the magnetic field vector has a Normal polarity (to the extent that the notion of polarity of a vector component is meaningful; no polarity can be derived in the 2 remaining cases); this may explain the controversy between the results obtained with methods based on the Hanle effect with results obtained through the Zeeman effect. A dip of the magnetic field lines across the prominence has been assumed, to which the optically thick H line is sensitive, and the optically thin Hei D3 line is insensitive.For the Inverse prominences, the average field strength is 7.5±1.2 G, the average angle,, between the field vector and the prominence long axis is 36° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 29° ± 20°, and the average electron density is 2.1 × 1010 ± 0.7 × 1010 cm–3. For the Normal prominences, the average field strength is 13.2±2.0 G, the average angle,, between the field vector and the prominence long axis is 53° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 0° ± 20° (horizontal field), and the average electron density is 8.7 × 109 ± 3.0 × 109 cm–3.  相似文献   

13.
J. J. Brants 《Solar physics》1985,98(2):197-217
Scatter plots of various pairs of spectral-line parameters that describe the magnetic field and the line-of-sight velocity are discussed in order to relate magnetic structures and the line-of-sight velocity field with characteristic areas of an emerging flux region (EFR).Strong magnetic fields, occurring over about 20% of the resolution elements in the EFR, are either slightly to moderately inclined or transverse. Slightly to moderately inclined strong fields occur in patches near the border of the EFR; the filling factors per resolution element are large, and field strengths are between 800 and 2000 G, and up to 2500 G in pores. There are only a few faculae in the EFR; most of these are located near rapidly growing pores of following polarity.The strongly inclined strong magnetic fields, with field strengths exceeding 1000 G, are located in slightly darkened resolution elements near the line B = 0 separating the magnetic polarities, near large-scale and small-scale upflows. In the central region of the EFR there are some small elements with strongly inclined field of low average field strength of about 500 G, and a tendency for a small-scale upward velocity. These elements may correspond to tops of flux loops during emergence.In 80% of the resolution elements within the EFR the magnetic flux density (averaged over the resolution element) is low, less than 120 G.There is a persistent large-scale velocity field, with upflows near the line B = 0 separating the magnetic polarities and with downflows near rapidly growing pores of following polarity. Some examples of strong small-scale upflows are found in the central region of the EFR, and strong small-scale downflows near rapidly growing following pores. Within the pores and faculae there are no significant small-scale line-of-sight velocities.Based on observations obtained at the Sacramento Peak Observatory (operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation).  相似文献   

14.
Erofeev  D.V.  Erofeeva  A.V. 《Solar physics》2000,191(2):281-292
We investigate a latitude–time distribution of polar faculae observed at Ussuriysk Observatory in years 1966–1986. The distribution is compared with the longitude-averaged (zonal) magnetic field of the Sun calculated from the data obtained at Mount Wilson Observatory in the years 1966–1976, and at Kitt Peak National Observatory during the period from 1976 to 1985. We found that slow, poleward-directed migration of the polar faculae zones occurring during the course of the solar cycle is not a continuous process, but it contains several episodes of appearance and fast poleward drift of new zones of polar faculae. At the rising phase of the solar cycle, new zones of polar faculae appear at latitudes as low as 40°, but the ones observed during the declining phase of the solar cycle originate at higher latitudes of 50–55°. Such episodes of appearance and fast migration of the polar faculae zones are associated with the poleward-directed streams of magnetic field originated at low latitudes. Moreover, we found some evidence for existence of an additional component of the polar faculae activity that reveals an equatorward migration during the course of the solar cycle. We also investigated a relationship between the number of polar faculae, n, and absolute magnetic flux z of the zonal mode of the solar magnetic field. We found that within the polar zones of the Sun, substantial correlation between temporal variations of n and z takes place both on the time scale of the solar cycle and on a shorter time scale of 2–4 years. The relationship between the number of polar faculae and magnetic flux may be approximated by a linear dependence n=0.12z (where z is expressed in 1021 Mx), except for time interval 1977 through 1980 for which the factor of proportionality is found to have a systematically larger value of 0.20.  相似文献   

15.
Worden  John  Harvey  John 《Solar physics》2000,195(2):247-268
We describe a procedure intended to produce accurate daily estimates of the magnetic flux distribution on the entire solar surface. Models of differential rotation, meridional flow, supergranulation, and the random emergence of background flux elements are used to regularly update unobserved or poorly observed portions of an initial traditional magnetic synoptic map that acts as a seed. Fresh observations replace model estimates when available. Application of these surface magnetic transport models gives us new insight into the distribution and evolution of magnetic flux on the Sun, especially at the poles where canopy effects, limited spatial resolution, and foreshortening result in poor measurements. We find that meridional circulation has a considerable effect on the distribution of polar magnetic fields. We present a modeled polar field distribution as well as time series of the difference between the northern and southern polar magnetic flux; this flux imbalance is related to the heliospheric current sheet tilt. We also estimate that the amount of new background magnetic flux needed to sustain the `quiet-Sun' magnetic field is about 1.1×1023 Mx d–1 (equivalent to several large active regions) at the spatial resolution and epoch of our maps. We comment on the diffusive properties of supergranules, ephemeral regions, and intranetwork flux. The maps are available on the NSO World Wide Web page.  相似文献   

16.
Recently recognized solar millimetre-wave off-limb sources are interpreted as a special phenomenon of long-duration post- and inter-flare emission at coronal altitudes. We present, for the first time, information about the brightness and polarization spectrum in the centimetre range for one such event of September 22, 1980 by means of RATAN-600 observations.The brightness temperatures observed favour the interpretation of the bulk of the emission by thermal optically thin bremsstrahlung. The degree of polarization measured (p 0.1–0.2 in the range 7.5–15 GHz) implies quite strong magnetic fields of about 300 ± 100 G at a height z > 3 × l04km above the photosphere and indicates a possible contribution of gyromagnetic radiation and/or optically thick bremsstrahlung at longer wavelengths.  相似文献   

17.
Cyclotron microwave emission from magnetic stars is considered, assuming that they have coronae with the temperatureT107 K and the emission measureEM1054 cm–3. It has been shown that the cyclotron radiation from a star with a dipole magnetic field has a specific spectrum with a maximum in the frequency rangesv o/2 >v >sv o/2 (s being the number of cyclotron harmonic, andv o the gyrofrequency corresponding to the polar magnetic field) and radiation flux decreasing towards lower frequencies asv 4/3. The frequency of the spectrum maximum depends on the angle between the line-of-sight and the magnetic axis of the star. The observed radiation from a rotating magnetic star can be modulated with a modulation depth of about 0.2 at frequencies near maximum. The radiation is partially circularly-polarized in the sense of an extraordinary mode. The degree of polarization is almost constant at frequenciesv >sv o/2 and increases with frequency atv >sv o/2. The estimation of cyclotron radio fluxes of the nearest magnetic stars shows that they are observable in microwaves by means of modern radio astronomy.  相似文献   

18.
Global magnetic field calculations, using potential field theory, are performed for Carrington rotations 1601–1610 during the Skylab period. The purpose of these computations is to quantitatively test the spatial correspondence between calculated open and closed field distributions in the solar corona with observed brightness structures. The two types of observed structures chosen for this study are coronal holes representing open geometries and theK-coronal brightness distribution which presumably outlines the closed field regions in the corona. The magnetic field calculations were made using the Adams-Pneuman fixed-mesh potential field code based upon line-of-sight photospheric field data from the KPNO 40-channel magnetograph. Coronal hole data is obtained from AS&E's soft X-ray experiment and NRL's Heii observations and theK-coronal brightness distributions are from HAO'sK-coronameter experiment at Mauna Loa, Hawaii.The comparison between computed open field line locations and coronal holes shows a generally good correspondence in spatial location on the Sun. However, the areas occupied by the open field seem to be somewhat smaller than the corresponding areas of X-ray holes. Possible explanations for this discrepancy are discussed. It is noted that the locations of open field lines and coronal holes coincide with the locations ofmaximum field strength in the higher corona with the closed regions consisting of relatively weaker fields.The general correspondence between bright regions in theK-corona and computed closed field regions is also good with the computed neutral lines lying at the top of the closed loops following the same general warped path around the Sun as the maxima in the brightness. One curious feature emerging from this comparison is that the neutral lines at a given longitude tend systematically to lie somewhat closer to the poles than the brightness maxima for all rotations considered. This discrepancy in latitude increases as the poles are approached. Three possible explanations for this tendency are given: perspective effects in theK -coronal observations, MHD effects due electric currents not accounted for in the analysis, and reported photospheric field strengths near the poles which are too low. To test this latter hypothesis, we artificially increased the line-of-sight photospheric field strengths above 70° latitude as an input to the magnetic field calculations. We found that, as the polar fields were increased, the discrepancy correspondingly decreased. The best agreement between neutral line locations and brightness maxima is obtained for a polar field of about 30 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
The Solar Maximum Mission Satellite, the Sacramento Peak Vacuum Tower Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have been used to observe active region AR 2490 on two consecutive days at soft X-ray, ultraviolet, optical and radio wavelengths (2, 6, and 20 cm), with comparable angular resolution (2 to 15) and field of view (4 × 4). The radio emissions at = 6 cm and 20 cm show a double structure in which one component is associated with bright H plage, C iv and soft X-ray emission, and the other component is associated only with sunspots. No radiation at = 2 cm is detected in this latter component. Coronal temperature and emission measure derived from X-ray lines indicate that the dominant radiation mechanism of the plage-associated component is due to thermal bremsstrahlung while the gyroresonance absorption coefficient must be invoked to account for the high brightness temperature (T b 2×106K) observed in the sunspot associated component. The high magnetic field strength needed (600 G at a level where T2×106K) is explained assuming a thin transition zone, in order to reach a high electron temperature close to the sunspot, where the magnetic fields are stronger. A higher temperature gradient above sunspots is also consistent with the absence of detectable C iv emission.Cooperative study of the SMY-FBS Project.On leave from the University of Napoli.On leave from the University of Torino.On sabbatical leave 1980–81 at the Arcetri Observatory.On leave from Toyokawa Observatory, Japan.  相似文献   

20.
We present digital pictures of an active region network cell in five quantities, measured simultaneously: continuum intensity, line-center intensity, equivalent width, magnetogram signal, and magnetic field strength. These maps are derived from computer analysis of circularly polarized line profiles of FeI 5250.2; spectral and spatial resolution are 1/40 Å and 1.5, respectively. Measured Zeeman splittings show the existence of strong magnetic fields (1000–1800 G) at nearly all points with a magnetogram signal exceeding 125 G. The mean and rms deviation of the field strengths change by less than 20% over a factor-of-four range of fluxes. From the significant disparity between measured fluxes and field strengths, we conclude that large flux patches (up to 4 across) consist of closely-packed unresolved filaments. The smallest filaments must be less than 0.7 in diameter. We also observe the dark component of the photospheric network, which appears to contain sizable transverse fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号