首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Elevation dependency of climate change signals has been found over major mountain ranges such as the European Alps and the Rockies, as well as over the Tibetan Plateau. In this study we examined the temporal trends in monthly mean minimum temperatures from 116 weather stations in the eastern Tibetan Plateau and its vicinity during 1961–2006. We also analyzed projected climate changes in the entire Tibetan Plateau and its surroundings from two sets of modeling experiments under future global warming conditions. These analyses included the output of the NCAR Community Climate System Model (CCSM3) with approximately 150 km horizontal resolution for the scenario of annual 1% increase in atmospheric CO2 for future 100 years and physically-based downscaling results from the NCAR CAM3/CLM3 model at 10' × 10' resolution during three 20-year mean periods (1980–1999, 2030–2049 and 2080–2099) for the IPCC mid-range emission (A1B) scenario. We divided the 116 weather stations and the regional model grids into elevation zones of 500 m interval to examine the relationship of climatic warming and elevation. With these corroborating datasets, we were able to confirm the elevation dependency in monthly mean minimum temperature in and around the Tibetan Plateau. The warming is more prominent at higher elevations than at lower elevations, especially during winter and spring seasons, and such a tendency may continue in future climate change scenarios. The elevation dependency is most likely caused by the combined effects of cloud-radiation and snow-albedo feedbacks among various influencing factors.  相似文献   

2.
A previous study of Fox [Fox, A.N. 1993. Snowline altitude and climate at present and during the Last Pleistocene Glacial Maximum in the Central Andes (5°–28°S). Ph.D. Thesis. Cornell University.] showed that for a fixed 0 °C isotherm altitude, the equilibrium-line altitude (ELA) of the Peruvian and Bolivian glaciers from 5 to 20°S can be expressed based on a log–normal expression of local mid-annual rainfall amount (P). In order to extrapolate the function to the whole Andes (10°N to 55°S) a local 0 °C isotherm altitude is introduced. Two applications of this generalised function are presented. One concerns the space evolution of mean inter-annual ELA for three decades (1961–1990) over the whole South American continent. A high-resolution data set (grid data: 10′ for latitude/longitude) of mean monthly air surface temperature and precipitation is used. Mean annual values over the 1961–1990 period were calculated. On each grid element, the mean annual 0 °C isotherm altitude is determined from an altitudinal temperature gradient and mean annual temperature (T) at ground level. The 0 °C isotherm altitude is then associated with the annual precipitation amount to compute the ELA. Using computed ELA and the digital terrain elevation model GTOPO30, we determine the extent of the glacierised area in Andean regions under modern climatic conditions. The other application concerns the ELA time evolution on Zongo Glacier (Bolivia), where inter-annual ELA variations are computed from 1995 to 1999. For both applications, the computed values of ELA are in good agreement with those derived from glacier mass balance measurements.  相似文献   

3.
In boreal and nemoboreal forests, tree frost hardiness is modified in reaction to cues from day length and temperature. The dehardening processes in Norway spruce, Picea abies, could be estimated to start when the daily mean temperature is above 5 °C for 5 days. Bud burst will occur approximately after 120–170 degree-days above 5 °C, dependent on genetic differences among provenances. A reduced cold hardiness level during autumn and spring and an advanced onset of bud burst are expected impacts of projected future global warming. The aim of this study was to test if this will increase the risk for frost damage caused by temperature backlashes. This was tested for Sweden by comparing output from the Hadley Centre regional climate model, HadRM3H, for the period 1961–1990 with future IPCC scenario SRES A2 and B2 for 2070–2099. Different indices for calculating the susceptibility to frost damage were used to assess changes in frost damage risk. The indices were based on: (1) the start of dehardening; (2) the severity of the temperature backlash; (3) the timing of bud burst; and (4) the cold hardiness level. The start of dehardening and bud burst were calculated to occur earlier all over the country, which is in line with the overall warming in both climate change scenarios. The frequency of temperature backlashes that may cause frost damage was calculated to increase in the southern part, an effect that became gradually less pronounced towards the north. The different timing of the onset of dehardening mainly caused this systematic latitudinal pattern. In the south, it occurs early in the year when the seasonal temperature progression is slow and large temperature variations occur. In the north, dehardening will occur closer to the spring equinox when the temperature progression is faster.  相似文献   

4.
Because the Khumbu Himal of the Nepal Himalayas lacks long-term climate records from weather stations, mountain permafrost degradation serves as an important indicator of climate warming. In 1973, the permafrost lower limit was estimated to be 5200–5300 m above sea level (ASL) on southern-aspect slopes in this region. Using ground-temperature measurements, we examined the mountain permafrost lower limit on slopes with the same aspect in 2004. The results indicate that the permafrost lower limit was 5400–5500 m ASL in 2004. The permafrost lower limit was estimated to be 5400 to 5500 m on slopes with a southern aspect in the Khumbu Himal in 1991 using seismic reflection soundings. Thus, it is possible that the permafrost lower limit has risen 100–300 m between 1973 and 1991, followed by a stable limit of 5400 to 5500 m over the last decade. An increase in mean annual air temperature of approximately 0.2 to 0.4 °C from the 1970s to the 1990s has indicated a rise in the permafrost lower limit of 40 to 80 m at the Tibetan Plateau. The rise in the mountain permafrost lower limit in the Khumbu Himal exceeds that of the Tibetan Plateau, suggesting the possibility of greater climate warming in the Khumbu Himal.  相似文献   

5.
Observations from 560 weather stations in China show that sand–dust storms occur most frequently in April in north China. The region consists of Sub-dry Mid Temperate, Dry Mid Temperate, Sub-dry South Temperate and Dry South Temperate Zones and much of the land surface is desert or semi-desert: it is relatively dry with minimal rainfall and a high annual mean temperature. In most regions of China, the annual mean frequency of sand–dust events decreased sharply between 1980 and 1997 and then increased from 1997 to 2000. Statistical analyses demonstrate that the frequency of sand–dust storms correlates highly with wind speed, which in turn is strongly related to land surface features; on the other hand, a significant correlation between storm events and other atmospheric quantities such as precipitation and temperature was not observed. Accordingly, land surface cover characteristics (vegetation, snowfall and soil texture) may play a significant role in determining the occurrence of sand–dust storms in China. Analysis of Normalized Difference Vegetation Index derived from National Oceanic and Atmospheric Administration and Empirical Orthogonal Function show that since 1995 surface vegetation cover in large areas of Northern China has significantly deteriorated. Moreover, a high correlation is shown to exist among the annual occurrence of sand–dust storms, surface vegetation cover and snowfall. This suggests that the deterioration of surface vegetation cover may strongly influence the occurrence of sand–dust storms in China. Soils with coarse and medium textures are found to be more associated with sand–dust storms than other soils.  相似文献   

6.
The paper is concerned with identifying changes in the time series of water and sediment discharge of the Zhujiang (Pearl River), China. The gradual trend test (Mann–Kendall test), and abrupt change test (Pettitt test), have been employed on annual water discharge and sediment load series (from the 1950s–2004) at nine stations in the main channels and main tributaries of the Zhujiang. Both the Mann–Kendall and Pettitt tests indicate that water discharge at all stations in the Zhujiang Basin showed no significant trend or abrupt shift. Annual water discharges are mainly influenced by precipitation variability, while the construction of reservoirs/dams in the Zhujiang Basin had little influence on water discharge. Sediment load, however, showed significant decreasing trends at some stations in the main channel of the Xijiang and Dongjiang. More stations have seen significantly decreasing trends since the 1990s. The decreasing sediment load in the Zhujiang reflects the impacts of reservoir construction in the basin. In contrast, the Liujiang, the second largest tributary of the Xijiang, has experienced a significant upward shift of sediment load around 1991 likely caused by exacerbated rock desertification in the karst regions. The annual sediment load from the Zhujiang (excluding the delta region) to the estuary has declined from 80.4 × 106 t averaged for the period 1957–1995 to 54.0 × 106 t for the period 1996–2004. More specifically, the sediment load declined steadily since the early 1990s so that in 2004 it was about one-third of the mean level of pre-90s. Water discharge and sediment load of the Zhujiang would be more affected by human activities in the future with the further reservoir developments, especially the completion of the Datengxia hydroelectric project, and an intensification of the afforestation policy in the drainage basin.  相似文献   

7.
Changes in the extent of glaciers and rates of glacier termini retreat in the eastern Terskey–Alatoo Range, the Tien Shan Mountains, Central Asia have been evaluated using the remote sensing techniques. Changes in the extent of 335 glaciers between the end of the Little Ice Age (LIA; mid-19th century), 1990 and 2003 have been estimated through the delineation of glacier outlines and the LIA moraine positions on the Landsat TM and ASTER imagery for 1990 and 2003 respectively. By 2003, the glacier surface area had decreased by 19% of the LIA value, which constitutes a 76 km2 reduction in glacier surface area. Mapping of 109 glaciers using the 1965 1:25,000 maps revealed that glacier surface area decreased by 12.6% of the 1965 value between 1965 and 2003. Detailed mapping of 10 glaciers using historical maps and aerial photographs from the 1943–1977 period, has enabled glacier extent variations over the 20th century to be identified with a higher temporal resolution. Glacial retreat was slow in the early 20th century but increased considerably between 1943 and 1956 and then again after 1977. The post-1990 period has been marked by the most rapid glacier retreat since the end of the LIA. The observed changes in the extent of glaciers are in line with the observed climatic warming. The regional weather stations have revealed a strong climatic warming during the ablation season since the 1950s at a rate of 0.02–0.03 °C a− 1. At the higher elevations in the study area represented by the Tien Shan meteorological station, the summer warming was accompanied by negative anomalies in annual precipitation in the 1990s enhancing glacier retreat. However, trends in precipitation in the post-1997 period cannot be evaluated due to the change in observational practices at this station. Neither station in the study area exhibits significant long-term trends in precipitation.  相似文献   

8.
The growth of two high-elevation inland lakes (at 4600 m) was analyzed using satellite imagery (2000–2005) and data were collected over the last decade (1997–2006) at a plateau meteorological station (at 4820 m) and stream gauging data from a station (at 4250 m) in central Tibet. We examined the lake water balance responses to meteorological and hydrological variables. The results show that the lake areas greatly expanded by a maximum of 27.1% (or 43.7 km2) between 1998 and 2005. This expansion appears to be associated with an increase in annual precipitation of 51.0 mm (12.6%), mean annual and winter mean temperature increases of 0.41 °C and 0.71 °C, and an annual runoff increase of 20% during the last decade. The changes point to an abrupt increase in the annual precipitation, mean temperature and runoff occurring in 1996, 1998 and 1997, respectively, and a decrease in the annual pan evaporation that happened in 1996. The timing of lake growth corresponds closely with abrupt increases in the annual precipitation and runoff and with the decrease in the annual evaporation since the mid-1990s. This study indicates a strong positive water balance in these permafrost highland lakes, and provides further evidence of lake growth as a proxy indicator of climate variability and change.  相似文献   

9.
Power spectral analysis of cosmic-ray intensity recorded by eight stations was carried out over a wide range of frequencies from 2.3 × 10–8 Hz to 5.8 × 10–6 Hz (2–500 days) during the period 1964–1995. Spectrum results of large-scale fluctuations have revealed the existence of a broad peak near 250–285 days and a narrower peak at 45–50 days during the studied epochs as a stable feature in all neutron monitors covering a wide rigidity range. The cosmic-ray power spectrum displayed significant peaks of varying amplitude with the solar rotation period (changed inversely with the particle rigidities) and its harmonics. The amplitudes of 27-day and 13.5-day fluctuations are greater during the positive-polarity epochs of the interplanetary magnetic field (qA>0) than during the qA<0 epochs. The comparison of cosmic-ray power spectra during the four successive solar activity minima have indicated that at the low-rigidity particles the spectrum differences between the qA>0 and qA<0 epochs are significantly large. Furthermore, the spectrum for even solar maximum years are higher and much harder than the odd years. There are significant differences in the individual spectra of solar maxima for different cycles.  相似文献   

10.
Climatic changes over the Mediterranean basin in 2031–2060, when a 2 °C global warming is most likely to occur, are investigated with the HadCM3 global circulation model and their impacts on human activities and natural ecosystem are assessed. Precipitation and surface temperature changes are examined through mean and extreme values analysis, under the A2 and B2 emission scenarios. Confidence in results is obtained via bootstrapping. Over the land areas, the warming is larger than the global average. The rate of warming is found to be around 2 °C in spring and winter, while it reaches 4 °C in summer. An additional month of summer days is expected, along with 2–4 weeks of tropical nights. Increase in heatwave days and decrease in frost nights are expected to be a month inland. In the northern part of the basin the widespread drop in summer rainfall is partially compensated by a winter precipitation increase. One to 3 weeks of additional dry days lead to a dry season lengthened by a week and shifted toward spring in the south of France and inland Algeria, and autumn elsewhere. In central Mediterranean droughts are extended by a month, starting a week earlier and ending 3 weeks later. The impacts of these climatic changes on human activities such as agriculture, energy, tourism and natural ecosystems (forest fires) are also assessed. Regarding agriculture, crops whose growing cycle occurs mostly in autumn and winter show no changes or even an increase in yield. In contrast, summer crops show a remarkable decrease of yield. This different pattern is attributed to a lengthier drought period during summer and to an increased rainfall in winter and autumn. Regarding forest fire risk, an additional month of risk is expected over a great part of the basin. Energy demand levels are expected to fall significantly during a warmer winter period inland, whereas they seem to substantially increase nearly everywhere during summer. Extremely high summer temperatures in the Mediterranean, coupled with improved climate conditions in northern Europe, may lead to a gradual decrease in summer tourism in the Mediterranean, but an increase in spring and autumn.  相似文献   

11.
Climate changes and recent glacier behaviour in the Chilean Lake District   总被引:1,自引:1,他引:0  
Atmospheric temperatures measured at the Chilean Lake District (38°–42°S) showed contrasting trends during the second half of the 20th century. The surface cooling detected at several meteorological stations ranged from − 0.014 to − 0.021 °C a− 1, whilst upper troposphere (850–300 gpm) records at radiosonde of Puerto Montt (41°26′S/73°07′W) revealed warming between 0.019 and 0.031 °C a− 1. Regional rainfall data collected from 1961 to 2000 showed the overall decrease with a maximum rate of − 15 mm a− 2 at Valdivia st. (39°38′S/73°05′W). These ongoing climatic changes, especially the precipitation reduction, seem to be related to El Niño–Southern Oscillation (ENSO) phenomena which has been more frequent after 1976. Glaciers within the Chilean Lake District have significantly retreated during recent decades, in an apparent out-of-phase response to the regional surface cooling. Moreover, very little is known about upper troposphere changes and how they can enhance the glacier responses. In order to analyse their behaviour in the context of the observed climate changes, Casa Pangue glacier (41°08′S/71°52′W) has been selected and studied by comparing Digital Elevation Models (DEMs) computed at three different dates throughout the last four decades. This approach allowed the determination of ice elevation changes between 1961 and 1998, yielding a mean thinning rate of − 2.3 ± 0.6 m a− 1. Strikingly, when ice thinning is computed for the period between 1981 and 1998, the resulting rate is 50% higher (− 3.6 ± 0.6 m a− 1). This enhanced trend and the related area loss and frontal retreat suggests that Casa Pangue might currently be suffering negative mass balances in response to the upper troposphere warming and decreased precipitation of the last 25–30 yr, as well as debris cover would not prevent the glacier from a fast reaction to climate forcing. Most of recent glaciological studies regarding Andean glaciers have concentrated on low altitude changes, namely frontal variations, however, in order to better understand the regional glacier changes, new data are necessary, especially from the accumulation areas.  相似文献   

12.
This study simulates water resources in the Tien Shan alpine basins to forecast how global and regional climate changes would affect river runoff. The model employed annual mean values for the major characteristics of the water cycle: annual air temperature, precipitation, evapotranspiration and river runoff. The simulation was based on 304 hydro-meteorological stations, 23 precipitation sites, 328 high altitudinal points with glaciological measurements, 123 stream-gauges, and 54 evaporation sites, and it took into account topography. The findings were simulated over Tien Shan relief using a 1:500,000 scale 100 m grid resolution Digital Elevation Model. An applicable GIS-based distributed River Runoff Model was implemented in regional conditions and tested in the Tien Shan basins. The annual evapotranspiration exceeds the river runoff in the Tien Shan watersheds particularly up to 3700 m. Hypothetical climate-change scenarios in the Tien Shan predict that by 2100 river runoff will increase by 1.047 times with an increase in air temperature averaging 3 °C and an increase in precipitation averaging 1.2 times the current levels. Change in precipitation, rather than temperature, is the main parameter determining river runoff in the Tien Shan. The maximum ratio for predicted river runoff could reach up to 2.2 and the minimum is predicted to be 0.55 times current levels. This possibly dramatic change in river runoff indicates on non-linear system response caused mainly by the non-linear response of evapotranspiration from air temperature and precipitation changes. In the frame of forecasted possible climate change scenarios the probability of river runoff growth amounts 83–87% and probability of this decline is 17–13% by 2100 in the Tien Shan River basins.  相似文献   

13.
Caballero  R.  Valdés-galicia  J.F. 《Solar physics》2003,213(2):413-426
Galactic cosmic ray fluctuations from six mountain altitude neutron monitors around the world are analyzed during the period 1990–1999. The period comprises the maximum and declining phase of solar cycle 22 and the beginning of cycle 23. The evolution of the most significant periodicities and comparisons with solar activity and interplanetary indicators are presented. We found a 38-day variation present in all neutron monitors, solar activity parameters, and IMF fluctuations. The possible origin of this and other stable periodicities of cosmic ray variations in the analyzed period are discussed.  相似文献   

14.
Summer 2007 was abnormally warm for many areas of southeastern Europe, the Balkan peninsula and parts of Asia Minor with departures from the seasonal means exceeding 4 °C in some areas but also distinct periods of extremely hot weather. Greece experienced very likely the warmest summer of its instrumental history with record breaking temperatures being observed at a number of stations. The historical air temperature record of the National Observatory of Athens (NOA), extending back to the 19th century, was used in order to highlight the rarity of the event. Seasonal (June to August) temperature anomalies at NOA exceeded 3 °C corresponding to more than 3 standard deviations with respect to the 1961–1990 reference period. The record value of 44.8 °C was observed at NOA on 26 June 2007 (previous record 43 °C in June 1916) during the first and most intense heat wave that affected the area. The study places summer 2007 in the climatology of the previous century and also examines whether the statistics of summer 2007 have similarities with Mediterranean summers of the future. An ensemble of regional climate model simulations undertaken for the European domain indicate that summer 2007 reflects the daily maximum temperatures that are projected to occur in the latter part of the 21st century. The analysis of temperature data from other less urbanized stations indicates that the urban heat effect in Athens contributed positively to the anomalies of the nocturnal temperatures. The abnormally hot summer of 2007 is perhaps not the proof but a strong indicator of what eastern Mediterranean summers could resemble in future.  相似文献   

15.
Changes of major terrestrial ecosystems in China since 1960   总被引:10,自引:1,他引:9  
Daily temperature and precipitation data since 1960 are selected from 735 weather stations that are scattered over China. After comparatively analyzing relative interpolation methods, gradient-plus-inverse distance squared (GIDS) is selected to create temperature surfaces and Kriging interpolation method is selected to create precipitation surfaces. Digital elevation model of China is combined into Holdridge Life Zone (HLZ) model on the basis of simulating relationships between temperature and elevation in different regions of China. HLZ model is operated on the created temperature and precipitation surfaces in ARC/INFO environment. Spatial pattern of major terrestrial ecosystems in China and its change in the four decades of 1960s, 1970s, 1980s and 1990s are analyzed in terms of results from operating HLZ model. The results show that HLZ spatial pattern in China has had a great change since 1960. For instance, nival area and subtropical thorn woodland had a rapid decrease on an average and they might disappear in 159 years and 96 years, respectively, if their areas would decrease at present rate. Alpine dry tundra and cool temperate scrub continuously increased in the four decades and the decadal increase rates are, respectively, 13.1% and 3.4%. HLZ patch connectivity has a continuous increase trend and HLZ diversity has a continuous decrease trend on the average. Warm temperate thorn steppe, subtropical wet forest and cool temperate wet forest shifted 1781.45 km, 1208.14 km and 977.43 km in the four decades, respectively. These HLZ types are more sensitive to climate change than other ones. These changes reflect the great effects of climate change on terrestrial ecosystems in China.  相似文献   

16.
Debris-flow activity on the forested cone of the Ritigraben torrent (Valais, Swiss Alps) was assessed from growth disturbances in century-old trees, providing an unusually complete record of past events and deposition of material. The study of 2246 tree-ring sequences sampled from 1102 Larix decidua Mill., Picea abies (L.) Karst. and Pinus cembra ssp. sibirica trees allowed reconstruction of 123 events since AD 1566. Geomorphic mapping permitted identification of 769 features related to past debris-flow activity on the intermediate cone. The features inventoried in the study area covering 32 ha included 291 lobes, 465 levées and 13 well-developed debris-flow channels. Based on tree-ring records of disturbed trees growing in or next to the deposits, almost 86% of the lobes identified on the present-day surface could be dated. A majority of the dated material was deposited over the last century. Signs of pre-20th century events are often recognizable in the tree-ring record of survivor trees, but the material that caused the growth anomaly in trees has been completely overridden or eroded by more recent debris-flow activity.Tree-ring records suggest that cool summers with frequent snowfalls at higher elevations regularly prevented the release of debris flows between the 1570s and 1860s; the warming trend combined with greater precipitation totals in summer and autumn between 1864 and 1895 provided conditions that were increasingly favorable for releasing events from the source zone. Enhanced debris-flow activity continued well into the 20th century and reconstructions show a clustering of events in the period 1916–1935 when warm–wet conditions prevailed during summer in the Swiss Alps. In contrast, very low activity is observed for the last 10-yr period (1996–2005) with only one debris-flow event recorded on August 27, 2002. Since sediment availability is not a limiting factor, this temporal absence of debris-flow activity is due to an absence of triggering events, which not only shifted from June and July to August and September over the 20th century, but also seemed to be initiated primarily by persistent precipitation rather than summer thunderstorms. From the reconstructions, based on RCM simulations, there are indications that debris-flow frequencies might continue to decrease in the future, as precipitation events are projected to occur less frequently in summer but become more common in spring or autumn.  相似文献   

17.
Thirty borehole temperature–depth profiles in the central and southern Urals, Russia were scrutinized for evidence of ground surface temperature histories. We explored two inversion schemes: a simple ramp inversion in which solutions are parameterized in terms of an onset time and magnitude of change and a more sophisticated functional space inverse algorithm in which the functional form of the solution is left unspecified. To enhance and potentially identify latitudinal differences in the ground surface temperature signal, we subdivided the data into three groups based on geographic proximity and simultaneously inverted the borehole temperature–depth logs. The simultaneous inversions highlighted 13 temperature–depth logs that could not both fit a common ground surface temperature history and a priori models within reasonable bounds. Our results confirm that this is an effective way to reduce site-specific noise from an ensemble of boreholes. Each inversion scheme gives comparable results indicating locally variable warming on the order of 1°C starting between 1800 and 1900 AD. Similarly surface air temperature records from 12 nearby meteorological stations exhibit locally variable warming also on the order of 1°C of warming during the 20th century. To explore the degree to which borehole temperatures and surface air temperature (SAT) time series are responding to the same signal, we average the SAT data into the same three groups and used these averages as a forcing function at the Earth's surface to generate synthetic transient temperature profiles. Root mean square (RMS) misfits between these synthetic temperature profiles and averaged temperature–depth profiles are low, suggesting that first-order curvature in borehole temperatures and variations in SAT records are correlated.  相似文献   

18.
This paper is concerned with identifying the spatial and temporal patterns in the annual maximum and minimum water level in the Pearl River Delta (PRD) region. The Mann–Kendall test and Pettitt test are used to detect trends and abrupt change points, and the Trend Free Pre-Whitening (TFPW) approach then eliminates the effect of serial correlation in data series with significant autocorrelation. Approximately fifty years of the annual hydrological variables from 18 stations in the three major rivers (the West River, the North River, and the East River) are examined. The changing trends of the extremes in water level show different features in different parts of the PRD region. Generally speaking, in the upper part of the delta, the water levels show a decreasing trend while in the middle and lower part there is an increasing trend. This spatial pattern of the extreme water level variation is unlikely to be due to a long-term change in stream flow in the PRD region because the water level changes do not always coincide with the extreme stream flow variations. Sand excavation initiated in the 1980s and continuing for more than 20 years in almost all tributaries around the PRD region is one of the most serious intensive human activities affecting water levels. The result of the Pettitt test indicates that most abrupt change points occurred in 1980s–1990s, which reveals that sand excavation and channel regulation are likely to have been the most significant factors contributing to the change over this period. These anthropogenic activities modify the annual extreme water level dramatically in a way that affects the morphology of river channels and estuaries of the PRD and also the redistribution of discharge. However, there are differences in the geographic locations of significant trends for the water level investigated, which implies that these impacts are not spatially uniform.  相似文献   

19.
South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and δ18O data for five Holocene and one modern Porites corals, each covering a growth history of 9–13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca–SST in the 1990s (24.8 °C), 10-year mean Sr/Ca–SSTs were 0.9–0.5 °C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by 2.5 ky BP, and reached a low of 22.6 °C (2.2 °C lower) by 1.5 ky BP. The summer Sr/Ca–SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1–2 °C higher between 6.8 and 5.0 ky BP, dropping to the present level by 2.5 ky BP, and reaching a low of 28.7 °C (0.7 °C lower) by 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater δ18O values, reflected by offsets of mean δ18O relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions 2.5 and 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 °C warmer than that 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime.  相似文献   

20.
In order to point out and study transports of ozone rich air masses in the lower troposphere from the stratosphere/upper troposphere, continuous measurements of several parameters have been undertaken at Mt. Cimone during the European Community VOTALP project (Vertical Ozone Transport in the Alps). Several high values of surface ozone concentration due to vertical stratospheric-tropospheric exchanges have been recorded in the four mountain peak stations involved in this project (Jungfraujoch, Sonnblick, Zugspitze and Mt. Cimone) in 1996–1997. This paper presents and analyses data concerning the Mt. Cimone ground-based station, which is the highest peak of the Italian Northern Apennines and the most representative WMO-GAW site in Italy. Episodes of vertical exchange in the lower stratosphere, as tropopause folding, or in the upper troposphere, as down draft transport, have been registered at Mt. Cimone since March 1996 and subsequently studied. In fact, the comparison between the behaviours of different background trace gases at a mountain baseline station, the weather situations and the backward trajectory analyses can bring to light these events and be very useful for a better knowledge of transport phenomena. Correlation between high level of ozone concentration, chemical and meteorological parameters and three-dimensional backward trajectories relative to two particular events are herein presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号