首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Assessment of hydrological extremes in the Kamo River Basin,Japan   总被引:1,自引:1,他引:0  
A suite of extreme indices derived from daily precipitation and streamflow was analysed to assess changes in the hydrological extremes from 1951 to 2012 in the Kamo River Basin. The evaluated indices included annual maximum 1-day and 5-day precipitation (RX1day, RX5day), consecutive dry days (CDD), annual maximum 1-day and 5-day streamflow (SX1day, SX5day), and consecutive low-flow days (CDS). Sen’s slope estimator and two versions of the Mann-Kendall test were used to detect trends in the indices. Also, frequency distributions of the indices were analysed separately for two periods: 1951–1981 and 1982–2012. The results indicate that quantiles of the rainfall indices corresponding to the 100-year return period have decreased in recent years, and the streamflow indices had similar patterns. Although consecutive no rainfall days represented by 100-year CDD decreased, continuous low-flow days represented by 100-year CDS increased. This pattern change is likely associated with the increase in temperature during this period.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR E. Gargouri  相似文献   

2.
ABSTRACT

This study investigates changes in seasonal runoff and low flows related to changes in snow and climate variables in mountainous catchments in Central Europe. The period 1966–2012 was used to assess trends in climate and streamflow characteristics using a modified Mann–Kendall test. Droughts were classified into nine classes according to key snow and climate drivers. The results showed an increase in air temperature, decrease in snowfall fraction and snow depth, and changes in precipitation. This resulted in increased winter runoff and decreased late spring runoff due to earlier snowmelt, especially at elevations from 1000 to 1500 m a.s.l. Most of the hydrological droughts were connected to either low air temperatures and precipitation during winter or high winter air temperatures which caused below-average snow storages. Our findings show that, besides precipitation and air temperature, snow plays an important role in summer streamflow and drought occurrence in selected mountainous catchments.  相似文献   

3.
Climate change and runoff response were assessed for the Tizinafu River basin in the western Kunlun Mountains, China, based on isotope analysis. We examined climate change in the past 50 years using meteorological data from 1957 to 2010. Results of the Mann-Kendall non-parametric technique test indicated that temperature in the entire basin and precipitation in the mountains exhibited significant increasing trends. Climate change also led to significant increasing trends in autumn and winter runoff but not in spring runoff. By using 122 isotope samples, we investigated the variations of isotopes in different water sources and analysed the contributions of different water sources based on isotope hydrograph separation. The results show that meltwater, groundwater and rainfall contribute 17%, 40% and 43% of the annual streamflow, respectively. Isotope analysis was also used to explain the difference in seasonal runoff responses to climate change. As the Tizinafu is a precipitation-dependent river, future climate change in precipitation is a major concern for water resource management.
EDITOR A. Castellarin; ASSOCIATE EDITOR S. Huang  相似文献   

4.
The catchments in the Loess Plateau, in China's middle reaches of the Yellow River Basin, experienced unprecedented land use changes in the last 50 years as a result of large‐scale soil conservation measure to control soil erosion. The climate of the region also exhibited some levels of change with decreased precipitation and increased temperature. This study combined the time‐trend analysis method with a sensitivity‐based approach and found that annual streamflow in the Loess Plateau decreased significantly since the 1950s and surface runoff trends appear to dominate the streamflow trends in most of the catchments. Annual baseflow exhibited mostly downward trends, but significant upward trends were also observed in 3 out of 38 gauging stations. Mean annual streamflow during 1979?2010 decreased by up to 65% across the catchments compared with the period of 1957?1978, indicating significant changes in the hydrological regime of the Loess Plateau. It is estimated that 70% of the streamflow reduction can be attributed to land use change, while the remaining 30% is associated with climate variability. Land use change because of the soil conservation measures and reduction in precipitation are the key drivers for the observed streamflow trends. These findings are consistent with results of previous studies for the region and appear to be reasonable given the accelerated level of the soil conservation measures implemented since the late 1970s. Changes in sea surface temperature in the Pacific Ocean, as indicated by variations in El Niño–Southern Oscillation and phase shifts of the Pacific Decadal Oscillation, appear to have also affected the annual streamflow trends. The framework described in this study shows promising results for quantifying the effects of land use change and climate variability on mean annual streamflow of catchments within the Loess Plateau. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

The objectives of this work are: (a) to statistically test and quantify the decreasing trends of streamflow and sediment discharge of the Yellow River in China during 1950–2005, (b) to identify change points or transition years of the decreasing trends, and (c) to diagnose whether the decreasing trends were caused by precipitation changes or human intervention, or both. The results show that significant decreasing trends in annual streamflow and sediment discharge have existed since the late 1950s at three stations located in the upper, middle, and lower reaches of the Yellow River (P?=?0.01). Change-point analyses further revealed that transition years existed and that rapid decline in streamflow and sediment discharge began in 1985 in most parts of the basin (P?=?0.05). Adoption of conservation measures in the 1980s and 1990s corroborates the identified transition years. Double-mass curves of precipitation vs streamflow (sediment) for the periods before and after the transition years show remarkable decreases in proportionality of streamflow (sediment) generation. All percentiles of streamflow and sediment discharge after the transition years showed rapid reduction. In the absence of significantly decreasing precipitation trends, it is concluded that the decreasing trends were very likely caused by human intervention. Relative to the period before the transition, human intervention during 1985–2005 reduced cumulative streamflow by 13.5, 14.3 and 24.6% and cumulative sediment discharge by 29.0, 24.8 and 26.5%, at Toudaoguai, Huayuankou and Lijin, respectively, showing the quantitative conservation effect in the basin.

Citation Gao, P., Zhang, X.-C., Mu, X.-M., Wang, F., Li, R. & Zhang, X. (2010) Trend and change-point analyses of streamflow and sediment discharge in the Yellow River during 1950–2005. Hydrol. Sci. J. 55(2), 275–285.  相似文献   

6.
《水文科学杂志》2012,57(1):57-70
ABSTRACT

Leading patterns of observed seasonal extreme and mean streamflow on the Korean peninsula were estimated using an empirical orthogonal teleconnection (EOT) technique. In addition, statistical correlations on a seasonal basis were calculated using correlation and regression analyses between the leading streamflow patterns and various climate indices based on atmospheric–ocean circulation. The spatio-temporal patterns of the leading EOT modes for extreme and mean streamflow indicate an upstream mode for the Han River, with increasing trends in summer, and a downstream mode for the Nakdong River, with oscillations mainly on inter-decadal time scales in winter. The tropical ENSO (El Niño Southern Oscillation) forcing for both extreme and mean streamflow is coherently associated with summer to winter streamflow patterns. The western North Pacific monsoon has a negative correlation with winter streamflow variability, and tropical cyclone indices also exhibit significant positive correlation with autumn streamflow. Leading patterns of autumn and winter streamflow time series show predictability up to two seasons in advance from the Pacific sea-surface temperatures.  相似文献   

7.
ABSTRACT

In this study, a hybrid factorial stepwise-cluster analysis (HFSA) method is developed for modelling hydrological processes. The HFSA method employs a cluster tree to represent the complex nonlinear relationship between inputs (predictors) and outputs (predictands) in hydrological processes. A real case of streamflow simulation for the Kaidu River basin is applied to demonstrate the efficiency of the HFSA method. After training a total of 24?108 calibration samples, the cluster tree for daily streamflow is generated based on a stepwise-cluster analysis (SCA) approach and is then used to reproduce the daily streamflows for calibration (1995–2005) and validation (2008–2010) periods. The Nash-Sutcliffe coefficients for calibration and validation are 0.68 and 0.65, respectively, and the deviations of volume are 1.68% and 4.11%, respectively. Results show that: (i) the HFSA method can formulate a SCA-based hydrological modelling system for streamflow simulation with a satisfactory fitting; (ii) the variability and peak value of streamflow in the Kaidu River basin can be effectively captured by the SCA-based hydrological modelling system; (iii) results from 26 factorial experiments indicate that not only are minimum temperature and precipitation key drivers of system performance, but also the interaction between precipitation and minimum temperature significantly impacts on the streamflow. The findings are useful in indicating that the streamflow of the study basin is a mixture of snowmelt and rainfall water.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR G. Thirel  相似文献   

8.
ABSTRACT

The trends in hydrological and climatic time series data of Urmia Lake basin in Iran were examined using the four different versions of the Mann-Kendall (MK) approach: (i) the original MK test; (ii) the MK test considering the effect of lag-1 autocorrelation; (iii) the MK test considering the effect of all autocorrelation or sample size; and (iv) the MK test considering the Hurst coefficient. Identification of hydrological and climatic data trends was carried out at monthly and annual time scales for 25 temperature, 35 precipitation and 35 streamflow gauging stations selected from the Urmia Lake basin. Mann-Kendall and Pearson tests were also applied to explore the relationships between temperature, precipitation and streamflow trends. The results show statistically significant upward and downward trends in the annual and monthly hydrological and climatic variables. The upward trends in temperature, unlike streamflow, are much more pronounced than the downward trends, but for precipitation the behaviour of trend is different on monthly and annual time scales. Furthermore, the trend results were affected by the different approaches. Specifically, the number of stations showing trends in hydrological and climatic variables decreased significantly (up to 50%) when the fourth test was considered instead of the first and the absolute value of the Z statistic for most of the time series was reduced. The results of correlations between streamflow and climatic variables showed that the streamflow in Urmia Lake basin is more sensitive to changes in temperature than those of precipitation. The observed decreases in streamflow and increases in temperature in the Urmia Lake basin in recent decades may thus have serious implications for water resources management under the warming climate with the expected population growth and increased freshwater consumption in this region.
Editor Z. W. Kundzewicz; Associate editor Q. Zhang  相似文献   

9.
Soil and water conservation measures including terracing, afforestation, construction of sediment‐trapping dams, and the ‘Grain for Green Program’ have been extensively implemented in the Yanhe River watershed, of the Loess Plateau, China, over the last six decades, and have resulted in large‐scale land use and land cover changes. This study examined the trends and shifts in streamflow regime over the period of 1953–2010 and relates them to changes in land use and soil and water conservation and to the climatic factors of precipitation and air temperature. The non‐parametric Mann–Kendall test and the Pettitt test were used to identify trends and shifts in streamflow and base flow. A method based on precipitation and potential evaporation was used to evaluate the impacts of climate variability and changes in non‐climate factors changes on annual streamflow. A significant decrease (p = 0.01) in annual streamflow was observed related to a significant change point in 1996, mostly because of significant decreases in streamflow (p = 0.01) in the July to September periods in subsequent years. The annual base flow showed no significant trend from 1953 to 2010 and no change point year, mostly because there were no significant seasonal trends, except for significant decreases (p = 0.05) in the July to September periods. There was no significant trend for precipitation over the studied time period, and no change point was detected. The air temperature showed a significant increasing trend (p < 0.01), and 1986 (p < 0.01) was the change point year. The climate variability, as measured by precipitation and temperature, and non‐climate factors including land use changes and soil and water conservation were estimated to have contributed almost equally to the reduction in annual streamflow. Soil and water conservation practices, including biological measures (e.g. revegetation, planting trees and grass) and engineering measures (such as fish‐scale pits, horizontal trenches, and sediment‐trapping dams) play an important role in reduction of the conversion of rainfall to run‐off. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

Motivated by recent extreme flow events in the Mataquito River located in the Mediterranean region of Chile, we performed a detailed trend analysis of critical hydroclimatic variables based on observed daily flow, precipitation and temperature within the basin. For the period 1976–2008, positive trends in temperature were observed, especially during spring and summer months. At the same time, we found negative trends in the frequency and intensity of precipitation, especially during spring months. We observed an increasing difference between average streamflow in the rainy season as compared to the snowmelt season. Part of this trend is caused by larger flows during autumn months, although no positive precipitation trends are observed for these months. Finally, significant reductions in minimum flow during spring/summer and a disproportionate concentration of high-flow events occurring in the last 10 years were also identified. These high-flow events tend to happen during autumn months, and are associated with high precipitation and high minimum temperatures. Based on a simple assessment of changes in irrigated agriculture and land use, we concluded that other non-climatic factors seem not to be as relevant to the detected flow trends. All these results are in accord with future climate change scenarios that show an increase in temperature, a reduction in average precipitation and a reduction in snow accumulation. Such future scenarios could seriously hamper the development of economic activities in this basin, exemplifying also a fate that may be shared by other similar basins in Chile and in other regions of the world.

Editor Z.W. Kundzewicz

Citation Vicuña, S., Gironás, J., Meza, F.J., Cruzat, M.L., Jelinek, M., Bustos, E., Poblete, D., and Bambach, N., 2013. Exploring possible connections between hydrological extreme events and climate change in central south Chile. Hydrological Sciences Journal, 58 (8), 1598–1619.  相似文献   

11.
This study is an attempt to determine the trends in monthly, annual and monsoon total precipitation series over India by applying linear regression, the Mann-Kendall (MK) test and discrete wavelet transform (DWT). The linear regression test was applied on five consecutive classical 30-year climate periods and a long-term precipitation series (1851–2006) to detect changes. The sequential Mann-Kendall (SQMK) test was applied to identify the temporal variation in trend. Wavelet transform is a relatively new tool for trend analysis in hydrology. Comparison studies were carried out between decomposed series by DWT and original series. Furthermore, visualization of extreme and contributing events was carried out using the wavelet spectrum at different threshold values. The results showed that there are significant positive trends for annual and monsoon precipitation series in North Mountainous India (zone NMI) and North East India (NEI), whereas negative trends were detected when considering India as whole.

EDITOR A. Castellarin ASSOCIATE EDITOR S. Kanae  相似文献   

12.
This study addresses a need to document changes in streamflow and base flow (groundwater discharge to streams) in Hawai‘i during the past century. Statistically significant long‐term (1913–2008) downward trends were detected (using the nonparametric Mann–Kendall test) in low‐streamflow and base‐flow records. These long‐term downward trends are likely related to a statistically significant downward shift around 1943 detected (using the nonparametric Pettitt test) in index records of streamflow and base flow. The downward shift corresponds to a decrease of 22% in median streamflow and a decrease of 23% in median base flow between the periods 1913–1943 and 1943–2008. The shift coincides with other local and regional factors, including a change from a positive to a negative phase in the Pacific Decadal Oscillation, shifts in the direction of the trade winds over Hawai‘i, and a reforestation programme. The detected shift and long‐term trends reflect region‐wide changes in climatic and land‐cover factors. A weak pattern of downward trends in base flows during the period 1943–2008 may indicate a continued decrease in base flows after the 1943 shift. Downward trends were detected more commonly in base‐flow records than in high‐streamflow, peak‐flow, and rainfall records. The decrease in base flow is likely related to a decrease in groundwater storage and recharge and therefore is a valuable indicator of decreasing water availability and watershed vulnerability to hydrologic changes. Whether the downward trends will continue is largely uncertain given the uncertainty in climate‐change projections and watershed responses to changes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In recent years, the Xitiaoxi river basin in China has experienced intensified human activity, including city expansion and increased water demand. Climate change also has influenced streamflow. Assessing the impact of climate variability and human activity on hydrological processes is important for water resources planning and management and for the sustainable development of eco‐environmental systems. The non‐parametric Mann–Kendall test was employed to detect the trends of climatic and hydrological variables. The Mann–Kendall–Sneyers test and the moving t‐test were used to locate any abrupt change of annual streamflow. A runoff model, driven by precipitation and potential evapotranspiration, was employed to assess the impact of climate change on streamflow. A significant downward trend was detected for annual streamflow from 1975 to 2009, and an abrupt change occurred in 1999, which was consistent with the change detected by the double mass curve test between streamflow and precipitation. The annual precipitation decreased slightly, but upward trends of annual mean temperature and potential evapotranspiration were significant. The annual streamflow during the period 1999–2009 decreased by 26.19% compared with the reference stage, 1975–1998. Climate change was estimated to be responsible for 42.8% of the total reduction in annual streamflow, and human activity accounted for 57.2%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Mean daily streamflow records from 44 river basins in Romania with an undisturbed runoff regime have been analyzed for trends with the nonparametric Mann‐Kendall test for two periods of study: 1961–2009 (25 stations) and 1975–2009 (44 stations). The statistical significance of trends was tested for each station on an annual and seasonal basis, for different streamflow quantiles. In order to account for the presence of serial correlation that might lead to an erroneous rejection of the null hypothesis, a trend‐free prewhitening was applied to the original data series. The regional field significance of trends is tested by a bootstrap procedure. Changes in the streamflow regime in Romania are demonstrated. The main identified trends are an increase in winter and autumn streamflow since 1961 and a decrease in summer flow since 1975. The streamflow trends are well explained by recent changes in temperature and precipitation that occurred in the last 50 years. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (Østlandet) Norway by applying the Mann–Kendall test and Theil–Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983–2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. Østlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in Østlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration.  相似文献   

16.
Mediterranean lake–wetland systems are threatened by climate change and intensive human impacts. Individual lake responses to these threats are poorly known but urgently required to steer preservation strategies. The dramatic water-level fall (~8 m since 1987) of Lake Megali Prespa endangers this global biodiversity hotspot and the wider catchment’s water resources. Annual lake fluctuations are found to be strongly related to wet-season (Oct.–Apr.) precipitation variability, which is linked to the North Atlantic Oscillation. The lake primarily adjusts to sustained inflow changes through amending surface evaporation. Cumulative water abstraction since 1951 (~19 × 106 m3/year: ~0.006% of lake volume) explains ~70% of the long-term decrease in surface evaporation; climate variability explains the remainder. Persistent low lake levels after 1995 are caused by water abstraction. Compared to 1952/53–1977/78, the period 1978/79–2003/04 experienced significant decreases in wet-season precipitation, snowfall and discharge; the number of very dry years increased.
EDITOR A. Castellarin; ASSOCIATE EDITOR D. Gerten  相似文献   

17.
The spatial and temporal variations of precipitation and runoff for 139 basins in South Korea were investigated for 34 years (1968–2001). The Precipitation‐Runoff Modelling System (PRMS) was selected for the assessment of basin hydrologic response to varying climates and physiology. A non‐parametric Mann–Kendall's test and regression analysis are used to detect trends in annual, seasonal, and monthly precipitation and runoff, while Moran's I is adapted to determine the degree of spatial dependence in runoff trend among the basins. The results indicated that the long‐term trends in annual precipitation and runoff were increased in northern regions and decreased in south‐western regions of the study area during the study period. The non‐parametric Mann–Kendall test showed that spring streamflow was decreasing, while summer streamflow was increasing. April precipitation decreased between 15% and 74% for basins located in south‐western part of the Korean peninsula. June precipitation increased between 18% and 180% for the majority of the basins. Trends in seasonal and monthly streamflow show similar patterns compared to trends in precipitation. Decreases in spring runoff are associated with decreases in spring precipitation which, accompanied by rising temperatures, are responsible for reducing soil moisture. The regional patterns of precipitation and runoff changes show a strong to moderate positive spatial autocorrelation, suggesting that there is a high potential for severe spring drought and summer flooding in some parts of Korea if these trends continue in the future. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Daily temperature and precipitation data from 136 stations of Southwest China (SWC) during the last five decades, from 1960 to 2007, were analysed to determine the spatial and temporal trends by using the Mann–Kendall trend test. Results show that SWC has become warmer over the last five decades, especially in the recent 20–25 years. The increasing trends in winter months are more significant than those in the months of other seasons, and spatially Tibet, Hengduan mountains area and west Sichuan Plateau have larger temperature trend in magnitude than the other regions have. A downward trend was detected in Sichuan Basin also, but the region with cooler temperature was shrinking due to the statistically significant increasing trend of temperature after 1990s. Both annual and seasonal means of daily maximum and minimum temperatures show an increasing trend, but trend magnitude of minimum temperature was larger than that of maximum temperature, resulting in the decrease of diurnal temperature range for SWC in the last 50 years. Annual precipitation showed slightly and statistically insignificant increasing trend, but statistically significant increasing trend has been detected in winter season while autumn witnessed a statistically significant decreasing trend. The results could be a reference for the planning and management of water resources under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Transformations of precipitation into groundwater and streamflow are fundamental hydrological processes, critical to irrigated agriculture, hydroelectric power generation, and ecosystem health. Our understanding of the timing of groundwater recharge and streamflow generation remains incomplete, limiting our ability to predict fresh water, nutrient, and contaminant fluxes, especially in large basins. Here, we analyze thousands of rain, snow, groundwater, and streamflow δ18O and δ2H values in the Nelson River basin, which covers 1.2 million km2 of central Canada. We show that the fraction of precipitation that recharges aquifers is ~1.3–5 times higher for precipitation falling during cold months with subzero mean monthly temperatures than for precipitation falling during warmer months. The near‐ubiquity of cold‐season‐biased groundwater recharge implies that changes to winter water balances may have disproportionate impacts on annual groundwater recharge rates. We also show that young streamflow—defined as precipitation that enters a river in less than ~2.3 months—comprises ~27% of annual streamflow but varies widely among tributaries in the Nelson River basin (1–59%). Young streamflow fractions are lower in steep catchments and higher in flatter catchments such as the transboundary Red River basin. Our findings imply that flat, lower permeability, heavily tiled landscapes favor more rapid transmission of precipitation into rivers, possibly mobilizing excess soluble fertilizers and exacerbating eutrophication events in Lake Winnipeg.  相似文献   

20.
The Georgia Basin–Puget Sound Lowland region of British Columbia (Canada) and Washington State (USA) presents a crucial test in environmental management due to its combination of abundant salmonid habitat, rapid population growth and urbanization, and multiple national jurisdictions. It is also hydrologically complex and heterogeneous, containing at least three streamflow regimes: pluvial (rainfall-driven winter freshet), nival (melt-driven summer freshet), and hybrid (both winter and summer freshets), reflecting differing elevation ranges within various watersheds. We performed bootstrapped composite analyses of river discharge, air temperature, and precipitation data to assess El Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) impacts upon annual hydrometeorological cycles across the study area. Canadian and American data were employed from a total of 21 hydrometric and four meteorological stations. The surface meteorological anomalies showed strong regional coherence. In contrast, the seasonal impacts of coherent modes of Pacific circulation variability were found to be fundamentally different between streamflow regimes. Thus, ENSO and PDO effects can vary from one stream to the next within this region, albeit in a systematic way. Furthermore, watershed glacial cover appeared to complicate such relationships locally; and an additional annual streamflow regime was identified that exhibits climatically driven non-linear phase transitions. The spatial heterogeneity of seasonal flow responses to climatic variability may have substantial implications to catchment-specific management and planning of water resources and hydroelectric power generation, and it may also have ecological consequences due to the matching or phase-locking of lotic and riparian biological activity and life cycles to the seasonal cycle. The results add to a growing body of literature suggesting that assessments of the streamflow impacts of ocean–atmosphere circulation modes must accommodate local hydrological characteristics and dynamics. Copyright © 2007 John Wiley & Sons, Ltd. The copyright in Paul H. Whitfield's contribution belongs to the Crown in right of Canada and such copyright material is reproduced with the permission of Environment Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号