首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
中国北方近57年气温时空变化特征   总被引:28,自引:2,他引:26  
通过分析中国北方近57年来气温时空变化特征,结合GIS空间分析技术和数理统计理论,对中国北方气温变化进行定量化分析,阐述其时空演变规律。结果表明:近57年来中国北方气温总体呈上升趋势,升温趋势最快的是东北地区(0.25℃/10a),最慢的是西北东区(0.12℃/10a)。各区年均、1月、7月气温的增温趋势呈非对称性,年均气温的升高主要得益于1月气温的贡献,7月各区升温趋势普遍较慢;中国北方年均气温变化存在突变现象,东北区是在1994年(a=0.05),华北区是在1997年(a=0.05),西北西和西北东分别为在1996年和1997年(a=0.05);年均气温变化具有明显的周期性,东北区分别以21a、6a、11a为第一、第二、第三主周期,华北区气温周期为22a,西北西区周期为12a,西北东区第一、第二、第三主周期分别为15a、8a、5.5a;中国北方各区气温变化一致性较强,都呈现上升趋势,但各区之间相关关系存在差异,东北和华北年均气温相关系数达到0.79(a=0.01),1月东北区和西北西区相关系数为0.19,7月东北区和西北东区的相关系数为0.26,未达到显著水平。  相似文献   

2.
利用云南中部区域1961—2010年逐月气温资料,采用趋势系数、气候倾向率、Mann-Kendall突变检验、Morlet小波等方法分析该地区气温的时空变化特征,并采用城郊对比法分析城市化对于气温变化的影响程度。结果表明:(1)该地区年均气温上升趋势明显,年均气温存在着24 a的主周期,并于1997年发生了突变,之后进入了一个显著增暖时期。四季平均气温均呈上升趋势,其中冬季气温增幅最大。(2)除西北部的元谋干热河谷存在降温趋势外,其余地区均呈现增温趋势,升温中心位于城市,其中以昆明的升温趋势最为显著。(3)城市化对气温序列变化趋势的影响显著,城市化引起的增温速率在冬季最大,而城市化对气温变化趋势贡献最高的季节则为春季。(4)昆明的城市化增温速率最大,楚雄次之,玉溪最弱;三市的热岛强度从1985年开始逐年增强,2000年后达到最高值,之后趋于平缓;冬春季节的城市化增温速率要明显高于夏秋季节,城市化增温贡献最高的季节为春季。  相似文献   

3.
冯克鹏  田军仓  沈晖 《干旱区地理》2019,42(6):1239-1252
采用K-means聚类分区,Sen’s斜率估计,Kendall-Tau非参数检验等方法,分析和讨论了近半个世纪(1960—2015年)我国西北地区不同区域的气温变化特征。发现近半个世纪西北地区气温保持了持续的显著上升,年均最低气温上升速率高于年均气温和年均最高气温。从空间的角度来看,新疆北疆地区的东北部,内蒙古北部、西部中东部,甘肃中部、西部,青海北部、中部,宁夏中部、北部地区以及陕西北部是升温最快的区域。虽然西北地区气温总体是上升趋势,但在时间上并不均匀一致。从1998年开始,西北地区气温升温减缓,部分地区出现了下降趋势。近半个世纪西北地区季节气温与年际气温变化趋势并不一致,变暖减缓在该地区不同季节的响应不同。1998—2015年,冬季是增温幅度最小的季节,多数子区冬季存在升温趋势减缓,甚至转为下降趋势。  相似文献   

4.
利用气象站点1981—2011年逐日0 cm土壤温度和气温数据,运用基本统计、线性回归、累积距平和信噪比分析了川南山区6个分区地温和气温的空间分布、变化趋势以及突变特征,分析并对比了地温和气温的关系。结果表明:川南山区年均地、气温变化范围分别在15.6~20.5 ℃和12.2~17.2 ℃之间,呈现出北低南高、高山低河谷高的空间分布格局。31 a来6个分区的年均地、气温均有显著上升趋势,但季节变化差异明显,冬季地、气温的增温率高于夏季。从不同区域来看,高山地带(Ⅵ区)的年、季增温趋势最为显著,是其他区域的2~6倍,且地、气温在1990年左右发生突变;河谷地带(Ⅱ区)的年、季温度变化最小且未发生突变。各区地温和气温呈极显著正相关(P<0.01),具有较高的一致性,但也存在非对称增温现象。山地(Ⅲ、Ⅴ、Ⅵ区)的年均、季均地温和河谷(Ⅰ区)的春季地温增温比气温更加强烈,故地气温差出现显著上升趋势,甚至发生突变。  相似文献   

5.
 利用河北省72个气象台站1961-2010年逐月气温数据,选择Mann-Kendall突变趋势检验、Mann-Kendall突变检验、Sen’s坡度估计、一元方差分析等方法判断了河北省气温变化的趋势和突变时间,分析了气温变化的区域和季节特征,并探讨了气温变化特征与北极涛动、经纬度及海拔高度等影响因子的关系。结果表明:(1) 河北省整体气温显著上升,年均温平均增幅0.30 ℃/10 a,四季增温幅度冬>春>秋>夏;坝上高原和冀西北间山盆地区增温幅度较大;(2) 河北省增温突变集中在1986-1994年;冬季和春季增温突变较显著;年均温增温突变时间北部早于南部;(3) CO2排放量持续增加、1995年之前AO指数的增强可能是河北省近50 a增温的主要原因;高纬度、高经度、高海拔、盆地以及无森林和湿地调节的地区增温显著,这些因素对区域增温具有放大作用,是影响河北省气候变化对AO响应程度的重要因素。  相似文献   

6.
陇东地区近51 a气温时空变化特征   总被引:5,自引:0,他引:5  
王媛媛  张勃 《中国沙漠》2012,32(5):1402-1407
 基于陇东地区15个气象站点1957—2007年的月平均气温、日平均气温资料,结合GIS空间分析技术和数理统计理论,对其气温变化进行定量化分析,阐述其时空演变特征。结果表明,陇东地区多年平均气温较高的地方在中部地区,西部地区平均气温较低,主要是受地形影响;年均气温总体呈上升趋势,春、冬季的增温趋势最为明显,这与全球气温变化及中国气温变化总体趋势一致;年均气温变化的第一主周期为13 a,四季平均气温变化的第一主周期分别是25 a、25 a、13 a和7 a;年均气温的突然升高开始于20世纪80年代中期,四季平均气温的突然升高分别始于90年代中期、90年代初、80年代末和90年代初。  相似文献   

7.
基于REOF-EEMD的西南地区气候变化区域分异特征   总被引:1,自引:0,他引:1  
西南地区是全球变化区域响应的特殊地区,探究其气候变化区域分异特征具有重要的科学意义。文中选用REOF方法开展研究区气温和降水变化特征的空间分区,借助EEMD与BG分割算法等方法细致辨析了不同气候分区的气候演变特征。结果显示:① 西南地区年均温和年均降水变化均可划分为3个亚区,各自的空间界限高度相似,但降水Ⅱ、Ⅲ区的界限更偏南。② 20世纪50年代以来各气温亚区的年均温显著升高,川渝气温变化与全球变暖同步,黔西、黔中、滇北散布若干点状冷区。各降水亚区的时空差异明显,相较Ⅲ区,Ⅰ、Ⅱ区年均降水的波动性及年代际变化的差异更显著。③ ENSO事件对研究区气候变化的影响深远,不同气温、降水亚区对其的响应不尽相同。④ 不同气温亚区年均温序列突变点的收敛性较强,大致发生在1997年前后。不同降水亚区年均降水序列突变点的收敛性较弱。⑤ 各气温亚区年均温增加的持续性较强,Ⅱ、Ⅲ区尤甚。降水Ⅰ、Ⅱ区降水变化趋势不甚明显且具有一定的随机性,Ⅰ区的可能呈减速趋缓的减湿趋势,Ⅱ区的可能出现弱度减湿趋势,Ⅲ区降水趋于弱增。  相似文献   

8.
全球变化背景下气候因子与地表植被的相互作用过程是地球科学领域的研究重点和热点。利用重庆市50年来气象站点数据和1999年以来的SPOT4-VGT NDVI数据,采用Mann-Kendall检验、时空分析、相关分析等方法,对年均温、年降水时空变化特征及其与植被活动变化之间的关系进行了分析。结果表明,重庆市50 a间年均温、年降水量波动明显,其中年均温2002年以后增温趋势显著。植被覆盖近10 a呈明显增加趋势,且存在显著的时空差异。空间上,三峡库区及长江、嘉陵江沿岸NDVI增加最为明显;时间上,春季、秋季NDVI增加最为显著。植被覆盖年内周期变化与降水、特别是气温的相关性显著,但年际变化与年均温和年降水量变化相关性不显著。初步分析表明,人类活动,特别是农业生产、耕地保护和植被生态建设等,是近10 a重庆市植被覆盖上升的首要因素。  相似文献   

9.
近400年来北极地区和中国气温变化的对比研究   总被引:12,自引:0,他引:12  
陈玲  张青松  朱立平  王国 《地理研究》2000,19(4):344-350
对中国和北极地区近400年来的气温变化进行了趋势分析和谱特征分析,通过对比认为,北极地区及中国基本上都有17世纪、19世纪两个寒冷期和18世纪、20世纪两个温暖期,在一定程度上说明了气候变化的全球性,但两地区气温的冷暖转化不同步。中国大部分地区(除华东、新疆、西藏区外)17、19世纪升温开始得较北极早;北极地区绝大部分站点18世纪升温较中国明显,且气温变化的区域差异较大。400aBP以来两地气温变化的周期较为一致,以130~140年、100年、80年的周期为主,说明400aBP以来气温的变化具有全球性,而且气温的变化受太阳活动的影响较大,自然因素尤其是太阳活动的影响是气候变化的主要原因。  相似文献   

10.
近130年来中亚干旱区典型流域气温变化及其影响因子   总被引:5,自引:1,他引:4  
利用中亚干旱区5 大主要典型流域代表性气象站点近130 年逐月实测气温数据,结合线性趋势、Mann-Kenndall 非参数检验和小波分析等方法,研究了各流域气温的多时间尺度特征,并探讨了引起气温变化的可能因素。研究发现,在近130 年来中亚干旱区各主要流域(除阿姆河外)年均气温均呈上升趋势,增温趋势高于全球和周边地区,中亚干旱区气温对全球变化的响应比其他地区更加明显。20 世纪80 年代之后更加明显,并表现出明显的多时间尺度周期振荡特征,这主要是自然外强迫动力作用、气候系统内部变化和人类活动相互叠加的结果,亚洲极涡强度减弱和面积缩小对主要流域气温变化的作用明显,其次是北半球环状模(北极涛动)和青藏高原的影响,而CO2引起的温室气体增温效应在中亚干旱区也不容忽视。气温表现出与布吕克纳周期(BC)、太平洋年代际涛动(PDO)和准2~3 年振荡周期(TBO)等有关的显著周期,可以证实中亚干旱区气温变化与大气环流、海温和太阳活动等密切相关。  相似文献   

11.
新疆叶尔羌河流域温度与降水序列的小波分析   总被引:3,自引:1,他引:2  
利用1961—2006年叶尔羌河流域7个气象站点的气温和降水系列资料,采用Morlet小波函数,分析了不同时间尺度下气温和降水序列变化的周期和突变点,确定了各序列中存在的主周期。结果表明:该流域暖湿化趋势比较明显,气温和降水的变化趋势与西北地区和新疆区的气候变化基本一致;小尺度的变化嵌套在较大尺度的复杂背景之中,不同时间尺度下突变的年份有所差异。  相似文献   

12.
东北地区最高、最低温度非对称变化的季节演变特征   总被引:13,自引:4,他引:9  
孙凤华  袁健  关颖 《地理科学》2008,28(4):532-536
选用东北地区剔除迁站次数较多的观测站后的74个代表站1959~2002年44年的月平均最高气温和最低气温观测数据,建立了东北地区近44年来的年、四季最高气温和最低气温序列。在所建序列基础上,分析了东北地区最高气温和最低气温的年和季节变化规律;采用Mann-Kendall和Yamamoto方法对经过滑动平均的最高气温和最低气温序列进行了突变分析。计算了所有测站的年和各个季节最高气温和最低气温的趋势系数,分析增温趋势在各季节的地域分布特征。结果表明,近44年最高气温和最低气温均表现为明显的增温趋势,最低气温的增温趋势明显高于最高气温,前者的年气候倾向率为后者的2倍; 最高气温和最低气温都表现为冬季增温最强,春季次之,秋季最弱;在研究区域的中心部位,即内蒙古、吉林和黑龙江三省交界处有一范围较大且稳定的最低气温强增温区;最高气温和最低气温的突变点发生时段基本一致,强突变发生在80年代后期,较弱的一次发生在70年代初。  相似文献   

13.
中国东北地区及不同典型下垫面的气温异常变化分析   总被引:38,自引:10,他引:28  
利用6个代表站1905-2001年较长时期的月平均气温,对缺测年代的数据进行了插补,建立了东北地区近百年平均季、年气温序列。对所建温度序列与同一区域内26个代表站平均温度序列的近46年同期资料做了相关分析,检验了序列的代表性。在所建序列基础上,分析了东北百年气温的年代、年和季节等不同时间尺度变化特点和地域分布特征,采用谱分析方法探讨了序列的周期性变化特征,并采用Mann-Kendall和Yamamoto方法对经过滑动平均的气温序列进行了突变分析。结果表明,东北近百年年平均温度表现为明显的增暖趋势,但为起伏式增暖;冬季增温非常强烈,夏季在1995年以前不仅没有升温,反而有明显降温趋势,但1995年以后夏季气温明显升高,春秋季的升温趋势与冬季类似,但幅度小得多;在区域内,增温强度似乎并不随纬度增大,纬度较低的沈阳增温最强;三种典型下垫面中以山地的增温幅度最强;功率谱分析表明了百年气温变化的2.3年和4.2年的主周期,其中2.3年周期比较显著。  相似文献   

14.
采用树轮图像分析方法研究历史时期气候变化的可行性*   总被引:13,自引:0,他引:13  
本文以川西云杉为例,探讨了采用树轮图像分析方法进行历史时期气候变化研究的可行性。对比分析发现,图像分析得到的年轮宽度序列与宽度仪的测量结果基本相同;而年轮宽度与年轮灰度序列之间不存在明显关系,其差异可能是不同环境因子作用的结果。图像分析得到的川西云杉年轮灰度年表在反映某些气候要素变化上优于年轮宽度年表,并以年轮最小灰度、年轮平均灰度和晚材平均灰度较为突出。川西云杉年轮灰度主要受初春月平均最高气温的影响,且两者为负相关关系。  相似文献   

15.
树木年轮指示的柴达木东北缘近千年夏季气温变化   总被引:15,自引:12,他引:3  
依据采自青海海西德令哈、乌兰的树木年轮资料序列与柴达木东北缘1961~2001年夏季(6~8)平均气温资料序列之间较好的同期相关特征,重建了柴达木东北缘夏季(6~8)平均气温千年历史资料序列。运用乘积平均值、误差缩减值等方法对重建方程进行了检验,证明重建序列可信。通过分析发现,在重建的1098年中,有7个主要的冷期和6个主要的暖期,重建的气温序列存在15个主要突变时段。周期分析表明柴达木东北缘夏季气温存在46、52、61、73、91、183年和366年左右的长周期以及6.8年和2~3年的短周期。  相似文献   

16.
用树木年轮重建阿勒泰东部6-7月平均温度序列   总被引:1,自引:0,他引:1  
 利用采自阿勒泰中东部地区8个树轮采样点的西伯利亚落叶松树轮资料,建立宽度年表。分析这些年表与气候要素的相关性发现,标准化年表序列与该地区青河气象站6—7月的月平均气温存在显著的正相关关系,最高单相关为卓勒萨依ZLS年表,相关系数为0.555(P<0.0001),且具有明显的树木生理学意义。用卓勒萨依t和卓勒萨依t+3两个树轮标准化年表序列,可较好地重建该地区过去394 a来6—7月月平均气温序列,交叉检验表明,重建方程稳定可靠。分析发现,阿勒泰东部地区394 a来的气温重建序列具有7个偏冷和7个偏暖阶段,和2.7~3.7 a,43.7 a,52.4 a的显著冷暖变化准周期。月平均气温重建序列存在10个突变点,其中在1669年,1714年,1762年,1802年和1939年前后为初夏月平均气温由低向高突变,而在1691年,1732年,1781年,1919年和1963年前后是自高温向低温突变。  相似文献   

17.
Based on the statistical method and the historical evolution of meteorological stations, the temperature time series for each station in Hunan Province during 1910–2014 are tested for their homogeneity and then corrected. The missing data caused by war and other reasons at the 8 meteorological stations which had records before 1950 is filled by interpolation using adjacent observations, and complete temperature time series since the establishment of stations are constructed. After that, according to the representative analysis of each station in different time periods, the temperature series of Hunan Province during 1910–2014 are built and their changes are analyzed. The results indicate that the annual mean temperature has a significant warming trend during 1910–2014 and the seasonal mean temperature has the largest rising amplitude in winter and spring, followed by autumn, but no significant change in summer. Temperature variation over Hunan Province has several significant warm-cold alternations and more frequent than that in whole China. Annual and seasonal mean temperatures except summer and autumn have abrupt warming changes in the recent 100 years. The wavelet analysis suggests that the annual and four seasonal mean temperatures in recent 100 years have experienced two climatic shifts from cold to warm.  相似文献   

18.
叙述了超声波在与盐湖卤水组成相关的 Mg Cl2 溶液、Na Cl溶液、Mg Cl2 和 Na Cl的混合溶液中的声时与溶液浓度、溶液温度等之间的关系 ,测定了察尔汗不同蒸发阶段的盐湖卤水密度、声时和温度值 ,并针对察尔汗盐湖卤水组成 ,将获得的实验值采用拟合及插值的方法编制成计算机程序储存在单片机中 ,从而实现了察尔汗盐湖卤水蒸发过程中密度的自动监测  相似文献   

19.
Many studies such as climate variability, climate change, trend analysis, hydrological designs, agriculture decision-making etc. require long-term homogeneous datasets. Since homogeneous climate data is not available for climate analysis in Pakistan and India, the present study emphases on an extensive quality control and homogenization of daily maximum temperature, minimum temperature and precipitation data in the Jhelum River basin, Pakistan and India. A combination of different quality control methods and relative homogeneity tests were applied to achieve the objective of the study. To check the improvement after homogenization, correlation coefficients between the test and reference series calculated before and after the homogenization process were compared with each other. It was found that about 0.59%, 0.78% and 0.023% of the total data values are detected as outliers in maximum temperature, minimum temperature and precipitation data, respectively. About 32% of maximum temperature, 50% of minimum temperature and 7% of precipitation time series were inhomogeneous, in the Jhelum River basin. After the quality control and homogenization, 1% to 11% improvement was observed in the infected climate variables. This study concludes that precipitation daily time series are fairly homogeneous, except two stations (Naran and Gulmarg), and of a good quality. However, maximum and minimum temperature datasets require an extensive quality control and homogeneity check before using them into climate analysis in the Jhelum River basin.  相似文献   

20.
30年来呼伦贝尔地区草地植被对气候变化的响应(英文)   总被引:8,自引:3,他引:5  
Global warming has led to significant vegetation changes especially in the past 20 years. Hulun Buir Grassland in Inner Mongolia, one of the world’s three prairies, is undergoing a process of prominent warming and drying. It is essential to investigate the effects of climatic change (temperature and precipitation) on vegetation dynamics for a better understanding of climatic change. NDVI (Normalized Difference Vegetation Index), reflecting characteristics of plant growth, vegetation coverage and biomass, is used as an indicator to monitor vegetation changes. GIMMS NDVI from 1981 to 2006 and MODIS NDVI from 2000 to 2009 were adopted and integrated in this study to extract the time series characteristics of vegetation changes in Hulun Buir Grassland. The responses of vegetation coverage to climatic change on the yearly, seasonal and monthly scales were analyzed combined with temperature and precipitation data of seven meteorological sites. In the past 30 years, vegetation coverage was more correlated with climatic factors, and the correlations were dependent on the time scales. On an inter-annual scale, vegetation change was better correlated with precipitation, suggesting that rainfall was the main factor for driving vegetation changes. On a seasonal-interannual scale, correlations between vegetation coverage change and climatic factors showed that the sensitivity of vegetation growth to the aqueous and thermal condition changes was different in different seasons. The sensitivity of vegetation growth to temperature in summers was higher than in the other seasons, while its sensitivity to rainfall in both summers and autumns was higher, especially in summers. On a monthly-interannual scale, correlations between vegetation coverage change and climatic factors during growth seasons showed that the response of vegetation changes to temperature in both April and May was stronger. This indicates that the temperature effect occurs in the early stage of vegetation growth. Correlations between vegetation growth and precipitation of the month before the current month, were better from May to August, showing a hysteresis response of vegetation growth to rainfall. Grasses get green and begin to grow in April, and the impacts of temperature on grass growth are obvious. The increase of NDVI in April may be due to climatic warming that leads to an advanced growth season. In summary, relationships between monthly-interannual variations of vegetation coverage and climatic factors represent the temporal rhythm controls of temperature and precipitation on grass growth largely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号