首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 916 毫秒
1.
Abstract

This article presents a set of multi-gas emission pathways for different CO2-equivalent concentration stabilization levels, i.e. 400, 450, 500 and 550 ppm CO2-equivalent, along with an analysis of their global and regional reduction implications and implied probability of achieving the EU climate target of 2°C. For achieving the 2°C target with a probability of more than 60%, greenhouse gas concentrations need to be stabilized at 450 ppm CO2-equivalent or below, if the 90% uncertainty range for climate sensitivity is believed to be 1.5–4.5°C. A stabilization at 450 ppm CO2-equivalent or below (400 ppm) requires global emissions to peak around 2015, followed by substantial overall reductions of as much as 25% (45% for 400 ppm) compared to 1990 levels in 2050. In 2020, Annex I emissions need to be approximately 15% (30%) below 1990 levels, and non-Annex I emissions also need to be reduced by 15–20% compared to their baseline emissions. A further delay in peaking of global emissions by 10 years doubles maximum reduction rates to about 5% per year, and very probably leads to high costs. In order to keep the option open of stabilizing at 400 and 450 ppm CO2-equivalent, the USA and major advanced non-Annex I countries will have to participate in the reductions within the next 10–15 years.  相似文献   

2.
We present and apply a simple bottom–up model for estimating non-energy use of fossil fuels and resulting CO2 (carbon dioxide) emissions. We apply this model for the year 2000: (1) to the world as a whole, (2) to the aggregate of Annex I countries and non-Annex I countries, and (3) to the ten non-Annex I countries with the highest consumption of fossil fuels for non-energy purposes. We find that worldwide non-energy use is equivalent to 1,670 ± 120 Mt (megatonnes) CO2 and leads to 700 ± 90 Mt CO2 emissions. Around 75% of non-energy use emissions is related to industrial processes. The remainder is attributed to the emission source categories of solvent and other product use, agriculture, and waste. Annex I countries account for 51% (360 ± 50 Mt CO2) and non-Annex I countries for 49% (340 ± 70 Mt CO2) of worldwide non-energy use emissions. Among non-Annex I countries, China is by far the largest emitter of non-energy use emissions (122 ± 18 Mt CO2). Our research deepens the understanding of non-energy use and related CO2 emissions in countries for which detailed emission inventories do not yet exist. Despite existing model uncertainties, we recommend NEAT-SIMP to inventory experts for preparing correct and complete non-energy use emission estimates for any country in the world.  相似文献   

3.
Emission scenarios and global climate protection   总被引:1,自引:0,他引:1  
This paper evaluates the effectiveness of a wide range of emission scenarios in protecting climate (where ‘protecting climate’ Is used here to mean minimizing ‘dangerous anthropogenic interference with the climate system’ which results in impacts to society and the natural environment). Under baseline (no action) conditions there is a significant Increase in emissions, temperature and climate impacts. Controlling only CO2 emissions (ie freezing emissions in year 2000 at 1990 levels, and decreasing them afterwards at 1%/yr) and only in Annex I countries, does not significantly reduce the impacts observed under the baseline scenario. However, impacts are substantially reduced when emissions are controlled in both Annex I and non-Annex I countries, and when both CO2 and non-CO2 emissions are controlled. It was also found that stabilizing CO2 in the atmosphere below 450 ppm substantially reduces climate impacts. But in order to follow the pathway to stabilization at 450 ppm specified by the IPCC, global emissions can only slightly increase in the coming decades, and then must be sharply reduced. On the other hand, stabilizing CO2 in the atmosphere above 450 ppm can have significant impacts, which indicates that stabilization of greenhouse gases in the atmosphere will not necessarily provide a high level of climate protection. Results from these and other scenarios are synthesized and related to climate protection goals through a new concept — ‘safe emission corridors’. These corridors indicate the allowable range of near-term global emissions (equivalent CO2) which complies with specified short- and long-term climate goals. For an illustrative set of climate goals, the allowable anthropogenic global emissions in 2010 are computed to range from 7.3 to 14.5 GtC/yr equivalent CO2 (1990 level = approximately 9.6 GtC/ yr); when these limits are set twice as strict (ie divided by two), the allowable range becomes 7.6 to 9.3 GtC/yr. To fall within this lower corridor, global emissions must be lower in 2010 than in 1990.  相似文献   

4.
《Climate Policy》2013,13(3):247-260
In order to stabilize long-term greenhouse gas concentrations at 450 ppm CO2-eq or lower, developed countries as a group should reduce emissions by 25–40% below 1990 levels by 2020, while developing countries' emissions need to be reduced by around 15–30%, relative to their baseline levels, according to the IPCC and our earlier work. This study examines 19 other studies on the emission reductions attributed to the developed and developing countries for meeting a 450 ppm target. These studies considered different allocation approaches, according to equity principles. The effect of the assumed global emissions cap in these studies is analysed. For developed countries, the original reduction range of 25–40% by 2020 is still within the average range of all studies, but does not cover it completely. Comparing the studies shows that assuming a global emissions cap of 5–15% above 1990 levels by 2020 generally leads to more stringent reduction targets than when a global emissions cap of 20–30% above 1990 levels is assumed. For developing countries, the reduction range of 15–30% below their baseline levels by 2020 corresponds to an increase on the 1990 level from 70% (about the 2006 level) to 120%. Reducing deforestation emissions by 50% below baseline levels by 2020 may relax the emission reductions for either group of countries; for developing countries by about 7% or for developed countries by about 15% (but not for both).  相似文献   

5.
《Climate Policy》2013,13(4):355-376
Many stabilization scenarios have examined the implications of stabilization on the assumption that all regions and all sectors of all of the world's economies undertake emissions mitigations wherever and whenever it is cheapest to do so. This idealized assumption is just one of many ways in which emissions mitigation actions could play out globally, but not necessarily the most likely. This paper explores the implications of generic policy regimes that lead to stabilization of CO2 concentrations under conditions in which non-Annex I regions delay emissions reductions and in which carbon prices vary across participating regions. The resulting stabilization scenarios are contrasted with the idealized results. Delays in the date by which non-Annex I regions begin to reduce emissions raise the price of carbon in Annex I regions relative to the price of carbon in Annex I in an idealized regime for any given CO2 concentration limit. This effect increases the longer the delay in non-Annex I accession, the lower the non-Annex I carbon prices relative to the Annex I prices, and the more stringent the stabilization level. The effect of delay is very pronounced when CO2 concentrations are stabilized at 450 ppmv, however the effect is much less pronounced at 550 ppmv and above. For long delays in non-Annex I accession, 450 ppmv stabilization levels become infeasible.  相似文献   

6.
Methane emissions from livestock enteric fermentation and manure management represent about 40% of total anthropogenic greenhouse gas emissions from the agriculture sector and are projected to increase substantially in the coming decades, with most of the growth occurring in non-Annex 1 countries. To mitigate livestock methane, incentive policies based on producer-level emissions are generally not feasible because of high administrative costs and producer transaction costs. In contrast, incentive policies based on sectoral emissions are likely administratively feasible, even in developing countries. This study uses an economic model of global agriculture to estimate the effects of two sectoral mitigation policies: a carbon tax and an emissions trading scheme based on average national methane emissions per unit of commodity. The analysis shows how the composition and location of livestock production and emissions change in response to the policies. Results illustrate the importance of global mitigation efforts: when policies are limited to Annex 1 countries, increased methane emissions in non-Annex 1 countries offset approximately two-thirds of Annex 1 emissions reductions. While non-Annex 1 countries face substantial disincentives to enacting domestic carbon taxes, developing countries could benefit from participating in a global sectoral emissions trading scheme. We illustrate one scheme in which non-Annex 1 countries collectively earn USD 2.4 billion annually from methane emission permit sales when methane is priced at USD 30/t CO2-eq.  相似文献   

7.
《Climate Policy》2013,13(6):634-651
A fair, effective, flexible and inclusive climate regime beyond 2012 will need several political balances. Mitigation and funding will be at the heart of the agreement. The IPCC's Fourth Assessment Report indicates that absolute reductions will be needed in Annex I (AI) countries and substantial deviation from baseline in some non-Annex I (NAI) regions by 2020. Although the latter was not explicitly quantified by the IPCC, the EU subsequently proposed a range for developing countries. Sharing the burden for mitigation is essentially zero-sum: if one does less, the other has to do more. We critically examine the implicit assumption that NAI countries would pick up the remainder of the required global effort minus the AI contribution. We suggest that greater levels of ambition can be achieved by turning the formula around politically, starting from the achievable ‘deviation below baseline’ given NAI's national programmes and appropriate international support. AI countries may have to exceed the IPCC ranges or pay for the remainder. For notional levels of NAI mitigation action, Annex I has to reduce by between ?52% and ?69% below 1990 by 2020, only dropping to a domestic ?35% with commitments to offset payments through the carbon market. Given the large mitigation gap, a political agreement on the question of ‘who pays’ is fundamental. The carbon market will provide some investment, but it mainly serves to reduce costs, particularly in developed countries, rather than adding to the overall effort. Market-linked levies and Annex I public funding will therefore be crucial to bridge the gap.  相似文献   

8.
On the basis of the IPCC B2, A1b and B1 baseline scenarios, mitigation scenarios were developed that stabilize greenhouse gas concentrations at 650, 550 and 450 and – subject to specific assumptions – 400 ppm CO2-eq. The analysis takes into account a large number of reduction options, such as reductions of non-CO2 gases, carbon plantations and measures in the energy system. The study shows stabilization as low as 450 ppm CO2-eq. to be technically feasible, even given relatively high baseline scenarios. To achieve these lower concentration levels, global emissions need to peak within the first two decades. The net present value of abatement costs for the B2 baseline scenario (a medium scenario) increases from 0.2% of cumulative GDP to 1.1% as the shift is made from 650 to 450 ppm. On the other hand, the probability of meeting a two-degree target increases from 0%–10% to 20%–70%. The mitigation scenarios lead to lower emissions of regional air pollutants but also to increased land use. The uncertainty in the cost estimates is at least in the order of 50%, with the most important uncertainties including land-use emissions, the potential for bio-energy and the contribution of energy efficiency. Furthermore, creating the right socio-economic and political conditions for mitigation is more important than any of the technical constraints.  相似文献   

9.
As part of the Copenhagen Accord, Annex I Parties (industrialised countries) and non-Annex I Parties (developing countries) have submitted reduction proposals (pledges) and mitigation actions to the UNFCCC secretariat. Our calculations show that if the current reduction offers of Annex I and non-Annex I countries are fully implemented, global greenhouse gas emissions could amount to 48.6-49.7 GtCO2eq by 2020. Recent literature suggests that the emission level should be between 42 and 46 GtCO2eq by 2020 to maintain a “medium” chance (50-66%) of meeting the 2 °C target. The emission gap is therefore 2.6-7.7 GtCO2eq. We have identified a combined set of options, which could result in an additional 2.8 GtCO2eq emission reduction. This would lead to an emission level just within the range needed. The options include reducing deforestation and emissions from bunker fuels, excluding emissions allowance increases from land use and forestry rules, and taking into account the national climate plans of China and India. However, there are also important risks that could widen the emissions gap, like lower reductions from countries with only a conditional pledge and the use of Kyoto and/or trading of new surplus emission allowances.  相似文献   

10.
Global and regional trends in greenhouse gas emissions from livestock   总被引:2,自引:0,他引:2  
Following IPCC guidelines (IPCC 2006), we estimate greenhouse gas emissions related to livestock in 237 countries and 11 livestock categories during the period 1961–2010. We find that in 2010 emissions of methane and nitrous oxide related to livestock worldwide represented approximately 9 % of total greenhouse gas (GHG) emissions. Global GHG emissions from livestock increased by 51 % during the analyzed period, mostly due to strong growth of emissions in developing (Non-Annex I) countries (+117 %). In contrast, developed country (Annex I) emissions decreased (?23 %). Beef and dairy cattle are the largest source of livestock emissions (74 % of global livestock emissions). Since developed countries tend to have lower CO2-equivalent GHG emissions per unit GDP and per quantity of product generated in the livestock sector, the amount of wealth generated per unit GHG emitted from the livestock sector can be increased by improving both livestock farming practices in developing countries and the overall state of economic development. Our results reveal important details of how livestock production and associated GHG emissions have occurred in time and space. Discrepancies with higher tiers, demonstrate the value of more detailed analyses, and discourage over interpretation of smaller-scale trends in the Tier 1 results, but do not undermine the value of global Tier 1 analysis.  相似文献   

11.
This paper synthesizes results of the multi-model Energy Modeling Forum 27 (EMF27) with a focus on climate policy scenarios. The study included two harmonized long-term climate targets of 450 ppm CO2-e (enforced in 2100) and 550 pm CO2-e (not-to-exceed) as well as two more fragmented policies based on national and regional emissions targets. Stabilizing atmospheric GHG concentrations at 450 and 550 ppm CO2-e requires a dramatic reduction of carbon emissions compared to baseline levels. Mitigation pathways for the 450 CO2-e target are largely overlapping with the 550 CO2-e pathways in the first half of the century, and the lower level is achieved through rapid reductions in atmospheric concentrations in the second half of the century aided by negative anthropogenic carbon flows. A fragmented scenario designed to extrapolate current levels of ambition into the future falls short of the emissions reductions required under the harmonized targets. In a more aggressive scenario intended to capture a break from observed levels of stringency, emissions are still somewhat higher in the second half due to unabated emissions from non-participating countries, emphasizing that a phase-out of global emissions in the long term can only be reached with full global participation. A key finding is that a large range of energy-related CO2 emissions can be compatible with a given long-term target, depending on assumptions about carbon cycle response, non-CO2 and land use CO2 emissions abatement, partly explaining the spread in mitigation costs.  相似文献   

12.
Using a coupled climate?Ccarbon cycle model, fossil fuel carbon dioxide (CO2) emissions are derived through a reverse approach of prescribing atmospheric CO2 concentrations according to observations and future projections, respectively. In the second half of the twentieth century, the implied fossil fuel emissions, and also the carbon uptake by land and ocean, are within the range of observational estimates. Larger discrepancies exist in the earlier period (1860?C1960), with small fossil fuel emissions and uncertain emissions from anthropogenic land cover change. In the IPCC SRES A1B scenario, the simulated fossil fuel emissions more than double until 2050 (17 GtC/year) and then decrease to 12 GtC/year by 2100. In addition to A1B, an aggressive mitigation scenario was employed, developed within the European ENSEMBLES project, that peaks at 530 ppm CO2(equiv) around 2050 and then decreases to approach 450 ppm during the twenty-second century. Consistent with the prescribed pathway of atmospheric CO2 in E1, the implied fossil fuel emissions increase from currently 8 GtC/year to about 10 by 2015 and decrease thereafter. In the 2050s (2090s) the emissions decrease to 3.4 (0.5) GtC/year, respectively. As in previous studies, our model simulates a positive climate?Ccarbon cycle feedback which tends to reduce the implied emissions by roughly 1 GtC/year per degree global warming. Further, our results suggest that the 450 ppm stabilization scenario may not be sufficient to fulfill the European Union climate policy goal of limiting the global temperature increase to a maximum of 2°C compared to pre-industrial levels.  相似文献   

13.
Climate change mitigation via a reduction in the anthropogenic emissions of carbon dioxide (CO2) is the principle requirement for reducing global warming, its impacts, and the degree of adaptation required. We present a simple conceptual model of anthropogenic CO2 emissions to highlight the trade off between delay in commencing mitigation, and the strength of mitigation then required to meet specific atmospheric CO2 stabilization targets. We calculate the effects of alternative emission profiles on atmospheric CO2 and global temperature change over a millennial timescale using a simple coupled carbon cycle-climate model. For example, if it takes 50 years to transform the energy sector and the maximum rate at which emissions can be reduced is ?2.5% $\text{year}^{-1}$ , delaying action until 2020 would lead to stabilization at 540 ppm. A further 20 year delay would result in a stabilization level of 730 ppm, and a delay until 2060 would mean stabilising at over 1,000 ppm. If stabilization targets are met through delayed action, combined with strong rates of mitigation, the emissions profiles result in transient peaks of atmospheric CO2 (and potentially temperature) that exceed the stabilization targets. Stabilization at 450 ppm requires maximum mitigation rates of ?3% to ?5% $\text{year}^{-1}$ , and when delay exceeds 2020, transient peaks in excess of 550 ppm occur. Consequently tipping points for certain Earth system components may be transgressed. Avoiding dangerous climate change is more easily achievable if global mitigation action commences as soon as possible. Starting mitigation earlier is also more effective than acting more aggressively once mitigation has begun.  相似文献   

14.
《Climate Policy》2013,13(2):944-957
The annual reporting procedures of the United Nations Framework Convention on Climate Change (UNFCCC) have now produced greenhouse gas (GHG) emission inventories from 40 so-called Annex I countries for 18 years. This article analyses a subset of these data: emissions from road transport. The article compares the reported data with the technical guidance on GHG emission inventories provided by the Intergovernmental Panel on Climate Change (IPCC). The analysis suggests that some countries use the IPCC's default emission factors, whereas other countries use country-specific values. In the case of diesel-fuelled road transport, the estimated emissions appear to be generally comparable between all countries for all years. For CO2 emissions from gasoline-fuelled road transport, the picture is less clear. The results suggest that the default emission factor for CO2 from motor gasoline as provided by the IPCC is about 3–5% too low. Countries that seem to apply this default value might therefore underestimate their emissions by the same percentage. The effect of this possible underestimate on trends is, however, very small. Despite the possible problem with the default emission factor, the quantification of the trend in emissions is only slightly influenced by this.  相似文献   

15.
While the international community has agreed on the long-term target of limiting global warming to no more than 2 °C above pre-industrial levels, only a few concrete climate policies and measures to reduce greenhouse gas (GHG) emissions have been implemented. We use a set of three global integrated assessment models to analyze the implications of current climate policies on long-term mitigation targets. We define a weak-policy baseline scenario, which extrapolates the current policy environment by assuming that the global climate regime remains fragmented and that emission reduction efforts remain unambitious in most of the world’s regions. These scenarios clearly fall short of limiting warming to 2 °C. We investigate the cost and achievability of the stabilization of atmospheric GHG concentrations at 450 ppm CO2e by 2100, if countries follow the weak policy pathway until 2020 or 2030 before pursuing the long-term mitigation target with global cooperative action. We find that after a deferral of ambitious action the 450 ppm CO2e is only achievable with a radical up-scaling of efforts after target adoption. This has severe effects on transformation pathways and exacerbates the challenges of climate stabilization, in particular for a delay of cooperative action until 2030. Specifically, reaching the target with weak near-term action implies (a) faster and more aggressive transformations of energy systems in the medium term, (b) more stranded investments in fossil-based capacities, (c) higher long-term mitigation costs and carbon prices and (d) stronger transitional economic impacts, rendering the political feasibility of such pathways questionable.  相似文献   

16.
Annex I Parties may receive credits or debits from Land Use, Land Use Change and Forestry (LULUCF) activities, contributing to achieving individual emission reduction targets. In the Durban climate negotiations, Parties agreed new LULUCF accounting rules for the second commitment period of the Kyoto Protocol (CP2). By using these new rules, this paper presents key differences among Parties at the minimum (assuming no additional action) and potential (assuming additional actions) contribution of the forest-related LULUCF activities in achieving the pledges for 2020. Overall, the potential contribution of LULUCF is relatively modest (up to about 2 % of 1990 emissions) for the EU, the Annex I Parties likely joining the CP2, and for the Annex I Parties that joined the CP1 as a whole. However, for specific Parties, LULUCF can make a substantial contribution to achieving the pledges. For New Zealand, for instance, the potential contribution of future LULUCF credits may equal 33 % of its 1990 emission level. For Australia, the pledges are expressed relative to 2000 emission levels including LULUCF emissions. Given that LULUCF emissions have strongly declined between 1990 and 2000, and a further decline in foreseen by 2020 (based on Australia’s projections), the minimum contribution of LULUCF to meet the Australian pledges appears to be about 19 % and 7 % relative to its 1990 and 2000 emission level, respectively. A further 3 % potential contribution is estimated from additional actions.  相似文献   

17.
In this paper we argue that the financial provisions of the Copenhagen Accord, if used primarily to mitigate greenhouse gas (GHGs) emissions, could compensate the lack of more energetic action on the domestic mitigation side. In order to maximize the mitigation potential, the Copenhagen Green Climate Fund (CGCF) should be transformed into the International Bank for Emissions Allowance Acquisition (IBEAA) envisaged by Bradford (2008). We estimate that 50 percent of the CGCF in 2020 (50 US billions) could finance from 2.1 to 3.3?Gt CO2-eq emission reductions, depending on the domestic mitigation effort of Annex I and Non-Annex I countries. We construct a matrix that shows the level of GHGs emissions in 2020 under all possible combinations of abatement pledges and international mitigation financing, thus highlighting a rich set of options to reach the same level of GHGs emissions in 2020.  相似文献   

18.
Abstract

In the long term, any definition of adequacy consistent with UNFCCC Article 2 will require increased mitigation efforts from almost all countries. Therefore, an expansion of emission limitation commitments will form a central element of any future architecture of the climate regime. This expansion has two elements: deepening of quantitative commitments for Annex B countries and the adoption of commitments for those countries outside of the current limitation regime. This article seeks to provide a more analytical basis for further differentiation among non-Annex I countries. To be both fair and reflective of national circumstances, it is based on the criteria of responsibility, capability and potential to mitigate. Altogether, non-Annex I countries were differentiated in four groups, each including countries with similar national circumstances: newly industrialized countries (NICs), rapidly industrializing countries (RIDCs), ‘other developing countries’, and least developed countries (LDCs). Based on the same criteria that were used for differentiating among non-Annex I countries, a set of decision rules was developed to assign mitigation and financial transfer commitments to each group of countries (including Annex I countries). Applying these decision rules results in (strict) reduction commitments for Annex I countries, but also implies quantifiable mitigation obligations for NICs and RIDCs, assisted by financial transfers from the North. Other developing countries are obliged to take qualitative commitments, but quantifiable mitigation commitments for these countries and the LDC group would be not justifiable. As national circumstances in countries evolve over time, the composition of the groups will change according to agreed triggers.  相似文献   

19.
Abstract

In the coming years the international debate on commitments for the second commitment period under the Kyoto Protocol will intensify. In this study, the Global Triptych approach is put forward as an input for international decision-making concerning the differentiation of commitments by 2020. It is a sector- and technology-oriented approach, and we calculated quantitative emission limitation objectives and global emissions starting from bottomup information on long-term reduction opportunities. Central to the calculations were long-term sustainability targets for the year 2050, formulated for (1) energy efficiency in the energy-intensive industry, (2) greenhouse gas intensity of electricity production, and (3) per capita emissions in the domestic sectors. Calculated emission limitation objectives for 13 world regions ranged from about ?30% to more than +200%. The ranking of world regions in the differentiation turned out to be independent of the levels chosen for the long-term sustainability targets. The objectives seem sufficient to maintain the long-term possibility of stabilizing atmospheric greenhouse gas concentrations at about 550 ppm CO2-eq, but will require severe emission reductions. These may be relaxed to a certain degree if stabilization at 650 ppm CO2-eq is aimed for. We conclude that the bottom-up character of the approach made it possible to examine important basic principles of the Climate Convention, including equity, the needs and circumstances of developing countries, cost-effectiveness and sustainable development.  相似文献   

20.
In order to address carbon leakage and preserve the competitiveness of domestic industries, some industrialized Annex I countries have proposed to implement carbon tariffs. These tariffs would be levied on energy-intensive imports from developing non-Annex I countries that have not agreed to binding emissions reductions. This action could have detrimental welfare impacts, especially on those developing countries, and may not lead to significant reductions in leakage. A recent proposal is to use the revenues generated from carbon tariffs to finance clean development in the relevant exporting non-Annex I countries. This proposal is evaluated using an energy-economic model of the global economy. The model is supplemented by marginal abatement cost curves and bottom-up information on abatement potentials in order to represent how clean development financing affects emissions reductions. The results indicate that carbon tariffs could raise US$3.5–24.5 billion (with a central value of $9.8 billion) for clean development financing. This could reduce the emissions of non-Annex I countries by 5–15% and still leave funds available for other purposes, such as adaptation. Furthermore, recycling the revenues generated from carbon tariffs back to the exporting country itself could alleviate some of the negative welfare impacts associated with them. However, a net negative impact especially on the welfare and gross domestic product of developing countries would remain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号