首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Summary. Soft X–ray Transients (SXRTs) have long been suspected to contain old, weakly magnetic neutron stars that have been spun up by accretion torques. After reviewing their observational properties, we analyse the different regimes that likely characterise the neutron stars in these systems across the very large range of mass inflow rates, from the peak of the outbursts to the quiescent emission. While it is clear that close to the outburst maxima accretion onto the neutron star surface takes place, as the mass inflow rate decreases, accretion might stop at the magnetospheric boundary because of the centrifugal barrier provided by the neutron star. For low enough mass inflow rates (and sufficiently short rotation periods), the radio pulsar mechanism might turn on and sweep the inflowing matter away. The origin of the quiescent emission, observed in a number of SXRTs at a level of , plays a crucial role in constraining the neutron star magnetic field and spin period. Accretion onto the neutron star surface is an unlikely mechanism for the quiescent emission of SXRTs, as it requires very low magnetic fields and/or long spin periods. Thermal radiation from a cooling neutron star surface in between the outbursts can be ruled out as the only cause of the quiescent emission. We find that accretion onto the neutron star magnetosphere and shock emission powered by an enshrouded radio pulsar provide far more plausible models. In the latter case the range of allowed neutron star spin periods and magnetic fields is consistent with the values recently inferred from the properties of kHz quasi-periodic oscillation in low mass X–ray binaries. If quiescent SXRTs contain enshrouded radio pulsars, they provide a missing link between X–ray binaries and millisecond pulsars. Received 4 November 1997; Accepted 15 April 1998  相似文献   

2.
The unprecedented harvest of X‐ray photons detected from dozens of isolated neutron stars has made it possible to glimpse at their emission mechanisms as well as at their emission geometry. Rotating hot spot(s), superimposed to the global thermal emission from the neutron star surface, are seen from several objects, allowing to probe the stars' external heating sources. Non‐thermal emission is also seen to vary as the stars rotate. Moreover, absorption features have been detected in the spectra of several objects, allowing to probe (tentatively) the stars' magnetic fields. Spectacular tails, trailing the stars' supersonic motion, trace the boundaries of the relativist winds streaming from the star's magnetosphere. Apart from classical radio pulsar and certified radio‐quiet neutron stars, XMM‐Newton has devoted significant observation time to the enigmatic central compact objects, presumably isolated neutron stars shining at the center of their supernova remnants. Far from showing a unifying behaviour, XMM‐Newton data have unveiled a surprising diversity. Understanding the reason(s) behind such diversity is the challenge for the next decade of X‐ray observations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Resonant cyclotron scattering(RCS)in pulsar magnetospheres is considered.The photon diffusion equation(Kompaneets equation)for RCS is derived.The photon system is modeled three dimensionally.Numerical calculations show that there exist not only up scattering but also down scattering of RCS,depending on the parameter space.RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars(INSs)are pointed out.The optical/UV excess of INSs may be caused by the down scattering of RCS.The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data.In our model,the INSs are proposed to be normal neutron stars,although the quark star hypothesis is still possible.The low pulsation amplitude of INSs is a natural consequence in the RCS model.  相似文献   

4.
NGC 1365     
Summary. The aim of the present review is to give a global picture of the supergiant barred galaxy NGC 1365. This galaxy with its strong bar and prominent spiral structure displays a variety of nuclear activity and ongoing star formation. The kinematics of the galaxy has been mapped in detail by optical long slit and Fabry–Perot observations as well as radio observations of Hi and CO interstellar lines. From these observations a combined velocity field has been derived, describing the circulation of interstellar gas in the symmetry plane of the galaxy. With a gravitational potential based on near infrared photometry of the bar and the shape of the apparent rotation curve, computer simulations of the dynamics of the interstellar gas have been made with the aim to reproduce both the morphology of the interstellar matter as well as the observed velocity field. The simulations demonstrate the role of the bar and the importance of resonances between the bar rotation and the rotation of the galaxy for the formation of the spiral structure. Polarization of radio radiation reveals magnetic fields concentrated to the dust lanes along and across the bar, where they are aligned with the flow pattern of the gas, and along the spiral arms. The kinematics of the outer region of the galaxy with a fairly unique decline of the rotation curve leads to the conclusion that NGC 1365 lacks a very massive dark matter halo, which may permit the formation of a very strong bar. The galaxy contains an active nucleus with both broad and narrow components of the permitted spectral emission lines. The nucleus is surrounded by a molecular torus, numerous star forming regions and continuum radio sources. The star forming regions are, as seen with the Hubble Space Telescope (HST), resolved into a large number of super star clusters suggested to be young globular clusters. A very compact radio source, seen at high spatial resolution with the Very Large Array (VLA), has been claimed to coincide with one of the super star clusters. This compact source has a radio brightness of the order of 100 times that of the bright galactic supernova remnant Cas A and is suggested to be a so called ‘radio supernova’. Two other such compact radio sources, positioned in the prominent dark dust lane penetrating the nuclear region, are identified as strong infrared sources by observations with the Very Large Telescope (VLT). The cause of this infrared radiation may be dust heated by the objects that drive the radio sources. The X-ray radiation from the nucleus is interpreted to consist of hard continuum radiation from the active nucleus itself, Fe-K line emission from a rotating disk, and thermal emission from the surrounding star burst activity. A secondary, highly variable source has been discovered close to the nuclear region. It seems to be one of the most luminous and most highly variable off-nuclear X-ray sources known. The higher excitation optical emission lines in the nuclear region, primarily from [Oiii], reveal a velocity field quite different from that described by the galactic rotation. The deviating [Oiii] morphology and velocity field in the nuclear region is interpreted in terms of a high excitation outflow double-cone with its apex at the nucleus and symmetry axis perpendicular to the symmetry plane of the galaxy. One of the circumnuclear radio sources seems to be a one-sided jet emerging from the nucleus aligned with the cone axis. According to the model, the outward flow within the cone is accelerated and the flow velocity highest at the cone axis. Received 15 January 1999  相似文献   

5.
We present results of a population synthesis study of radio-loud and radio-quiet γ-ray pulsars from the Galactic plane and the Gould Belt. The simulation includes the Parkes multibeam pulsar survey, realistic beam geometries for radio and γ-ray emission from neutron stars and the new electron density model of Cordes and Lazio. Normalizing to the number of radio pulsars observed by a set of nine radio surveys, the simulation suggests a neutron star birth rate of 1.4 neutron stars per century in the Galactic plane. In addition, the simulation predicts 19 radio-loud and 7 radio-quiet γ-ray pulsars from the plane that EGRET should have observed as point sources. Assuming that during the last 5 Myr the Gould Belt produced 100 neutron stars, only 10 of these would be observed as radio pulsars with three radio-loud and four radio-quiet γ-ray pulsars observed by EGRET. These results are in general agreement with the recent number of about 25 EGRET error boxes that contain Parkes radio pulsars. Since the Gould Belt pulsars are relatively close by, the selection of EGRET radio-quiet γ-ray pulsars strongly favors large impact angles, β, in the viewing geometry where the off-beam emission from curvature radiation provides the γ-ray flux. Therefore, the simulated EGRET radio-quiet γ-ray pulsars, being young and nearby, most closely reflect the current shape of the Gould Belt suggesting that such sources may significantly contribute to the EGRET unidentified γ-ray sources correlated with the Gould Belt.  相似文献   

6.
We analyze the encounters of the neutron star (pulsar) Geminga with open star clusters in the OB association Ori OB1a through the integration of epicyclic orbits into the past by taking into account the errors in the data. The open cluster ASCC21 is shown to be the most probable birthplace of either a single progenitor star for the Geminga pulsar or a binary progenitor system that subsequently broke up. Monte Carlo simulations of Geminga-ASCC21 encounters with the pulsar radial velocity V r = ?100±50 km s?1 have shown that close encounters could occur between them within ≤10 pc at about t = ?0.52 Myr. In addition, the trajectory of the neutron star Geminga passes at a distance of ≈25 pc from the center of the compact OB association λ Ori at about t = ?0.39 Myr, which is close to the age of the pulsar estimated from its timing.  相似文献   

7.
Summary. Recent papers dealing with the most controversial aspects of AGNs are reviewed. They suggest interesting conclusions: all Seyferts can be described by a single parameter, the X-ray column density; radio loud AGNs may host a rapidly spinning black hole and radio quiet AGNs a slowly spinning black hole; high-ionization AGNs (Seyfert galaxies and QSOs) contain an optically thick, geometrically thin accretion disk, while low-ionization AGNs (Liners) contain an optically thin, geometrically thick accretion disk; a number of blazars have been classified as BLLs on the basis of insufficient data; most objects with weak broad emission lines are in fact HPQs; many objects have been called Liners although they are not AGNs but rather the result of stellar activity; type 2 QSOs exist, but are quite inconspicuous if radio quiet. Received 16 November 1999 / Published online: 15 February 2000  相似文献   

8.
We summarize all the reported detections of, and upper limits to, the radio emission from persistent (i.e. non-transient) X-ray binaries. A striking result is a common mean observed radio luminosity from the black hole candidates (BHCs) in the low/hard X-ray state and the neutron star Z sources on the horizontal X-ray branch. This implies a common mean intrinsic radio luminosity to within a factor of 25 (or less, if there is significant Doppler boosting of the radio emission). Unless coincidental, these results imply a physical mechanism for jet formation that requires neither a black hole event horizon nor a neutron star surface. As a whole the populations of Atoll and X-ray pulsar systems are less luminous by factors of ≳5 and ≳10 at radio wavelengths than the BHCs and Z sources (while some Atoll sources have been detected, no high-field X-ray pulsar has ever been reliably detected as a radio source). We suggest that all of the persistent BHCs and the Z sources generate, at least sporadically, an outflow with physical dimensions 1012 cm; that is, significantly larger than the binary separations of most of the systems. We compare the physical conditions of accretion in each of the types of persistent X-ray binary and conclude that a relatively low (1010 G) magnetic field associated with the accreting object, and a high (0.1 Eddington) accretion rate and/or dramatic physical change in the accretion flow, are required for formation of a radio-emitting outflow or jet.  相似文献   

9.
The famous neutron star Geminga was until quite lately the only pulsar undetected in the radio regime, though observed as a strong pulsating γ- and X-ray source. Three independent groups from the Pushchino Radio Astronomy Observatory (Russia) reported recently the detection of pulsed radio emission from Geminga at 102.5 MHz, i.e., the first detection of the radio pulsar PSR J0633 + 1746 by Kuz'min &38; Losovskii, Malofeev &38; Malov and Shitov &38; Pugachev. This pulsar exhibits the weakest radio luminosity known. Its average pulse profile appears to be very wide, filling an entire 360° pulse window according to Kuz'min &38; Losovskii.   We present a model explaining the peculiarities of the Geminga radio pulsar, based on the assumption that it is an almost aligned rotator. The electromagnetic waves generated in the inner magnetosphere reach the region within the light cylinder with a weak magnetic field (at distances of a few light cylinder radii), where they are strongly damped due to the cyclotron resonance with particles of magnetospheric electron–positron plasma. The lowest frequencies that can escape are determined by the value of the magnetic field in the region where the line of sight passes through the light cylinder. The specific viewing geometry of an almost aligned rotator implies that the observer's line of sight probes the emission region near the bundle of the last open field lines. This explains the unusually weak emission from Geminga's low-frequency radio pulsar.  相似文献   

10.
最近,一个困扰人们达十几年之久的γ射线源Geminga被证认为X、γ射线脉冲星,其光学对应体也被确定为一颗光谱偏蓝的25等星。对Geminga脉冲星的确证说明存在着一类没有射电辐射的脉冲单星。  相似文献   

11.
Two classes of X-ray pulsars, the anomalous X-ray pulsars and the soft gamma-ray repeaters, have been recognized in the last decade as the most promising candidates for being magnetars: isolated neutron stars powered by magnetic energy. I review the observational properties of these objects, focussing on the most recent results, and their interpretation in the magnetar model. Alternative explanations, in particular those based on accretion from residual disks, are also considered. The possible relations between these sources and other classes of neutron stars and astrophysical objects are also discussed.  相似文献   

12.
Millisecond pulsars represent an evolutionarily distinct group among rotation-powered pulsars. Outside the radio band, the soft X-ray range (~0.1–10 keV) is most suitable for studying radiative mechanisms operating in these fascinating objects. X-ray observations revealed diverse properties of emission from millisecond pulsars. For the most of them, the bulk of radiation is of a thermal origin, emitted from small spots (polar caps) on the neutron star surface heated by relativistic particles produced in pulsar acceleration zones. On the other hand, a few other very fast rotating pulsars exhibit almost pure nonthermal emission generated, most probably, in pulsar magnetospheres. There are also examples of nonthermal emission detected from X-ray nebulae powered by millisecond pulsars, as well as from pulsar winds shocked in binary systems with millisecond pulsars as companions. These and other most important results obtained from X-ray observations of millisecond pulsars are reviewed in this paper, as well as results from the search for millisecond pulsations in X-ray flux of the radio-quite neutron star RX J1856.5-3754.  相似文献   

13.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

14.
Summary. This paper reviews the physical state of stars and Interstellar Matter in the Galactic Bulge (radius kpc from the dynamical center of the Galaxy), in the Nuclear Bulge (kpc) and in the Sgr A Radio and GMC Complex, i.e. the central \,pc of our Galaxy. The Galactic Bulge is devoid of cold Interstellar Matter and consists mainly of old stars, while the Nuclear Bulge accounts for of the mass of all of the Interstellar Matter in the Galaxy. A similar ratio holds for the formation rate of medium and high mass stars in Bulge and Disk. The metal abundance of the Interstellar Matter in the Galactic Bulge is found to be . The H-to-CO conversion factors to be applied to molecular gas in the Central Region are by factors 3 (Arimoto et al. 1996) to 10 (Sodroski et al. 1995) lower than in the solar vicinity. Hence, most H masses derived for the Central Region appear to be considerably overestimated. The Nuclear Bulge is pervaded by a thermal plasma (K) which is responsible for the diffuse free-free emission. Lyman continuum photon and dust IR luminosity of the Nuclear Bulge again account for of the respective total luminosities of the Galaxy. Magnetic fields in the Nuclear Bulge are strong (up to mG) as compared with the Galactic Disk (a few tens of G). The field lines are oriented parallel to the galactic plane inside giant molecular clouds and perpendicular to the plane in the intercloud medium. The compact source Sgr A* is close to or at the dynamical center of the Galaxy. Its radio spectrum with a high frequency cut-off at GHz, a low frequency turnover at GHz and a flux density dependence in between can be explained by synchrotron emission from quasi-monoenergetic relativistic electrons. Due to an extinction between Sun and Galactic Center corresponding to , an intrinsic weakness of this source in the near infrared, and a strong background emission from warm dust there are only upper limits available for the flux density of Sgr A* in the far, mid and near infrared and X-ray regime. The size of Sgr A* in the radio regime is cm, its dereddened K-band flux density is mJy, its luminosity has upper limits of (if radiation comes from an Accretion Disk) and (if black-body radiation from an object with a single temperature of K is assumed). If anyone of the soft X-ray sources detected by ROSAT actually coincides with Sgr A*, its X-ray luminosity would be less than a few . With a dark mass of Sgr A* is the best candidate for a starving black hole, although there are no observational indications for the presence of a (Standard) Accretion Disk. While the radio/IR spectrum of Sgr A* is purely nonthermal, the spectrum integrated over the central parsec resembles that of a Seyfert galaxy. Sgr A* is embedded in the Hii region Sgr A West with part of the ionized gas forming a minispiral. Sgr A West is surrounded by the Circum Nuclear Disk, an irregular shaped assembly of molecular gas which extends from pc and rotates around the Galactic Center with an estimated dynamical time scale of \,yr. The total luminosity of of the central parsec is due to the radiation of early-type stars of which have now been directly identified as luminous blue supergiants. It is still debated, however, if these stars can also account for all of the ionization of Sgr A West. In addition, the central parsec contains red giants, AGB stars, and a few super giants of which the brightest are now identified by direct imaging. These stars – together with a few million low mass main sequence stars – account for the bulk of the 2.2\,m emission. The spatial distributions of the three stellar populations in the central pc are remarkably different. Sgr A* is – along the line-of-sight – presumably located close to the center of the Hii region Sgr A West, which in turn is located in front of the extended (pc) synchrotron source Sgr A East, which appears to be the remnant of a gigantic explosion (of the order of the energy of a single supernova explosion) which took place yr ago inside the GMC Sgr A East Core. X-ray observations show within pc a pervasive hot (keV) plasma of expansion age of yr. Both phenomena – as well as the formation of the Circum Nuclear Disk – may have the same origin. Influx of material is observed within the Nuclear Bulge on all distance scales. In the Nuclear Bulge (pc) as well as in the Circum Nuclear Disk (pc) inflow towards the Galactic Center occurs primarily in the galactic plane and amounts to a few . The accretion rate into the central Black Hole, deduced from the luminosity of Sgr A*, however, appears to be lower by at least five orders of magnitude (assuming standard disk accretion). But in an equilibrium state only part of the infalling mass which is not accreted by the Black Hole can be consumed by star formation. A mass inflow rate varying with time is a more natural explanation. Comparing the physical state of the Center of our Galaxy with that of Active Galactic Nuclei derived from observations and modelling, we find that most of the basic characteristics of an AGN are also present in the Galactic Center. Lacking are, however, both the evidence for a standard Accretion Disk and a hard UV spectrum with accompanying high excitation emission lines in the Galactic Center which are characteristic for AGN. The luminosity of the central parsec, , amounts to only of the total luminosity of the Galaxy of . Seen from a distance of M31 (kpc) with an angular resolution of (corresponding to a linear size of pc) the Center of our Galaxy would appear as a mildly active nucleus with some starburst activity and would probably be classified as a weak Seyfert galaxy. The synchrotron spectrum of Sgr A*, however, would be completely masked by reprocessed stellar light (i.e. free-free and dust emission). Received: October 21, 1996  相似文献   

15.
We discuss the implications of the recent X-ray and TeV γ-ray observations of the PSR B1259–63 system (a young rotation powered pulsar orbiting a Be star) for the theoretical models of interaction of pulsar and stellar winds. We show that previously considered models have problems to account for the observed behaviour of the system. We develop a model in which the broad band emission from the binary system is produced in result of collisions of GeV–TeV energy protons accelerated by the pulsar wind and interacting with the stellar disk. In this model the high energy γ-rays are produced in the decays of secondary neutral pions, while radio and X-ray emission are synchrotron and inverse Compton emission produced by low-energy (≤100 MeV) electrons from the decays of secondary charged π ± mesons. This model can explain not only the observed energy spectra, but also the correlations between TeV, X-ray and radio emission components.   相似文献   

16.
We present an overview of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief review of these observations, highlighting some new discoveries made possible by the Observatory’s unique capabilities. This includes our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC443 SNR.   相似文献   

17.
PSR B1259-63 is the only known binary system with a radio pulsar from which the non-pulsed radio and X-ray emission was detected. The companion star in this system is a Be star SS 2883. A rapidly rotating radio pulsar is expected to produce a wind of relativistic particles. Be stars are known to produce highly asymmetric mass loss. Due to the interaction of the pulsar wind and the Be star wind the system of two shocks between the pulsar and the Be star forms. In this paper we show that the observed non-pulsed radio emission from the system is a result of the synchrotron emission of the relativistic particles in the outflow beyond the shock wave and that the non-pulsed X-ray emission is due to the inverse Compton scattering of the Be star photons on this particles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Observations obtained in the last years challenged the widespread notion that rotation-powered neutron stars are steady X-ray emitters. Besides a few allegedly rotation-powered neutron stars that showed ‘magnetar-like’ variability, a particularly interesting case is that of PSR B0943+10. Recent observations have shown that this pulsar, well studied in the radio band where it alternates between a bright and a quiescent mode, displays significant X-ray variations, anticorrelated in flux with the radio emission. The study of such synchronous radio/X-ray mode switching opens a new window to investigate the processes responsible for the pulsar radio and high-energy emission. Here we review the main X-ray properties of PSR B0943+10 derived from recent coordinated X-ray and radio observations.  相似文献   

19.
Radio-quiet γ-ray pulsars like Geminga may account for a number of the unidentified EGRET sources in the Galaxy. The number of Geminga-like pulsars is very sensitive to the geometry of both the γ-ray and radio beams. Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1–10%) of their light cylinder radius. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the γ-ray beams predicted by slot gap and outer gap models. From the results of this study, one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the γ-ray pulsar population.   相似文献   

20.
The excellent spatial resolution of the Chandra observatory offers the unprecedented possibility to measure proper motions at X-ray wavelength with relatively high accuracy using as reference the background of extragalactic or remote galactic X-ray sources. We took advantage of this capability to constrain the proper motion of RX J0806.4-4123 and RX J0420.0-5022, two X-ray bright and radio quiet isolated neutron stars (INSs) discovered by ROSAT and lacking an optical counterpart. In this paper, we present results from a preliminary analysis from which we derive 2σ upper limits of 76 mas/yr and 138 mas/yr on the proper motions of RX J0806.4-4123 and RX J0420.0-5022 respectively. We use these values together with those of other ROSAT discovered INSs to constrain the origin, distance and evolutionary status of this particular group of objects. We find that the tangential velocities of radio quiet ROSAT neutron stars are probably consistent with those of ‘normal’ pulsars. Their distribution on the sky and, for those having accurate proper motion vectors, their possible birth places, all point to a local population, probably created in the part of the Gould Belt nearest to the earth.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号