首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegraded oils are widely distributed in the Liaohe basin, China. In order to develop effective oil-source correlation tools specifically for the biodegraded oils, carbon isotopic compositions of individual n-alkanes from crude oils and their asphaltene pyrolysates have been determined using the gas chromatography–isotope ratio mass spectrometry technique. No significant fractionation in the stable carbon isotopic ratios of n-alkanes in the pyrolysates of oil asphaltenes was found for anhydrous pyrolysis carried out at temperatures below 340°C. This suggests that the stable carbon isotopic distribution of n-alkanes (particularly in the C16–C29 range) in the asphaltene pyrolysates can be used as a correlation tool for severely biodegraded oils from the Liaohe Basin. Comparison of the n-alkane isotopic compositions of the oils with those of asphaltene pyrolysates shows that this is a viable method for the differentiation of organic facies variation and post-generation alterations.  相似文献   

2.
In certain areas, relatively large accumulations of liquid hydrocarbons have been attributed to coals. Evaluating the source rock potential of coal requires definition of both the generative potential (quantity and composition of generated hydrocarbons), and expulsion efficiency. Hydrous pyrolysis experiments were completed using Tertiary lignites (Ro < 0.35%) from North Dakota and the Far East to evaluate the source rock potential of coal. The North Dakota lignite is vitrinite-rich (93%) and liptinite-poor (3%); the Far East lignite is liptinite-rich (32% of total maceral content). These lignites have Hydrogen Index values of 123 and 483 mg HC/g OC, respectively. Differences in oil-pyrolysate yield, composition, and temperature of maximum pyrolysate yield from hydrous pyrolysis experiments for these two lignites are related to the type and amount of liptinite and vitrinite macerals. A maximum of 48 and 158 mg oil-pyrolysate/g OC is generated and expelled from the North Dakota and Far East lignites, respectively. Although these lignites consist predominantly of gas-prone vitrinitic components, their organic-rich nature can compensate for their poor convertibility to liquid hydrocarbons. The composition of these artificially generated oil-pyrolysates are similar to some non-marine oils, suggesting that this type of organic matter can be a significant contributor to many oils. Although the overall composition of the generated products from the two lignites is similar, the distribution of these products is significantly different. Homologous series of methyl ketones and alkyl benzenes have been identified in both oil-pyrolysates. Their presence and characteristic distribution suggest that microbial degradation occurred during the formation of these lignites. Although many coals generate significate amounts of liquid hydrocarbons that are similar to naturally occurring oils, poor explusion efficiency limits their source rock potential. Significant amounts of liquid products are assimilated by the vitrinitic matrix of most coals prior to expulsion, severely limiting the amount of petroleum available for migration and reservoir accumulation. However, adequate expulsion may occur in certain liptinite-rich coals or coals occurring in unique depositional settings.  相似文献   

3.
Production rates and carbon isotopic compositions of various pyrolysis products were investigated for three sediments from the Williston Basin under open and closed pyrolysis conditions in the temperature range of 300–600°C.Both parameters do not show any significant differences for kerogens and carbon dioxides with the analytical procedure. Contrary to open system pyrolysis, however, decreasing yields of pyrolysates and higher amounts of gaseous hydrocarbons (C2–4 compounds) at temperatures of 500 and 600°C, point to their decomposition to give ultimately methane.Moreover, these pyrolysis products display distinct carbon isotopic variations under open and closed pyrolysis conditions. They are due to a kinetic isotope effect, i.e. the preferential cleavage of 12C-12C over 13C-12C bonds, but the extent of the shift in isotopic composition seems to depend primarily on the reservoir size and the type of source material.  相似文献   

4.
To study the detailed structural and isotopic heterogeneity of the insoluble organic matter (IOM) of the Murchison meteorite, we performed two types of pyrolytic experiments: gradual pyrolysis and stepwise pyrolysis. The pyrolysates from the IOM contained 5 specific organic groups: aliphatic hydrocarbons, aromatic hydrocarbons, sulfur-bearing compounds, nitrogen-bearing compounds, and oxygen-bearing compounds. The release temperatures and the compositions of these pyrolysates demonstrated that the IOM is composed of a thermally unstable part and a thermally stable part. The thermally unstable part mainly served as the linkage and substituent portion that bound the thermally stable part, which was dispersed throughout the IOM. The linkage and substituent portion consisted of aliphatic hydrocarbons from C4 to C8, aromatic hydrocarbons with up to 6 rings, sulfo and thiol groups (the main reservoirs of sulfur in the IOM), and carboxyl and hydroxyl groups (the main reservoirs of oxygen). However, the thermally stable part was composed of polycyclic aromatic hydrocarbons (PAHs) containing nitrogen heterocycles in the IOM. Isotopic data showed that the aliphatic and aromatic hydrocarbons in the linkage and substituent portion were rich in D and 13C, while the thermally stable part was deficient in D and 13C. The structural and isotopic features suggested that the IOM was formed by mixing sulfur- and oxygen-bearing compounds rich in D and 13C (e.g., polar compounds in the interstellar medium (ISM)) and nitrogen-bearing PAHs deficient in D and 13C (e.g., polymerized compounds in the ISM).  相似文献   

5.
《Applied Geochemistry》2006,21(9):1455-1468
Cyclic base extraction is a commonly used method for the isolation of humic acids from soils and sediments. However, every extract may differ in chemical composition due to the complex nature of humic acids. To better understand the chemical composition of each extract, the heterogeneous property of humic acids and their speciation in environmental samples, eight fractions of humic acids were obtained in the present work by progressive base-extraction of Pahokee peat, and their chemical composition was characterized using two complementary pyrolytic techniques, namely conventional pyrolysis and methylation pyrolysis (TMAH) GC/MS. These quick and effective procedures provide an insight into the structure of macromolecules. The work shows that the lignin-derived aromatic compounds are major components of pyrolysates in both pyrolytic techniques, while aliphatic compounds originating from microorganisms and plants are minor components. Other compounds derived from proteins and carbohydrates at lower concentrations were also detected. Fatty acids were found in the pyrolysis without methylation, indicating their association with humic acid in a free state. These compounds are different from those formed during pyrolysis with in situ methylation, where fatty acids are generally believed to be the cleavage products of carboxylic groups bound to humic acids. A relative decreasing abundance of aromatic components and increasing abundance of aliphatic components in the pyrolysates as the peat was progressively extracted was also observed in this work, suggesting that the extraction of more hydrophobic aliphatics may be delayed in comparison to the aromatic components. Speciation and origin differences may also be important particularly considering that the contribution from lignin organic matter decreased with extraction number, as the contribution of microbial organic matter increased. The observed change in chemical composition with the extracted fractions indicates again that the humic acid distribution and their speciation are complex, and complete extractions are necessary to obtain a representative humic acid sample.  相似文献   

6.
More than thirty polycyclic aromatic hydrocarbons, including nine heterocyclic aromatic compounds, have been identified in solvent extracts of the Murchison meteorite by gas chromatography-mass spectrometry using bonded-phase fused silica columns. Structural isomers of several alkylated aromatic hydrocarbons, including methylpyrene and methylphenanthrene were chromatographically separated, thus allowing calculations of the amount of alkyl substituted compounds in the solvent extracts. The ratio of odd-carbon number to even-carbon number was found to be approximately 0.1. Based on these data and literature data from model pyrolysis experiments, a temperature of 1000°C is suggested for the formation of polycyclic aromatic hydrocarbons in the solar nebula or premeteoritic body. The value of 1000°C is within the range of temperatures for the condensation of the nebular material from the initial high temperature phases to the lower temperature phases at which chemical and isotopic equilibria were frozen. A simple model for the abiotic synthesis of heterocyclic compounds from simple aliphatic precursors is also presented.  相似文献   

7.
Biomarker distributions in a suite of asphaltenes and kerogens have been analysed by flash pyrolysis directly coupled to a GCMS system. Attention has been focussed on biomarkers of the sterane and triterpane types. The sample suite under investigation consists of sediments with different kerogen types and some crude oils. Biomarker distributions in the pyrolysates have been compared with the “free” biomarkers in the corresponding saturated hydrocarbon fractions.The analyses show significant differences between the distributions of the free biomarkers and those in the pyrolysates. The latter have lower amounts of steranes while diasteranes are absent or present at low concentrations only. In the triterpane traces a shift of maximum intensity from C30 (free compounds) to C27/C29 is observed. Furthermore, the pyrolysates contain a set of triterpenes (not present among the free compounds), and there is a selective loss of “non-regular” triterpanes that are present in the saturated hydrocarbon fractions. The observed differences between pyrolysates and free hydrocarbons can be explained partly by the processes occurring during pyrolysis such as bond rupture and subsequent stabilisation of primary pyrolysis products. To a certain extent these differences also show that maturation processes occurring in sediments have effects on free biomarker molecules different from those on molecules that are enclosed in a macromolecular matrix (kerogen or asphaltenes).Differences between biomarker distributions of asphaltene and kerogen pyrolysates are relatively small. A comparison with the pyrolysates from extracted whole sediments suggests that these differences are mainly caused by interactions between the organic material and the mineral matrix during pyrolysis.Oil asphaltenes behave differently from sediment asphaltenes as their pyrolysates are more similar to the corresponding saturated hydrocarbon fractions, i.e. the differences described above are observed to a much smaller extent. This different behaviour appears to be the result of coprecipitation of a part of the maltene fraction with the oil asphaltenes.  相似文献   

8.
We have conducted the first systematic analyses of molecular distribution and δD values of individual compounds in pyrolysates of insoluble organic matter (IOM) from different carbonaceous chondrite groups, using flash pyrolysis coupled to gas chromatography-mass spectrometry and compound-specific D/H analysis. IOM samples from six meteorites of different classifications, Elephant Moraine (EET) 92042 (CR2), Orgueil (CI1), Allan Hills (ALH) 83100 (CM1/2), Murchison (CM2), ALH 85013 (CM2), and Tagish Lake (C2) were isolated and studied. Except for the pyrolysate of Tagish Lake IOM, pyrolysates of all five meteorite IOM samples were dominated by an extensive series of aromatic (C1 to C7 alkyl-substituted benzenes, C0 to C2 alkyl-substituted naphthalenes), with aliphatic (straight chain and branched C10 to C15 alkanes) hydrocarbons and several S- and O- containing compounds (C1 to C2 alkylthiophenes, benzothiophene, benzaldehyde) being also present. The strong similarity in the pyrolysates of different carbonaceous chondrites suggests certain common characteristics in the formation mechanisms of IOM from different meteorites. The Tagish Lake IOM sample is unique in that its pyrolysate lacks most of the alkyl-substituted aromatic hydrocarbons detected in other meteorite IOM samples, suggesting distinctively different formation processes. Both bulk δD values of meteorite IOMs and weighted-average δD values of individual compounds in pyrolysates show a decreasing trend: CR2 > CI1 > CM2 > C2 (Tagish Lake), with the EET 92042 (CR2) IOM having the highest δD values (∼2000‰ higher than other samples). We attribute the high D contents in the IOM to primitive interstellar organic sources.  相似文献   

9.
A core from the Cambay Shale Formation of the Cambay Basin, containing immature Type III organic matter, was pyrolysed at 300°C for different durations of time to different maturation levels. Fractionation effects were studied employing a three-step extraction technique after removal of the expelled pyrolysate. The extractable organic matter (EOM) obtained on extraction of the whole core is assumed to be that present in open pores, while that obtained on finely crushing the sample is assumed to be that present in closed pores. The EOM obtained from 1 cm chips is termed EOM from semi-open pores. The gross composition of the pyrolysates expelled during pyrolysis is not similar to the oils reservoired in the area, and there is no significant fractionation observed between expelled pyrolysates and unexpelled EOM. Our study indicates movement of fluids between closed, semi-open and open pores. In both systems, there is a higher concentration of EOM in open pores than in semi-open and closed pores, and the fraction of EOM in open pores is much greater in the artificial system than in the natural system. Fractionation effects on n-alkane and isoprenoid hydrocarbon-based parameters were also studied. n-Alkenes are present in semi-open and closed pores of the immature core and in the core after it was pyrolysed to 300°C for 6 and 48 h, but are absent in the open pores. n-Alkenes are present in closed pores in the naturally matured core. Presence of n-alkenes in the pyrolysates expelled during the 6 and 48 h experiments, but their absence in the open pores of the core, indicates that expulsion also occurs through temporary microfractures during laboratory pyrolysis, whereas in the natural system expulsion from closed pores seems to be only via semi-open and open pores.  相似文献   

10.
A high abundance of ethyl substituted aromatic hydrocarbons (HCs) relative to their methyl counterparts is an unusual feature of some crude oils. Enhanced stability of ethyl aromatic HCs in the presence of tetralin was observed when individual ethylated compounds were heated with activated carbon in sealed tubes over a range of 170–340 °C. In addition, conversion of the common distribution of alkyl aromatic HCs to an unusual distribution, containing a higher relative abundance of ethyl compounds, was demonstrated by way of closed system heating of the aromatic fraction of a crude oil in the presence of activated carbon. The conditions for this unusual process require the presence of hydrogen donor components, which selectively limit the reaction and depletion of ethylated compounds relative to methylated compounds. The phenomenon has been shown to occur for substituted benzenes, naphthalenes, phenanthrenes and biphenyls. Enhanced abundance of ethyl aromatic HCs relative to their methylated counterparts is therefore proposed as an indicator for secondary reactions of migrated crude oil that has undergone thermal alteration after contact with carbonaceous surfaces in sediments. Application of these principles to selected crude oils and sediment extracts from the Carnarvon and Cooper/Eromanga Basins (Australia) indicates that significant secondary reaction of migrated crude oil has occurred.  相似文献   

11.
A Cambrian solid bitumen from northwestern Sichuan Basin, southern China was analyzed using two different flash pyrolysis methods coupled with gas chromatography–mass spectrometry analysis, including Pyroprobe® and analytical laser micropyrolysis. Results show that pyrolysis products from a Pyroprobe® (model 5000) analysis are dominated by mono-, di- and tricyclic aromatic hydrocarbons, whilst those from laser micropyrolysis are dominated by aliphatic hydrocarbons (n-alk-1-ene/n-alkane doublets), which is consistent with the results from an FT-IR spectrum of the solid bitumen. According to the molecular compositions of the pyrolysates from two types of pyrolysis, results from a 532 nm continuous wave laser may be more suitable for pyrolysis research of bitumen/asphaltene. Thus, differences in pyrolysis techniques must be considered when used to characterize oil asphaltenes or source rock kerogens.  相似文献   

12.
Hydrous pyrolysis experiments were performed on the Ghareb Formation (Upper Cretaceous, Jordan), a carbonate- and organic-rich (TOC 19.6%) source rock, using a temperature range of 200 to 360°C (72 h). The original sediment contains only low amounts of carbazoles, (maximum 2.2 μg/g bitumen for 1-methylcarbazole). With increasing thermal maturation, intense generation begins at temperatures only in excess of 300°C, reaching a maximum at 360°C. Likewise, during natural maturation, generation occurs at later stages of maturity (e.g. for Tithonian source rocks at >0.81% Rr and for Posidonia Shale at >0.88% Rr). Some isomeric changes during hydrous pyrolysis do not resemble those in nature whereas others do. The relative abundances of selected C1- and C2-alkylcarbazoles on ternary diagrams reveal differences, whereas the benzo[a]carbazole/benzo[a]carbazole+benzo[c]carbazole ratio is closely similar. The latter result supports the contention that maturation plays a key role in controlling carbazole distributions in source rocks. However, the results for alkylcarbazoles, especially the C2-carbazoles, are not easy to interpret.  相似文献   

13.
A group of 44 crudes from the Eastern Venezuela Basin have been analyzed for their content of saturated and aromatic hydrocarbons, resins, and asphaltenes, and studied for their variation of viscosity with temperature. With respect to a general trend, heavy oils that flow with ease, and light oils that flow with difficulty have been found. A ‘limiting value’ of 2.3 of saturates/asphaltenes separates oils whose viscosity can be changed with ease or difficulty by chemical means.  相似文献   

14.
Hydrous pyrolysis of asphaltenes has been tested as a method to reconstruct the chemical composition of biodegraded oils and oil seeps. The asphaltenes of three oils (a nondegraded oil, a biodegraded oil, and a biodegraded oil seep) from the Monterey Formation were studied. Results show that the aliphatic fraction generated by hydrous pyrolysis is very similar in chemical composition to the non-degraded oil. This makes the method very useful in correlation studies of biodegraded and nondegraded oils. It also allows to roughly estimate the maturity of the source of the biodegraded oil or oil seep.  相似文献   

15.
Analysis of the molecular composition of the organic matter (OM) from whole sediment samples can avoid analytical bias that might result from isolation of components from the sediment matrix, but has its own analytical challenges. We evaluated the use of GC × GC-ToFMS to analyze the pyrolysis products of six whole sediment samples obtained from above, within and below a 1 million year old OM-rich Mediterranean sapropel layer. We found differences in pyrolysis products <n-C22 between the OM-rich sapropel samples and the OM-poor background marls. The presence of alkyl pyrroles, probably derived from chlorophyll, in pyrolysates of the sapropels but not in those of the marls suggests that higher marine productivity and greater OM preservation accompanied deposition of the sapropels. Detection of tetramethyl benzenes considered to be pyrolysis products of isorenieratene in the sapropel samples is evidence that nitrogen-fixing green sulfur bacteria contributed to the high productivity. Greater abundances of shorter chain aliphatic hydrocarbons, pyrroles, furans and alkyl aromatics in the pyrolysates of sapropel samples relative to the marls confirm better preservation of marine OM in the sapropels. In addition, the presence of greater amounts of thiophenes in the sapropels than in the marls is consistent with the existence of euxinic conditions during sapropel deposition. The combination of whole sediment pyrolysis and GC × GC-ToFMS is promising, but the procedure requires careful selection of its multiple analytical variables, particularly the pyrolysis temperature and the operational features of the GC columns.  相似文献   

16.
Acquiring crude oils that have been expelled from the same rock unit at different levels of thermal maturation is currently not feasible in the natural system. This prevents direct correlation of compositional changes between the organic matter retained in a source rock and its expelled crude oil at different levels of thermal maturation. Alleviation of this deficiency in studying the natural system requires the use of laboratory experiments. Natural generation of petroleum from amorphous type-II kerogen in the Woodford Shale may be simulated by hydrous pyrolysis, which involves heating crushed rock in contact with water at subcritical temperatures (<374°C). Four distinct stages of petroleum generation are observed from this type of pyrolysis; (1) pre-oil generation, (2) incipient-oil generation, (3) primary-oil generation, and (4) post-oil generation.The effects of thermal maturation on the δ13C values of kerogen, bitumen, and expelled oil-like pyrolysate from the Woodford Shale have been studied through these four stages of petroleum generation. Similar to the natural system, the kerogens isolated from the pyrolyzed rock showed no significant change in δ13C. This suggests that the δ13C value of kerogens may be useful in kerogen typing and oil-to-source rock correlations. δ13C values of bitumens extracted from the pyrolyzed rock showed an initial decrease during the incipient-oil generation stage, followed by depletion during the primary- and post-oil generation stages. This reversal is not favorable for geochemical correlation or maturity evaluation. Saturated and polar components of the bitumen show the greatest δ13C variations with increasing thermal maturation. The difference between the δ13C of these two components gives a unidirectional trend that serves as a general indicator of thermal maturation and is referred to as the bitumen isotope index (BII).δ13C values of the expelled pyrolysates show a unidirectional increase with increasing thermal maturation. The constancy and similarity of δ13C values of the aromatic components in the expelled pyrolysates and bitumens, with increasing thermal maturation, encourages their use in oil-to-oil and oil-to-source rock correlations. Isotopic type-curves for expelled pyrolysates indicate that they may be useful in oil-to- oil correlations, but have a limited use in oil-to-source rock correlations.  相似文献   

17.
Hydrous pyrolysis (HP) experiments were used to investigate the petroleum composition and quality of petroleum generated from a Brazilian lacustrine source rock containing Type I kerogen with increasing thermal maturity. The tested sample was of Aptian age from the Araripe Basin (NE-Brazil). The temperatures (280–360 °C) and times (12–132 h) employed in the experiments simulated petroleum generation and expulsion (i.e., oil window) prior to secondary gas generation from the cracking of oil. Results show that similar to other oil prone source rocks, kerogen initially decomposes in part to a polar rich bitumen, which decomposes in part to hydrocarbon rich oil. These two overall reactions overlap with one another and have been recognized in oil shale retorting and natural petroleum generation. During bitumen decomposition to oil, some of the bitumen is converted to pyrobitumen, which results in an increase in the apparent kerogen (i.e., insoluble carbon) content with increasing maturation.The petroleum composition and its quality (i.e., API gravity, gas/oil ratio, C15+ fractions, alkane distribution, and sulfur content) are affected by thermal maturation within the oil window. API gravity, C15+ fractions and gas/oil ratios generated by HP are similar to those of natural petroleum considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. API gravity of the HP expelled oils shows a complex relationship with increasing thermal maturation that is most influenced by the expulsion of asphaltenes. C15+ fractions (i.e., saturates, aromatics, resins and asphaltenes) show that expelled oils and bitumen are compositionally separate organic phases with no overlap in composition. Gas/oil ratios (GOR) initially decrease from 508–131 m3/m3 during bitumen generation and remain essentially constant (81–84 m3/m3) to the end of oil generation. This constancy in GOR is different from the continuous increase through the oil window observed in anhydrous pyrolysis experiments. Alkane distributions of the HP expelled oils are similar to those of natural crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous age. Isoprenoid and n-alkane ratios (i.e., pristane/n-C17 and phytane/n-C18) decrease with increasing thermal maturity as observed in natural crude oils. Pristane/phytane ratios remain constant with increasing thermal maturity through the oil window, with ratios being slightly higher in the expelled oils relative to those in the bitumen. Generated hydrocarbon gases are similar to natural gases associated with crude oils considered to be sourced from similar Brazilian lacustrine source rocks with Type I kerogen of Lower Cretaceous, with the exception of elevated ethane contents. The general overall agreement in composition of natural and hydrous pyrolysis petroleum of lacustrine source rocks observed in this study supports the utility of HP to better characterize petroleum systems and the effects of maturation and expulsion on petroleum composition and quality.  相似文献   

18.
Kerogen has been artificially matured under “hydrous pyrolysis” conditions in the presence of various minerals in order to investigate the influence of the latter on the organic products. In addition to three clay minerals (montmorillonite, illite, kaolinite), calcium carbonate and limonite were also employed as inorganic substrates. Kerogen (Type II) isolated from the Kimmeridge Blackstone band was heated in the presence of water and a 20-fold excess of mineral phase at two different temperatures (280 and 330°C) for 72 hr. Control experiments were also carried out using kerogen and water only and kerogen under anhydrous conditions. This preliminary study describes the bulk composition of the pyrolysates with detailed analyses of the aliphatic hydrocarbon distributions being provided by gas chromatography and combined gas chromatography-mass spectrometry.In the 280°C experiments, considerably more organic-soluble pyrolysate (15% by weight of original kerogen) was produced when calcium carbonate was the inorganic phase. At 330°C, all samples generated much greater amounts of organic-soluble products with calcium carbonate again producing a large yield (40% wt/wt). Biomarker epimerisation reactions have also proceeded further in the 330°C pyrolysate formed in the presence of calcium carbonate than with other inorganic phases. Implications of these and other observations are discussed.  相似文献   

19.
Flame coal (Janina Mine, Poland) was an object of geochemical analyses for changes caused by the process of microbial desulphurisation. Ash content, beryllium, chromium, zinc, cobalt, lithium, manganese, copper, molybdenum, nickel, lead and vanadium concentrations were investigated in coal extracts, its macromolecular part, semi-coke and polar compound fractions of extracts and pyrolysates of crude and biodesulphurised coal density fractions. The macromolecular part of extracted density fractions was pyrolysed giving semi-coke and pyrolysate. These were separated into aliphatic hydrocarbons, aromatic and polar compounds by thin layer chromatography (TLC). Distributions of aliphatic and aromatic hydrocarbons in pyrolysates of the crude and desulphurised coal density fractions were compared by gas chromatography-mass spectrometry (GC-MS). Extracts, extracted density fractions, semi-coke and polar compound fractions were analysed for concentrations of trace elements. In the crude coal their concentrations in the macromolecular part are related only to coke. However, in the desulphurised coal the participation of the particular trace element increases in pyrolysate polar compound fractions. Its values are in the range from 1% (Mn) to 100% (Cr and Mo). These changes are the best seen in the 1.80-2.30×103 kg/m3 density fraction. Very high concentrations of trace elements were found in pyrolysate of desulphurised coal density fraction. This can be explained by the partial decomposition of coal macromolecule resulting from desulphurisation. Significant side-cleavage of peripheral groups and lighter aromatic hydrocarbons is possible. The effects of bacterial influence were manifested by the increase of polar compounds contents both in pyrolysates and extracts of the desulphurised coal and changes in distribution of aliphatic and aromatic hydrocarbon as pyrolytical products. These effects increase with mineral substance contents. Moreover, the increase of trace element concentration in coal organic matter occurs. It is reflected by the increase of participation of coal pyrolysate polar fraction in the total concentration of analysed elements in the macromolecular part of a given density fraction. The presented results are a part of the larger research aimed to find an influence of desulphurisation on chemical and technological properties of coal.  相似文献   

20.
A comparison was made between the composition of the recalcitrant organic matter (ROM) isolated from a sandy forest soil, as revealed with microwave assisted extractions and/or hydrolysis, and using common pyrolysis techniques. Successive microwave irradiation treatments were performed in H2O, 0.1 and 1 M HCl and 0.1 and 1 M KOH. At each step the insoluble residue was examined via Curie point pyrolysis (CuPy) and Curie point thermally assisted hydrolysis and methylation (CuTHM). Sequential irradiation treatment resulted in ca. 35% degradation of the ROM. Compounds released on microwave irradiation in H2O and in HCl were dominated by glucose, suggesting the occurrence of carbohydrate-containing molecular associations in the soil organic matter (SOM) which were not disrupted during acid hydrolysis and extraction as applied for the isolation of the ROM. The product distribution from the microwave irradiation in KOH showed an important contribution to the ROM from the higher plant polyesters cutin and suberin, and to a lesser extent from lignin. Different lignin-derived compounds were specifically released upon microwave acid or base hydrolysis. This suggested that two types of lignin monomers, ether- or ester-linked, occurred in the ROM. The changes in the composition of the CuPy pyrolysates of the residues from the different microwave hydrolyses are consistent with the near complete removal of carbohydrates by microwave HCl hydrolysis. The changes in the composition of the CuTHM pyrolysates of the residues from the different microwave acid and base hydrolyses are in agreement with a major release of cutin- and suberin-derived compounds upon microwave KOH hydrolysis. The CuPy and CuTHM pyrolysates of the final residue consist predominantly of lignin-derived compounds. The study emphasizes the potential of microwave assisted hydrolysis to give a better estimate of the actual contribution of cutin to ROM than pyrolysis. However, the technique appears to be unable to completely release the lignin-based constituent of the ROM. Microwave irradiation appears to provide great potential as a tool for extraction and chemical characterisation of complex OM and could be an attractive additional technique to pyrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号