首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
K–Ar ages of the Cenozoic basaltic rocks from the Far East region of Russia (comprising Sikhote-Alin and Sakhalin) are determined to obtain constraints on the tectono-magmatic evolution of the Eurasian margin by comparison with the Japanese Islands, Northeast China, and the formation of the back-arc basin. In the early Tertiary stage (54–26 Ma), the northwestward subduction of the Pacific Plate produced the active continental margin volcanism of Sikhote-Alin and Sakhalin, whereas the rift-type volcanism of Northeast China, inland part of the continent began to develop under a northeast–southwest-trending deep fault system. In the early Neogene (24–17 Ma), a large number of subduction-related volcanic rocks were erupted in connection with the Japan Sea opening. After an inactive interval of the volcanism ∼ 20–13 Ma ago, the late Neogene (12–5 Ma) volcanism of Sikhote-Alin and Sakhalin became distinct from those of the preceding stages and indicated within-plate geochemical features similar to those of Northeast China, in contrast to the Japan Arc which produces island arc volcanism. During the Japan Sea opening, the northeastern Eurasian margin detached and became a continental island arc system, and an integral part of continental eastern Asia comprising Sikhote-Alin, Sakhalin and Northeast China, and the Japan Arc with a back-arc basin. The convergence between the Eurasian Plate, the Pacific Plate and the Indian Plate may have contributed to the Cenozoic tectono-magmatism of the northeastern Eurasian continent.  相似文献   

2.
Volcanism in the Taupo Volcanic Zone (TVZ) and the Kermadec arc-Havre Trough (KAHT) is related to westward subduction of the Pacific Plate beneath the Indo-Australian Plate. The tectonic setting of the TVZ is continental whereas in KAHT it is oceanic and in these two settings the relative volumes of basalt differ markedly. In TVZ, basalts form a minor proportion (< 1%) of a dominant rhyolite (97%)-andesite association while in KAHT, basalts and basaltic andesites are the major rock types. Neither the convergence rate between the Pacific and Indo-Australian Plates nor the extension rates in the back-arc region or the dip of the Pacific Plate Wadati-Benioff zone differ appreciably between the oceanic and continental segments. The distance between the volcanic front and the axis of the back-arc basin decreases from the Kermadec arc to TVZ and the distance between trench and volcanic front increases from around 200 km in the Kermadec arc to 280 km in TVZ. These factors may prove significant in determining the extent to which arc and backarc volcanism in subduction settings are coupled.All basalts from the Kermadec arc are porphyritic (up to 60% phenocrysts) with assemblages generally dominated by plagioclase but with olivine, clinopyroxene and orthopyroxene. A single dredge sample from the Havre Trough back arc contains olivine and plagioclase microphenocrysts in glassy pillow rind and is mildly alkaline (< 1% normative nepheline) contrasting with the tholeiitic nature of the other basalts. Basalts from the TVZ contain phenocryst assemblages of olivine + plagioclase ± clinopyroxene; orthopyroxene phenocrysts occur only in the most evolved basalts and basaltic andesites from both TVZ and the Kermadec Arc.Sparsely porphyritic primitive compositions (Mg/(Mg+Fe2) > 70) are high in Al2O3 (>16.5%), and project in the olivine volume of the basalt tetrahedron. They contain olivine (Fo87) phenocrysts and plagioclase (> An60) microphenocrysts. These magmas have ratios of CaO/Al2O3, A12O3/TiO2 and CaO/TiO2 in the range of MORB and MORB picrites and can evolve to the low-pressure MORB cotectic by crystallisation of olivine±plagiociase. Such rocks may be the parents of other magmas whose evolutionary pathways are complicated by interaction of crystal fractionation, crystal accumulation and mixing processes and the filtering action of crust of variable density and thickness. The interplay of these processes likely accounts for the scatter of data about the cotectic. More evolved rocks from both TVZ and KAHT contain clinopyroxene and orthopyroxene phenocrysts and their compositions merge with basaltic andesites and andesites. Stepwise least-squares modelling using phenocryst assemblages in proportions observed in the rocks suggest that crystal fractionation and accumulation processes can account for much of the diversity observed in the major-element compositions of all lavas.We conclude that the parental basaltic magmas for volcanism in the TVZ and KAHT segments are similar thereby implying grossly similar source mineralogy. We attribute the diversity to secondary processes influencing liquids as they ascended through complex plumbing systems in the sub arc mantle and cross.  相似文献   

3.
Taupor volcanic zone (TVZ) is the currently active volcanic arc and back-arc basin of the Taupo-Hikurangi arc-trench system, North Island, New Zealand. The volcanic arc is best developed at the southern (Tongariro volcanic centre) end of the TVZ, while on the eastern side of the TVZ it is represented mainly by dacite volcanoes, and in the Bay of Plenty andesite/dacite volcanoes occur on either side of the Whakatane graben. The back-arc basin is best developed in the central part of the TVZ and comprises bimodal rhyolite and high-alumina basalt volcanism. Widespread ignimbrite eruptions have occurred from this area in the past 0.6 Ma. Normal faults occur in both arc and back-arc basin. They are generally steeply dipping (>40°) and strike between 040° and 080°. In the back-arc basin, fault zones are en echelon and have the same trend as alignments of rhyolite domes and basalt vents. Open fissures have formed during historic earthquakes along some of the faults, and geodetic measurements on the north side of Lake Taupo suggest extension of 14±4 mm/year. In the Bay of Plenty and ML=6.3 earthquake occurred on 2 March 1987. Modelling of known structure in the area together with data derived from this earthquake suggests block faulting with faults dipping 45°±10° NW and a similar dip is suggested by seismic profiling of faults offshore of the Bay of Plenty where extension is estimated to be 5±2 mm/year. To the east of the TVZ, the North Island shear belt (NISB) is a zone of reverse-dextral, strike-slip faults, the surface expression of which terminates at the eastern end of the TVZ. On the opposite side of the TVZ in the offshore western Bay of Plenty and on line with the NISB is the Mayor Island fault belt. If the two fault belts were once continuous, as seems likely, strike-slip faults probably extend through the basement of the TVZ. When extension associated with the arc and back-arc basin is combined with these strike-slip faults, the resulting transtension provides a suitable tectonic environment for caldera formation and voluminous ignimbrite eruptions in the back-arc basin. The types of volcano in the TVZ are considered to be related to the source of magma and overlying crustal structure. Lavas of the arc are probably formed by a multistage process involving (1) subsolidus slab dehydration, (2) anatexis of the mantle wedge, (3) fractionation and minor crustal assimilation and (4) magma mixing. High-alumina basalts of the back-arc basin may be derived by partial melting of peridotite at the top of the mantle wedge, while rhyolitic magmas are thought to come from partial melting of lavas and subvolcanic reservoirs associated with the southern end of the Coromandel volcanic zone. Extreme thinning associated with transtension in the back-arc basin will favour the eruption of large-volume, gas-rich ignimbrites accompanied by caldera formation.  相似文献   

4.
We assess the tsunami hazard posed to New Zealand by the Kermadec and southern New Hebrides subduction margins. Neither of these subduction zones has produced tsunami large enough to cause significant damage in New Zealand over the past 150?years of well-recorded history. However, as this time frame is short compared to the recurrence interval for major tsunamigenic earthquakes on many of the Earth’s subduction zones, it should not be assumed that what has been observed so far is representative of the long term. For each of these two subduction zones we present plate kinematic and fault-locking results from block modelling of earthquake slip vector data and GPS velocities. The results are used to estimate the current rates of strain accumulation on the plate interfaces where large tsunamigenic earthquakes typically occur. We also review data on the larger historical earthquakes that have occurred on these margins, as well as the Global CMT catalogue of events since 1976. Using this information we have developed a set of scenarios for large earthquakes which have been used as initial conditions for the COMCOT tsunami code to estimate the subsequent tsunami propagation in the southwest Pacific, and from these the potential impact on New Zealand has been evaluated. Our results demonstrate that there is a significant threat posed to the Northland and Coromandel regions of New Zealand should a large earthquake (M w ?8.5) occur on the southern or middle regions of the Kermadec Trench, and that a similarly large earthquake on the southern New Hebrides Trench has the potential to strongly impact on the far northern parts of New Zealand close to the southern end of the submarine Three Kings Ridge. We propose logic trees for the magnitude–frequency parameters of large earthquakes originating on each trench, which are intended to form the basis for future probabilistic studies.  相似文献   

5.
The North China Craton (NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods: (1) Late Paleozoic to Early Jurassic (~170 Ma); (2) Middle Jurassic to Early Cretaceous (160–140 Ma); (3) Early Cretaceous to Cenozoic (140 Ma to present). The last two stages saw the lithospheric mantle replacement and coupled basin-mountain response within the North China Craton due to subduction and retreating of the Paleo-Pacific plate, and is the emphasis in this paper. In the first period, the subduction and closure of the Paleo- Asian Ocean triggered the back-arc extension, syn-collisional compression and then post-collisional extension accompanied by ubiquitous magmatism along the northern margin of the NCC. Similar processes happened in the southern margin of the craton as the subduction of the Paleo-Tethys ocean and collision with the South China Block. These processes had caused the chemical modification and mechanical destruction of the cratonic margins. The margins could serve as conduits for the asthenosphere upwelling and had the priority for magmatism and deformation. The second period saw the closure of the Mongol-Okhotsk ocean and the shear deformation and magmatism induced by the drifting of the Paleo-Pacific slab. The former led to two pulse of N-S trending compression (Episodes A and B of the Yanshan Movement) and thus the pre-existing continental marginal basins were disintegrated into sporadically basin and range province by the Mesozoic magmatic plutons and NE-SW trending faults. With the anticlockwise rotation of the Paleo-Pacific moving direction, the subduction-related magmatism migrated into the inner part of the craton and the Tanlu fault became normal fault from a sinistral one. The NCC thus turned into a back-arc extension setting at the end of this period. In the third period, the refractory subcontinental lithospheric mantle (SCLM) was firstly remarkably eroded and thinned by the subduction-induced asthenospheric upwelling, especially those beneath the weak zones (i.e., cratonic margins and the lithospheric Tanlu fault zone). Then a slightly lithospheric thickening occurred when the upwelled asthenosphere got cool and transformed to be lithospheric mantle accreted (~125 Ma) beneath the thinned SCLM. Besides, the magmatism continuously moved southeastward and the extensional deformations preferentially developed in weak zones, which include the Early Cenozoic normal fault transformed from the Jurassic thrust in the Trans-North Orogenic Belt, the crustal detachment and the subsidence of Bohai basin caused by the continuous normal strike slip of the Tanlu fault, the Cenozoic graben basins originated from the fault depression in the Trans-North Orogenic Belt, the Bohai Basin and the Sulu Orogenic belt. With small block size, inner lithospheric weak zones and the surrounding subductions/collisions, the Mesozoic NCC was characterized by (1) lithospheric thinning and crustal detachment triggered by the subduction-induced asthenospheric upwelling. Local crustal contraction and orogenesis appeared in the Trans-North Orogenic Belt coupled with the crustal detachment; (2) then upwelled asthenosphere got cool to be newly-accreted lithospheric mantle and crustal grabens and basin subsidence happened, as a result of the subduction zone retreating. Therefore, the subduction and retreating of the western Pacific plate is the outside dynamics which resulted in mantle replacement and coupled basin-mountain respond within the North China Craton. We consider that the Mesozoic decratonization of the North China Craton, or the Yanshan Movement, is a comprehensive consequence of complex geological processes proceeding surrounding and within craton, involving both the deep lithospheric mantle and shallow continental crust.  相似文献   

6.
There are three cases of variation of trench location possible to occur during subduction: trench fixed, trench advancing, and trench retreating. Retreat of trench may lead to back-arc extension. The Pacific plate subducts at low angle beneath the Eurasia plate, tomographic results indicate that the subducted Pacific slab does not penetrate the 670 km discontinuity, instead, it is lying flat above the interface. The flattening occurred about 28 Ma ago. Geodynamic computation suggests: when the frontier of the subducted slab reaches the phase boundary of lower and upper mantle, it may be hindered and turn flat lying above the boundary, facilitates the retreat of trench and back-arc extension. Volcanism in northeastern China is likely a product of such retreat of subduction, far field back-arc extension, and melting due to reduce of pressure while mantle upwelling. Foundation item: National Natural Science Foundation of China (40234042 and 40174027).  相似文献   

7.
Introduction Northeastem China has the most strong Cenozoic volcanism in China (Liu, 1999), where dis-tributes more than 500 Cenozoic volcanoes, including sleeping volcanoes of Tianchi Lake (Celes-tial Pond) of Changbai Mountain, and Wudalianchi (Five linked Lakes) (LIU, 1999). Vo lcano ofTianchi Lake of Changbai Mountain consists of basaltic rocks of shield-forming stage andtrachytes and pantellerites in cone-forming stage. It is suggested by study of REE, incompatibleelements a…  相似文献   

8.
The propagation of the Pacific-Cocos Segment of the East Pacific Rise (EPR-PCS) has significantly altered the plate configuration at the north end of the Middle America Trench. This ridge propagation, the collision of the EPR-PCS with the Middle America Trench, the separation of the Rivera and Cocos plates and the formation of the Rivera Transform have produced a complex arrangement of morphotectonic elements in the area of Rivera-Cocos plate boundary, atypical of an oceanic transform boundary. Existing marine magnetic and bathymetric data has proved inadequate to unravel this complexity, thus, a dense grid of total field magnetic data were collected during campaigns MARTIC-04 and MARTIC-05 of the B/O EL PUMA in 2004 and 2006. These data have greatly clarified the magnetic lineation pattern adjacent to the Middle America trench, and have revealed an interesting en echelon, NE-SW oriented magnetic high offshore of the Manzanillo Graben. We interpret these new data to indicate that the EPR-PCS ridge segment reached the latitude (~18.3°N) of the present day Rivera Transform at about Chron 2A3 (~3.5Ma) and propagated further northward, intersecting the Middle America Trench at about 1.7 Ma (Chron 2). At 1.5 Ma spreading ceased along the EPR north of 18.3°N and the EPR-PCS has since retreated southward in association with a southward propagation of the Moctezuma Spreading Segment. North of 18.3°N the seafloor near the trench has been broken into small, uplifted blocks, perhaps due to the subduction of the young lithosphere generated by the EPR-PCS.  相似文献   

9.
Abstract   The development of voluminous granitic magmatism and widespread high-grade metamorphism in Mid-Cretaceous southwest Japan have been explained by the subduction of a spreading ridge (Kula–Pacific or Farallon–Izanagi plate boundaries) beneath the Eurasian continent and the formation of a slab window. In the present study, the thermal consequences of the formation of a slab window beneath a continental margin are evaluated through a 2-D numerical simulation. The model results are evaluated by comparison with the Mid-Cretaceous geology of southwest Japan. Of particular interest are the absence of an amphibolite- to granulite-facies metamorphic belt near the Wadati–Benioff plane, and significant melting of the lower crustal-mafic rocks sufficient to form a large amount of granitic magma. Because none of the model results simultaneously satisfied these two geological interpretations, it is suggested that subduction of plate boundaries in Mid-Cretaceous southwest Japan was not associated with the opening of a slab window. According to previous studies, and the results of the present study, two different tectonic scenarios could reasonably explain the geological interpretations for Mid-Cretaceous southwest Japan: (i) The spreading ridge did not subduct beneath the Eurasian continent, but was located off the continental margin, implying the continuous subduction of very young oceanic lithosphere; (ii) ridge subduction beneath the continental margin occurred after active spreading had ceased. Consequently, in both tectonic scenarios, the subduction of plate boundaries at the Mid-Cretaceous southwest Japan was not associated with a slab window, but very young (hot) oceanic lithosphere.  相似文献   

10.
Recent and historical seismicity as well as reliable fault plane solutions are used to study the active deformation caused by the occurrence of intermediate depth (60–170 km) earthquakes of the Vrancea region, Rumania. In this area, located in the southeastern part of the Carpathian arc, the westward subduction of the Carpathian trench has terminated, leaving continental lithosphere, at present, at the arc. The principalT axis of the intermediate depth events trends N159°E and has a plunge of 74°, which is the same as the dip of the subducted plate. TheP axis has a trend of 314° and a shallow plunge of 15°. The analysis of the moment tensor of six focal mechanisms showed that the dominant mode of deformation of the subducted lithosphere is a down-dip extension at a rate of about 2 cm/yr, based on seismicity data.  相似文献   

11.
Abstract The Mariana Trough is an active back-arc basin, with the rift propagating northward ahead of spreading. The northern part of the Trough is now rifting, with extension accommodated by combined stretching and igneous intrusion. Deep structural graben are found in a region of low heat flow, and we interpret these to manifest a low-angle normal fault system that defines the extension axis between 19°45' and 21°10'N. A single dredge haul from the deepest (∼5.5 km deep) of these graben recovered a heterogeneous suite of volcanic and plutonic crustal rocks and upper mantle peridotites, providing the first report of the deeper levels of back-arc basin lithosphere. Several lines of evidence indicate that these rocks are similar to typical back-arc basin lithosphere and are not fragments of rifted older arc lithosphere. Hornblende yielded an 40Ar/39Ar age of 1.8 ± 0.6 Ma, which is interpreted to approximate the time of crust formation. Harzburgite spinels have moderate Cr# (<40) and coexisting compositions of clinopyroxene (CPX) and plagioclase (PLAB) fall in the field of mid-ocean ridge basalt (MORB) gabbros. Crustal rocks include felsic rocks (70-80% SiO2) and plutonic rocks that are rich in amphibole. Chemical compositions of crustal rocks show little evidence for a 'subduction component', and radiogenic isotopic compositions correspond to that expected for back-arc basin crust of the Mariana Trough. These data indicate that mechanical extension in this part of the Mariana Trough involves lithosphere that originally formed magmatically. These unique exposures of back-arc basin lithosphere call for careful study using ROVs and manned submersibles, and consideration as an ocean drilling program (ODP) drilling site.  相似文献   

12.
Volcanic rocks of the Kyushu–Palau Ridge (KPR) from Deep Sea Drilling Project (DSDP) site 448 and from Belau comprise a low-to-medium-K arc tholeiitic series. Belau rocks include (probable) Mid-Eocene low-Ca type-3 boninite and pre-Early Oligocene–Early Miocene low-K arc tholeiitic basalt, basaltic andesite, andesite and dacite. Palau Trench samples include sparsely phyric high-Mg, -Cr and -Ni rocks which resemble the Belau boninite and Izu–Bonin – Mariana (IBM) system boninites. The high-Mg Palau Trench samples also resemble other primitive arc lavas (e.g. arc picrites). Their chemistry suggests an origin involving steep thermal gradients in multiply depleted mantle. Subduction of hot, young lithosphere under a young hot upper plate is postulated to explain this occurrence. The KPR is inferred to be the source of Eocene boninite and arc tholeiitic terranes presently in forearc regions of the IBM system. A model is presented here showing how many IBM boninites may have originated in a small area near Belau. These have migrated eastward by episodic back-arc opening accompanying eastward migration of arcs and trenches. Oldest known KPR rocks ( ca 47.5 Ma at DSDP site 296), and presumed KPR-derived exotic terranes of Guam ( ca 43.8 Ma), presage the postulated Eocene ( ca 42–43 Ma) change in Pacific plate motion invoked as the cause of subduction initiation at the KPR. The KPR has been rotated more than 40° clockwise since the Eocene, thus the age mismatch may indicate a different tectonic style, for example transtension or transpression, in earliest KPR history.  相似文献   

13.
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc–Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1–39.7 Ma 40Ar/39Ar mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane.  相似文献   

14.
台湾—吕宋会聚带的地壳运动特征及其动力学机制   总被引:3,自引:1,他引:2       下载免费PDF全文
南海东部的台湾-吕宋会聚带是南海四个边界中构造背景最为复杂、构造活动最为活跃.本文收集该区的GPS速度场资料,通过对速度场进行样条插值获得了该区连续的速度场、主应变率场、最大剪应变率场等结果.研究发现,该区的地壳运动受西北侧华南陆缘基底隆起和西南侧巴拉望岛阻挡、台湾北部24°N俯冲极转换、琉球海沟弧后扩张,以及菲律宾大...  相似文献   

15.
Abstract   The silicic volcanic rocks in Central Luzon show a temporal and spatial relationship with its geochemistry. Volcanic centers dated to approximately 5 Ma are silicic in geochemical composition whereas those between <5–1 Ma expose basaltic to andesitic rocks. Volcanic centers dated <1 Ma are characterized by a wide range of geochemistry encompassing basaltic through andesitic to dacitic signatures. Aside from changes in geochemistry through time, the areas (i.e. fore-arc to back-arc region) where the volcanic centers are formed also vary. The shift in the location of the volcanic centers in Central Luzon is attributed to changes in the dip of subduction of the South China Sea crust along the Manila Trench. Flat subduction resulted from the subduction of the Scarborough Seamount Chain, an oceanic bathymetric high along the Manila Trench west of northern Luzon. However, collision of Luzon with Taiwan in the north and Palawan in the south resulted in steepening of the subduction angle. The silicic volcanic centers in the forearc (Ce/Yb = 20–140) and back-arc (Ce/Yb = 20–60) regions are generally characterized by higher Ce/Yb compared to the basaltic-andesitic volcanic rocks in the main volcanic arc (Ce/Yb = 20) and back-arc (Ce/Yb = 20–30) regions. This across-arc geochemical variation highlights the contributions from the slab, mantle and crust coupled with the effects of geochemical processes that include partial melting, fractionation, magma mixing and mantle–melt interaction.  相似文献   

16.
The back-arc region of the Izu-Bonin arc has complex bathymetric and structural features, which, due to repeated back-arc rifting and resumption of arc volcanism, have prevented us from understanding the volcano-tectonic history of the arc after 15 Ma. The laser-heating 40Ar/39Ar dating technique combined with high density sampling of volcanic rocks from the back-arc region of this arc successfully revealed the detailed temporal variation of volcanism related to the back-arc rifting. Based on the new 40Ar/39Ar dating results: (1) Back-arc rifting initiated at around 2.8 Ma in the middle part of the Izu-Bonin arc (30°30′N–32°30′N). Volcanism at the earliest stage of rifting is characterized by the basaltic volcanism from north–south-trending fissures and/or lines of vents. (2) Following this earliest stage of volcanism, at ca. 2.5 Ma, compositionally bimodal volcanism occurred and formed small cones in the wide area. This volcanism and rifting continued until about 1 Ma in the region west of the currently active rift zone. (3) After 1 Ma, active volcanism ceased in the area west of the currently active rift zone, and volcanism and rifting were confined to the currently active rift zone. The volcano-tectonic history of the back-arc region of the Izu-Bonin arc is an example of the earliest stage of back-arc rifting in the oceanic island arc. Age data on volcanics clearly indicate that volcanism changed its mode of activity, composition and locus along with a progress of rifting.  相似文献   

17.
Volcanic history and tectonics of the Southwest Japan Arc   总被引:1,自引:0,他引:1  
Abstract Remarkable changes in volcanism and tectonism have occurred in a synchronous manner since 1.5–2 Ma at the junction of the Southwest Japan Arc and the Ryukyu Arc. Although extensive volcanism occurred in Kyushu before 2 Ma, the subduction-related volcanism started at ca 1.5 Ma, forming a NE–SW trend volcanic front, preceded by significant changes in whole-rock chemistry and mode of eruptions at ca 2 Ma. The Median Tectonic Line has intensified dextral motion since 2 Ma, with a northward shift of its active trace of as much as 10 km, accompanied by the formation of rhomboidal basins in Central Kyushu. Crustal rotation and incipient rifting has also occurred in South Kyushu and the northern Okinawa Trough over the past 2 million years. We emphasize that the commencement age of these events coincides with that of the transition to the westward convergence of the Philippine Sea plate, which we interpret as a primary cause of these synchronous episodes. We assume that the shift in subduction direction led to an increase of fluid component contamination from subducted oceanic slab, which then produced island-arc type volcanism along the volcanic front. Accelerated trench retreat along the Ryukyu Trench may have caused rifting and crustal rotation in the northern Ryukyu Arc.  相似文献   

18.
Opening of the Japan Sea back arc basin was accompanied by extensional tectonics in the drifting southwest Japan arc. Various trends of Early Miocene grabens in the arc suggest multi-directional rifting, which necessarily involved strike-slip components of some of basin-margin faults. However, such components are not well understood. In this work we conducted a field survey in the Early Miocene Ichishi basin on the northern side of the Median Tectonic Line, central southwest Japan. We found that the basin was a compound of grabens that were formed along normal and sinistral strike-slip faults, the latter of which had northeast–southwest trends. The block faulting in this phase produced basement highs between sub-basins, which were filled with the lower part of the Ichishi Group. We found a low-angle angular unconformity at a middle horizon in the group, with which we define the upper and lower part of the group. The upper part onlapped both the basement highs and the lower part. It means that the transtensional basin formation ceased sometime between 18 and 17.5 Ma in the Ichishi area. The Ichishi basin turned subsequently into a sag basin subsided due to normal faulting probably along the Nunobiki-sanchi-toen fault zone. The transtension and the basin sag were driven by ENE–WSW extensional stress. This arc-parallel extension produced grabens various areas including Ichishi in the Early Miocene. The extensional deformation was eventually localized to the deep rift along the Fossa Magna to make the lithosphere under southwest Japan decoupled from that under northeast Japan. The decoupling allowed the rapid rotation of southwest Japan from ~17.5 Ma. The cluster of those grabens around the Ise bay probably determined the southeastern margin of the Kinki triangle.  相似文献   

19.
New U–Pb age-data from zircons separated from a Northland ophiolite gabbro yield a mean 206Pb/238U age of 31.6 ± 0.2 Ma, providing support for a recently determined 28.3 ± 0.2 Ma SHRIMP age of an associated plagiogranite and  29–26 Ma 40Ar/39Ar ages (n = 9) of basalts of the ophiolite. Elsewhere, Miocene arc-related calc-alkaline andesite dikes which intrude the ophiolitic rocks contain zircons which yield mean 206Pb/238U ages of 20.1 ± 0.2 and 19.8 ± 0.2 Ma. The ophiolite gabbro and the andesites both contain rare inherited zircons ranging from 122–104 Ma. The Early Cretaceous zircons in the arc andesites are interpreted as xenocrysts from the Mt. Camel basement terrane through which magmas of the Northland Miocene arc lavas erupted. The inherited zircons in the ophiolite gabbros suggest that a small fraction of this basement was introduced into the suboceanic mantle by subduction and mixed with mantle melts during ophiolite formation.

We postulate that the tholeiitic suite of the ophiolite represents the crustal segment of SSZ lithosphere (SSZL) generated in the southern South Fiji Basin (SFB) at a northeast-dipping subduction zone that was initiated at about 35 Ma. The subduction zone nucleated along a pre-existing transform boundary separating circa 45–20 Ma oceanic lithosphere to the north and west of the Northland Peninsula from nascent back arc basin lithosphere of the SFB. Construction of the SSZL propagated southward along the transform boundary as the SFB continued to unzip to the southeast. After subduction of a large portion of oceanic lithosphere by about 26 Ma and collision of the SSZL with New Zealand, compression between the Australian Plate and the Pacific Plate was taken up along a new southwest-dipping subduction zone behind the SSZL. Renewed volcanism began in the oceanic forearc at 25 Ma producing boninitic-like, SSZ and within-plate alkalic and calc-alkaline rocks. Rocks of these types temporally overlap ophiolite emplacement and subsequent Miocene continental arc construction.  相似文献   


20.
New data on geology and 21 K–Ar dates of the Late Oligocene–Quaternary basalts in Syria, combined with analysis of the new and previous data are used to reconstruct the volcanic history and relations between it and tectonic events. Volcanism began at the end of Oligocene (26–24 Ma) and was concentrated in the Late Oligocene–Early Miocene along a N-trending band, which stretches from the Jebel Arab (Harrat Ash Shaam) up to Kurd Dagh and southern Turkey. Activity waned in the Middle Miocene (17–12 Ma), but was resumed in the same band in the Tortonian and increased in the Messinian and Early Pliocene (6.3–4 Ma), when volcanism spread to the Shin Plateau and its coastal extension. After a brief hiatus ~ 4–3.5 Ma, volcanism became still more intensive and spread from the N-trending band to the east into the northern margin of the Mesopotamian Foredeep and to the west into the Dead Sea Transform zone. Additional eruptions continued into the Holocene.Volcanism lasted > 25 million years in the Jebel Arab Highland and > 15 million years in the Aleppo Plateau. The long duration of volcanism in the same parts of the moving Arabian plate and absence of records of one-way migration of the activity mean that the magmatic sources moved together with the plate, i.e., they were situated within the lithosphere mantle. Coincidence of the tectonic and volcanic stages of the Arabian plate development proves that volcanic activity depended on the geodynamic situation, caused by the plate motion. Situated within the lithosphere, magmatic sources within this transverse band were possibly caused by thermal and deforming influences of the asthenospheric lateral flow, moved laterally from the Ethiopia–Afar deep superplume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号