首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates three categories of models that are derived from the equilibrium temperature concept to estimate water temperatures in the Loire River in France and the sensitivity to changes in hydrology and climate. We test the models' individual performances for simulating water temperatures and assess the variability of the thermal responses under the extreme changing climate scenarios that are projected for 2081–2100. We attempt to identify the most reliable models for studying the impact of climate change on river temperature (Tw). Six models are based on a linear relationship between air temperatures (Ta) and equilibrium temperatures (Te), six depend on a logistic relationship, and six rely on the closure of heat budgets. For each category, three approaches that account for the river's thermal exchange coefficient are tested. In addition to air temperatures, an index of day length is incorporated to compute equilibrium temperatures. Each model is analysed in terms of its ability to simulate the seasonal patterns of river temperatures and heat peaks. We found that including the day length as a covariate in regression‐based approaches improves the performance in comparison with classical approaches that use only Ta. Moreover, the regression‐based models that rely on the logistic relationship between Te and Ta exhibit root mean square errors comparable (0.90 °C) with those obtained with a classical five‐term heat budget model (0.82 °C), despite a small number of required forcing variables. In contrast, the regressive models that are based on a linear relationship Te = f(Ta) fail to simulate the heat peaks and are not advisable for climate change studies. The regression‐based approaches that are based on a logistic relationship and the heat balance approaches generate notably similar responses to the projected climate changes scenarios. This similarity suggests that sophisticated thermal models are not preferable to cruder ones, which are less time‐consuming and require fewer input data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrologic models that rely on site specific linear and non‐linear regression water temperature (Tw) subroutines forced solely with observed air temperature (Ta) may not accurately estimate Tw in mixed‐use urbanizing watersheds where hydrogeological and land use complexity may confound common Tw regime assumptions. A nested‐scale experimental watershed study design was used to test Tw model predictions in a representative mixed‐use urbanizing watershed of the central USA. The linear regression Tw model used in the Soil and Water Assessment Tool (SWAT), a non‐linear regression Tw model, and a process‐based Tw model that accounts for watershed hydrology were evaluated. The non‐linear regression Tw model tested at a daily time step performed significantly (P < 0.01) better than the linear Tw model currently used in SWAT. Both regression Tw models overestimated Tw in lower temperature ranges (Tw < 10.0 °C) with percent bias (PBIAS) values ranging from ?28.2% (non‐linear Tw model) to ?66.1% (linear regression Tw model) and underestimated Tw in the higher temperature range (Tw > 25.0 °C) by 3.2%, and 7.2%, respectively. Conversely, the process‐based Tw model closely estimated Tw in lower temperature ranges (PBIAS = 4.5%) and only slightly underestimated Tw in the higher temperature range (PBIAS = 1.7%). Findings illustrate the benefit of integrating process‐based Tw models with hydrologic models to improve model transferability and Tw predictive confidence in urban mixed‐land use watersheds. The findings in this work are distinct geographically and in terms of mixed‐land use complexity and are therefore of immediate value to land‐use managers in similarly urbanizing watersheds globally. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and levelling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature vs distance) for 53 rivers in the Pacific Northwest (USA) using an extensive data set of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling was influenced locally by climate or cool water inputs, respectively. Potential drivers of shape for complex profiles were specific to each river. These thermal patterns indicate diverse thermal habitats that may promote resilience of aquatic biota to climate change. Without this spatial context, climate change models may incorrectly estimate loss of thermally suitable habitat. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Dividing rivers into homogeneous reaches is key for river processes and watershed management. In contrast to downstream fluvially dominated rivers, upstream debris-flow dominated torrents have steeper channel slopes and smaller valley width/depth ratios. Investigating transition reaches between torrents and fluvially dominated rivers, not only explores the structure of the landscape, but also contributes to hazard management. This study proposed a valley morphology index combining two variables, channel slope and valley width/depth ratio, to determine transition reaches between torrents and rivers. The methodology was applied to 41 mountain streams in Taiwan using a Geographic Information System (GIS)-based topographic analysis. Plots of valley width/depth ratio versus channel slope were used to determine boundary values of the valley morphology index (Iv) separating torrents from rivers. The plots showed that about 80% of the river basins present “L-shaped” curves, which indicate sharp decreases in slope for upstream sections and dramatic increases of valley width/depth ratio for downstream sections. Results further demonstrated an average value of Iv 0.0047 across the study sites. Spatial comparison between geographic regions indicated that transition reaches in eastern rivers tend to occur lower in the drainage basin due, in part, to higher terrain. Local factors, such as tributary confluences and landslides promote the transition from torrents to fluvially dominated rivers. Satellite images verified that the approach correctly identified transition reaches, suggesting that it may provide a useful reference for river management.  相似文献   

5.
Stream temperature is a key physical water‐quality parameter, controlling many biological, chemical, and physical processes in aquatic ecosystems. Maintenance of cool stream temperatures during summer is critical for high‐quality aquatic habitat. As such, transmission of warm water from small, nonfish‐bearing headwater streams after forest harvesting could cause warming in downstream fish‐bearing stream reaches with negative consequences. In this study, we evaluate (a) the effects of contemporary forest management practices on stream temperature in small, headwater streams, (b) the transmission of thermal signals from headwater reaches after harvesting to downstream fish‐bearing reaches, and (c) the relative role of lithology and forest management practices in influencing differential thermal responses in both the headwater and downstream reaches. We measured summer stream temperatures both preharvest and postharvest at 29 sites—12 upstream sites (4 reference, 8 harvested) and 17 downstream sites (5 reference, 12 harvested)—across 3 paired watershed studies in western Oregon. The 7‐day moving average of daily maximum stream temperature (T7DAYMAX) was greater during the postharvest period relative to the preharvest period at 7 of the 8 harvested upstream sites. Although the T7DAYMAX was generally warmer in the downstream direction at most of the stream reaches during both the preharvest and postharvest period, there was no evidence for additional downstream warming related to the harvesting activity. Rather, the T7DAYMAX cooled rapidly as stream water flowed into forested reaches ~370–1,420 m downstream of harvested areas. Finally, the magnitude of effects of contemporary forest management practices on stream temperature increased with the proportion of catchment underlain by more resistant lithology at both the headwater and downstream sites, reducing the potential for the cooling influence of groundwater.  相似文献   

6.
Water temperature dynamics in High Arctic river basins   总被引:2,自引:0,他引:2  
Despite the high sensitivity of polar regions to climate change and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap was addressed by exploring high‐resolution water column thermal regimes for glacier‐fed and non‐glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier‐fed rivers (0.3–3.2 °C) were lowest and least variable near the glacier terminus but increased downstream (0.7–2.3 °C km–1). Non‐glacial rivers, where discharge was sourced primarily from snowmelt runoff, were warmer (mean: 2.9–5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones and increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of some Alaskan Arctic rivers but low at all sites when compared with alpine glacierized environments at lower latitudes. Thermal regimes were correlated strongly (p < 0.01) with incoming short‐wave radiation, air temperature, and river discharge. Principal drivers of thermal variability were inferred to be (i) water source (i.e. glacier melt, snowmelt, groundwater); (ii) exposure time to the atmosphere; (iii) prevailing meteorological conditions; (iv) river discharge; (v) runoff interaction with permafrost and buried ice; and (vi) basin‐specific geomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high‐latitude river systems in the context of projected warming in polar regions. We hypothesize that warmer and more variable temperature regimes may prevail in the future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow water and groundwater sources. Importantly, such changes could have implications for aquatic species diversity and abundance and influence rates of ecosystem functioning in high‐latitude river systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
What hydraulic information can be gained from remotely sensed observations of a river's surface? In this study, we analyze the relationship between river bed undulations and water surfaces for an ungauged reach of the Xingu River, a first‐order tributary of the Amazon river. This braided reach is crosscut more than 10 times by a ENVISAT (ENVironmental SATellite) track that extends over 100 km. Rating curves based on a modeled discharge series and altimetric measurements are used, including the zero‐flow depth Z 0 parameter, which describes river's bathymetry. River widths are determined from JERS (Japanese Earth Ressources Satellite) images. Hydrodynamic laws predict that irregularities in the geometry of a river bed produce spatial and temporal variations in the water level, as well as in its slope. Observation of these changes is a goal of the Surface Water and Ocean Topography satellite mission, which has a final objective of determining river discharge. First, the concept of hydraulic visibility is introduced, and the seasonality of water surface slope is highlighted along with different flow regimes and reach behaviors. Then, we propose a new single‐thread effective hydraulic approach for modeling braided rivers flows, based on the observation scales of current satellite altimetry. The effective hydraulic model is able to reproduce water surface elevations derived by satellite altimetry, and it shows that hydrodynamical signatures are more visible in areas where the river bed morphology varies significantly and for reaches with strong downstream control. The results of this study suggest that longitudinal variations of the slope might be an interesting criteria for the analysis of river segmentation into elementary reaches for the Surface Water Ocean Topography mission that will provide continuous measurements of the water surface elevations, the slopes, and the reach widths.  相似文献   

8.
The discharge hydrograph estimation in rivers based on reverse routing modeling and using only water level data at two gauged sections is here extended to the most general case of significant lateral flow contribution, without needing to deploy rainfall–runoff procedures. The proposed methodology solves the Saint‐Venant equations in diffusive form also involving the lateral contribution using a “head‐driven” modeling approach where lateral inflow is assumed to be function of the water level at the tributary junction. The procedure allows to assess the discharge hydrograph at ends of a selected river reach with significant lateral inflow, starting from the stage recorded there and without needing rainfall data. Specifically, the MAST 1D hydraulic model is applied to solve the diffusive wave equation using the observed stage hydrograph at the upstream section as upstream boundary condition. The other required data are (a) the observed stage hydrograph at the downstream section, as benchmark for the parameter calibration, and (b) the bathymetry of the river reach, from the upstream section to a short distance after the downstream gauged section. The method is validated with different flood events observed in two river reaches with a significant intermediate basin, where reliable rating curves were available, selected along the Tiber River, in central Italy, and the Alzette River, in Luxembourg. Very good performance indices are found for the computed discharge hydrographs at both the channel ends and along the tributaries. The mean Nash‐Sutcliffe value (NSq) at the channel ends of two rivers is found equal to 0.99 and 0.86 for the upstream and downstream sites, respectively. The procedure is also validated on a longer stretch of the Tiber River including three tributaries for which appreciable results are obtained in terms of NSq for the computed discharge hydrographs at both the channel ends for three investigated flood events.  相似文献   

9.
Predicting the geometry of channels and alluvial rivers is of primary importance in river engineering science. Appropriately designing channels and predicting stable river cross‐sections can decrease costs and prevent the destruction of installations and agricultural land by rivers. Consequently, researchers have applied different empirical and regression methods to achieve relations for predicting stable channel and river geometry. In this study, Group Method of Data Handling ]GMDH) models are used to predict three geometric variables of stable channels, namely width (w), depth (h) and slope (s). The effect of different input parameters, such discharge (Q), median grain size (d50) and the Shields parameter (τ*) on the GMDH models is assessed with regard to predicting stable channel geometry. The results indicate that the GMDH model with mean absolute percentage error (MAPE) of 5.53%, 4.05% and 4.89% for channel width, depth and slope prediction respectively, exhibits good accuracy. Moreover, a comparison of the GMDH models with previous theoretical equations (based on regression analysis) indicates the superiority of GMDH model performance, with error reductions of one‐fifth, one‐eighth and one‐sixth compared with the regression equations for channel width, depth and slope prediction, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The repellency index (RI) defined as the adjusted ratio between soil‐ethanol, Se, and soil‐water, Sw, sorptivities estimated from minidisk infiltrometer experiments has been used instead of the widely used water drop penetration time and molarity of ethanol drop tests to assess soil water repellency. However, sorptivity calculated by the usual early‐time infiltration equation may be overestimated as the effects of gravity and lateral capillary are neglected. With the aim to establish the best applicative procedure to assess RI, different approaches to estimate Se and Sw were compared that make use of both the early‐time infiltration equation (namely, the 1 min, S1, and the short‐time linearization approaches), and the two‐term axisymmetric infiltration equation, valid for early to intermediate times (namely, the cumulative linearization and differentiated linearization approaches). The dataset included 85 minidisk infiltrometer tests conducted in three sites in Italy and Spain under different vegetation habitats (forest of Pinus pinaster and Pinus halepensis, burned pine forest, and annual grasses), soil horizons (organic and mineral), postfire treatments, and initial soil water contents. The S1 approach was inapplicable in 42% of experiments as water infiltration did not start in the first minute. The short‐time linearization approach yielded a systematic overestimation of Se and Sw that resulted in an overestimation of RI by a factor of 1.57 and 1.23 as compared with the cumulative linearization and differentiated linearization approaches. A new repellency index, RIs, was proposed as the ratio between the slopes of the linearized data for the wettable and hydrophobic stages obtained by a single water infiltration test. For the experimental conditions considered, RIs was significantly correlated with RI and WDPT. Compared with RI, RIs includes information on both soil sorptivity and hydraulic conductivity and, therefore, it can be considered more physically linked to the hydrological processes affected by soil water repellency.  相似文献   

11.
Understanding the effects of hydrological processes on solute dynamics is critical to interpret biogeochemical processes. Water chemistry and isotopic compositions of surface water (δ18Ow and δDw) were investigated in rivers from Southwest China to study the effects of hydrological variability on biogeochemical processes. The inverse relationship between deuterium excess (d-excess) and δ18Ow could be ascribed to non-equilibrium fractionation processes, and the slope of the Local River Water Line was much lower than the Local Meteoric Water Line, suggesting the post-precipitation evaporation pattern. The evaporation fraction (1–f) was estimated by the d-excess method, varying from 0.01 to 0.18. (1–f), was a function of water temperature and drainage mean elevation, indicating that evaporation easily occurs at high temperatures in low-elevation regions. The hydrological processes co-varied with solute dynamics in the river network, and fluid transit time and temperature were likely responsible for the co-variations. Also, we found that hydrological processes played an important role in solute dynamics through shifting the geochemical processes (e.g., enrichment, water-rock reaction, photosynthesis, and secondary mineral precipitation). This study highlights that biogeochemical processes co-vary with hydrological processes, and we suggest that investigating hydrological processes can help to understand biogeochemical processes.  相似文献   

12.
The morphodynamics of the anastomosing channel system of upper Columbia River in southeastern British Columbia, Canada, is examined using an adaptation of conventional hydraulic geometry termed ‘interchannel hydraulic geometry’. Interchannel hydraulic geometry has some of the characteristics of downstream hydraulic geometry but differs in that it describes the general bankfull channel form and hydraulics of primary and secondary channels in the anastomosing channel system. Interchannel hydraulic geometry generalizes these relationships and as such becomes a model of the geomorphology of channel division and combination. Interchannel hydraulic geometry of upper Columbia River, based on ?eld measurements of ?ow velocity and channel form at 16 test sections, is described well by simple power functions: wbf = 3·24Qbf0·64; dbf = 1·04Qbf0·19; vbf = 0·30Qbf0·17. These results, with other related measurements of ?ow resistance, imply that channel splitting leads to hydraulic inef?ciency (higher ?ow resistance) on the anastomosing Columbia River. Because these ?ndings differ from those reported in studies elsewhere, we conclude that hydraulic ef?ciency does not provide a general explanation for anabranching in river channels. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Bankfull discharge was identified in some 30 gravel-bed rivers representing in total c. 40 gauging stations. The catchment sizes cary from 4km2 to nearly 2700km2. Bankfull discharge value increases with basin size. In the case of gravel-bed rivers developed on an impermeable substratum, the following equation emerges: Qb=0·087 A1·044. Bankfull discharge recurrence interval was determined by fitting maximum annual floods (Ta) into Gumbel's distribution and then using the partial duration series (Tp) in this same distribution. Recurrence interval is below 0·7 years (Tp) for small pebble-bed rivers developed on an impermeable substratum; it reaches 1·1 to 1·5 years when the catchment size of these rivers exceeds 250km2. Rivers incised in the soft schists of the Famenne show larger channel capacity at bankfull stage, a small width/depth ratio and thus higher recurrence intervals (1·4–5·3 years with Ta and 1–4·4 years with Tp). Baseflow-dominated gravel-bed streams and sandy or silty rivers experience less frequent bankfull discharges, with a recurrence interval higher than 2 or even 3 years (Tp). © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
We have determined the elastic thicknessTe of the oceanic lithosphere along two volcanic chains of the South Central Pacific: Cook-Austral and Society islands. We used a three-dimensional spatial method to model the lithospheric flexure assuming a continuous elastic plate. The model was constrained by geoid height data from the SEASAT satellite.Along the Cook-Austral chain the elastic thickness increases westward, from 2–4 km at McDonald hot spot to 14 km at Rarotonga. At McDonald seamount, however, the data are better explained by a local compensation model. The observed trend shows an increase ofTe with age of plate at loading time. However, the elastic layer under the Cook-Austral appears systematically thinner by several kilometers than expected for “normal” seafloor, suggesting that substantial thermal thinning has taken place in this region. Considering the apparent thermal age of the plate instead of crustal age improves noticeably the results. Along the Society chainTe varies from 20 km under Tahiti to 13 km under Maupiti which is located 500 km westward. When plotting together the Society and Cook-AustralTe results versus age of load, we notice that within the first five million years after loading,Te decreases significantly while tending rapidly to an equilibrium value. This may be interpreted as the effect of initial stress relaxation which occurs just after loading inside the lower lithosphere and suggests that the presently measured elastic thickness under the very young Tahiti load ( 0.8 Ma) is not yet the equilibrium thickness.  相似文献   

15.
Water temperature is a key driver for riverine biota and strongly depends on shading by woody riparian vegetation in summer. While the general effects of shading on daily maximum water temperature Tmax are well understood, knowledge gaps on the role of the spatial configuration still exist. In this study, the effect of riparian buffer length, width, and canopy cover (percentage of buffer area covered by woody vegetation) on Tmax was investigated during summer baseflow using data measured in seven small lowland streams in western Germany (wetted width 0.8–3.7 m). The effect of buffer length on Tmax differed between downstream cooling and heating: Tmax approached cooler equilibrium conditions after a distance of 0.4 km (~45 min travel-time) downstream of a sharp increase in canopy cover. In contrast, Tmax continued to rise downstream of a sharp decrease in canopy cover along the whole 1.6 km stream length investigated. The effect of woody vegetation on Tmax depended on buffer width, with changes in canopy cover in a 10 m wide buffer being a better predictor for changes in Tmax compared to a 30 m buffer. The effect of woody vegetation on Tmax was linearly related to canopy cover but also depended on daily temperature range Trange, which itself was governed by cloudiness, upstream canopy cover, and season. The derived empirical relationship indicated that Tmax was reduced by −4.6°C and increased by +2.7°C downstream of a change from unshaded to fully shaded conditions and vice versa. This maximum effect was predicted for a 10 m wide buffer at sunny days in early summer, in streams with large diel fluctuations (large Trange). Therefore, even narrow woody riparian buffers may substantially reduce the increase in Tmax due to climate change, especially in small shallow headwater streams with low baseflow discharge and large daily temperature fluctuations.  相似文献   

16.
Stream water temperature (ts) is a critical water quality parameter for aquatic ecosystems. However, ts records are sparse or nonexistent in many river systems. In this work, we present an empirical model to predict ts at the site scale across the USA. The model, derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating Streamflow database, describes the linear relationship between monthly mean air temperature (ta) and ts. Multiple linear regression models are used to predict the slope (m) and intercept (b) of the ta–ts linear relation as a function of climatic, hydrologic and land cover characteristics. Model performance to predict ts resulted in a mean Nash–Sutcliffe efficiency coefficient of 0.78 across all sites. Application of the model to predict ts at additional 89 nonreference sites with a higher human alteration yielded a mean Nash–Sutcliffe value of 0.45. We also analysed seasonal thermal sensitivity (m) and found strong hysteresis in the ta–ts relation. Drainage area exerts a strong control on m in all seasons, whereas the cooling effect of groundwater was only evident for the spring and fall seasons. However, groundwater contributions are negatively related to mean ts in all seasons. Finally, we found that elevation and mean basin slope are negatively related to mean ts in all seasons, indicating that steep basins tend to stay cooler because of shorter residence times to gain heat from their surroundings. This model can potentially be used to predict climate change impacts on ts across the USA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg–Richter magnitude–energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log(E S/M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δσ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many seismological applications (ShakeMap, seismic hazard studies, etc.) since procedures to calculate it are well developed and accepted to be stable with small uncertainty. For many reasons, procedures for E S and M e calculation are affected by a larger uncertainty and are currently not yet available for all global earthquakes. Thus, despite the physical importance of E S in characterizing the seismic source, the use of M e has been limited so far to the detriment of quicker and more complete rough estimates of both earthquake size and strength and their causal relationships. Further studies are needed to improve E S estimations in order to allow M e to be extensively used as an important complement to M w in common seismological practice and its applications.  相似文献   

18.
The elastic thickness of the lithosphere in the Pacific Ocean   总被引:1,自引:0,他引:1  
In this study, we present determinations of the effective elastic thicknessTe of the oceanic lithosphere along Pacific chains or archipelagoes.Te is determined by computing the deflection of a continuous elastic plate under the load of volcanoes, and constrained by geoid heights provided by SEASAT. In the South Central Pacific, estimates of 14 km for the Marquesas and 6 km or less for the Pitcairn-Mururoa-Gloucester chain are in good agreement with a previous work in this region (Cook-Austral and Society chains). Around the Line Islands chain, SEASAT data reveal that the bathymetry is poorly known, preventing fine analysis. Meanwhile,Te looks globally very low ( 6 km), except for three volcanoes but these results may be unreliable. The Easter chain features lowTe values ( 6 km), with no noticeable variation along the chain. Higher values are found for a Samoan island, Manuae (24 km), and along the Hawaiian-Emperor seamounts chain (from 32 km at the eastern end of the chain to 21.5 km for the Hawaiian volcanoes, and from 25.5 to 15 km for the Emperor seamounts). The large number ofTe estimates obtained in this study points out a noticeable difference between North and South Pacific results. Those from the North Pacific agree with the general trend (increase with the square root of age plate at loading time), while those from the South Central Pacific are much lower, according to their plate age. These lowTe results from the South Pacific are only partly explained by taking account of thermal perturbations using the rejuvenation model. Therefore, these results then point out a regional difference in oceanic lithosphere.  相似文献   

19.
Vegetation evapotranspiration (ET) induced soil water suction reduces hydraulic conductivity and increases shear strength of slopes. Several field studies have been conducted to investigate suction distribution in vegetated slopes. However, these studies were conducted on natural slopes, which are prone to heterogeneity in vegetation and soil conditions. Moreover, studies quantifying the effect of different vegetation species, root characteristics (root depth and root area index) and transpiration reduction function (Trf) on suction in slopes under natural variation are rare. This study investigated the suction distribution and root characteristics in recompacted slopes vegetated with two different species, i.e. Cynodon dactylon (Bermuda grass) and Schefflera heptaphylla (ivy tree). Bare slope served as a control. Suction distributions during different seasons and rainfall events were monitored. It is found that during the dry season, slope vegetated with young Schefflera heptaphylla seedlings have substantially higher suction within the root zone compared with bare slope and slope vegetated with Cynodon dactylon. This is because Schefflera heptaphylla has a higher root biomass, Trf and ET than Cynodon dactylon. It was also found that suctions within root zones of vegetated slopes and bare slope were completely destroyed under rainfall events corresponding to 2 years and 20 years return period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Gerard Govers  Jan Diels 《水文研究》2013,27(25):3777-3790
Experimental work has clearly shown that the effective hydraulic conductivity (Ke) or effective infiltration rate (fe) on the local scale of a plot cannot be considered as constant but are dependent on water depth and rainfall intensity because non‐random microtopography‐related variations in hydraulic conductivity occur. Rainfall–runoff models generally do not account for this: models assume that excess water is uniformly spread over the soil surface and within‐plot variations are neglected. In the present study, we propose a model that is based on the concepts of microtopography‐related water depth‐dependent infiltration and partial contributing area. Expressions for the plot scale Ke and fe were developed that depend on rainfall intensity and runon from upslope (and thus on water depth). To calibrate and validate the model, steady state infiltration experiments were conducted on maize fields on silt loam soils in Belgium, with different stages and combinations of rainfall intensity and inflow, simulating rainfall and runon. Water depth–discharge and depth–inundation relationships were established and used to estimate the effect of inundation on Ke. Although inflow‐only experiments were found to be unsuitable for calibration, the model was successfully calibrated and validated with the rainfall simulation data and combined rainfall–runon data (R²: 0.43–0.91). Calibrated and validated with steady state infiltration experiments, the model was combined with the Green–Ampt infiltration equation and can be applied within a two‐dimensional distributed rainfall–runoff model. The effect of water depth–dependency and rainfall intensity on infiltration was illustrated for a hillslope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号