首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B. W. Webb  Y. Zhang 《水文研究》2004,18(11):2117-2146
The nature of intra‐annual variability in the non‐advective heat fluxes affecting streams and rivers in Devon, UK was investigated through detailed monitoring of study reaches in an upland moorland catchment, below a regulating reservoir, and flowing through deciduous woodland and coniferous forest during the period May 1995 to April 1996. A clear pattern of seasonal variation was evident, whereby net radiation provided a heat source during the summer but a heat sink in the winter, as incoming short‐wave radiation declined and outgoing long‐wave radiation increased. Sensible transfer added heat to the study reaches in the summer but removed it during the winter, and bed conduction acted as a heat sink in the summer period but as a heat source in the winter months. Friction and evaporation added and removed heat, respectively, from the study reaches throughout the year, but the magnitude of these fluxes reflected seasonal variations in discharge and in wind speed. Water temperature generally followed the net non‐advective heat energy budget, which was positive in summer but negative in winter. Although a general pattern of seasonal variability in the non‐advective heat energy budget was evident, detailed differences in the nature and extent of intra‐annual variability were apparent between the study reaches and particularly between forested and non‐forested sites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
J. A. Leach  R. D. Moore 《水文研究》2010,24(17):2369-2381
Stream temperature and riparian microclimate were characterized for a 1·5 km wildfire‐disturbed reach of Fishtrap Creek, located north of Kamloops, British Columbia. A deterministic net radiation model was developed using hemispherical canopy images coupled with on‐site microclimate measurements. Modelled net radiation agreed reasonably with measured net radiation. Air temperature and humidity measured at two locations above the stream, separated by 900 m, were generally similar, whereas wind speed was poorly correlated between the two sites. Modelled net radiation varied considerably along the reach, and measurements at a single location did not provide a reliable estimate of the modelled reach average. During summer, net radiation dominated the surface heat exchanges, particularly because the sensible and latent heat fluxes were normally of opposite sign and thus tended to cancel each other. All surface heat fluxes shifted to negative values in autumn and were of similar magnitude through winter. In March, net radiation became positive, but heat gains were cancelled by sensible and latent heat fluxes, which remained negative. A modelling exercise using three canopy cover scenarios (current, simulated pre‐wildfire and simulated complete vegetation removal) showed that net radiation under the standing dead trees was double that modelled for the pre‐fire canopy cover. However, post‐disturbance standing dead trees reduce daytime net radiation reaching the stream surface by one‐third compared with complete vegetation removal. The results of this study have highlighted the need to account for reach‐scale spatial variability of energy exchange processes, especially net radiation, when modelling stream energy budgets. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Despite the known importance of water temperature for river ecosystems, the thermal regime of streams and rivers can be heavily modified by afforestation. Although the nature of the heat budget affecting streams in forested catchments shows high variability in space and time, most of the studies of stream temperature response to afforestation have lacked replication among streams. This study examined the impacts of coniferous forest plantations on stream water temperature at six sites (three forested and three open moorland) in the Yorkshire Dales, northern England. Our aim was to test the hypothesis that afforestation would alter the thermal regime of streams, leading to reduced year‐round thermal variability, and cooler summer/warmer winter water temperatures, relative to streams flowing across open moorland. Data collected from April 2007 to March 2009 showed similar thermal dynamics among all six streams over the study period, although variability in forested streams was markedly lower as expected. Mean and maximum daily water temperatures were significantly higher in open moorland streams for much of the year but while some forested streams were warmer than individual moorland streams during winter months (November to February), there was considerable overlap in water temperature between moorland and forest streams. Most stream temperature records showed evidence of low/no winter flow and freezing. These results contrast with many previous studies that have reported warmer temperatures in forested versus open moorland streams during winter, a finding that most likely reflects site‐specific hydrological, geomorphological and climatological influences on water temperature in addition to afforestation. This study demonstrates the need for replication of hydrological monitoring when examining the effects of basin‐scale management practices and provides further evidence for changes in stream thermal regime following afforestation, a practice that is likely to increase in future due to growing demands for increased forest cover in the UK uplands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
There have been few long term investigations of the effects of afforestation on stream temperatures in the UK, and the present study uses the results of continuous monitoring of water temperatures in a forest and a moorland stream of the Loch Grannoch area in southwest Scotland over a 4 year period to investigate the effects of planting coniferous forest on stream thermal regime. The presence of a coniferous tree canopy resulted in a lowering of mean water temperatures by ~0·5 °C but larger reductions in summer monthly mean maxima and diel ranges of up to 5 °C and 4 °C respectively. The diel cycle in the forested stream lagged behind that of the moorland site in all months of the year, but the delay in timing was greater for the peak than for the trough in the diel cycle. Mean water temperatures were higher in the forest stream during the mid‐winter months, reflecting higher minimum values. Contrasts in stream thermal regime between forest and moorland showed relatively little interannual variability over the study period. Continuous monitoring of air temperatures during 2002 revealed contrasts between the study sites that were less pronounced for air than for water temperature, and suggested it is the shading of incoming solar radiation that has a strong effect in determining the water temperature behaviour of the forested stream. Although the biological impact of the observed contrasts in stream temperature between land uses is likely to be relatively modest, the presence of forest cover moderates the occurrence of high summer temperatures inimical to the survival of some salmonid species. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
J.J. Dick  D. Tetzlaff  C. Soulsby 《水文研究》2015,29(14):3098-3111
We monitored temperatures in stream water, groundwater and riparian wetland surface water over 18 months in a 3.2‐km2 moorland catchment in the Scottish Highlands. The stream occupies a glaciated valley, aligned east–west. It has three main headwater tributaries with a large north facing catchment, a south facing catchment and the smallest east facing headwater. The lower catchment sampling locations begin after the convalescence of all three headwaters. Much of the stream network is fringed by riparian peatlands. Stream temperatures are mainly regulated by energy exchanges at the air–water interface. However, they are also influenced by inflows from the saturated riparian zone, where surface water source areas are strongly connected with the stream network. Consequently, the spatial distribution of stream temperatures exhibits limited variability. Nevertheless, there are significant summer differences between the headwaters, despite their close proximity to each other. This is consistent with aspect (and incident radiation), given the south and east facing headwaters having higher temperatures. The largest, north‐facing sub‐catchment shows lower summer diurnal temperature variability, suggesting that lower radiation inputs dampen temperature extremes. Whilst stream water temperature regimes in the lower catchment exhibit little change along a 1‐km reach, they are similar to those in the largest headwater; probably reflecting size and comparable catchment aspect and hydrological flow paths. Our results suggest that different parts of the channel network and its connected wetlands have contrasting sensitivity to higher summer temperatures. This may be important in land management strategies designed to mitigate the impacts of projected climatic warming. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We apply an integrated hydrology‐stream temperature modeling system, DHSVM‐RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt‐dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub‐basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Temperature observations at 25 sites in the 2000 km2 Dee catchment in NE Scotland were used, in conjunction with geographic information system (GIS) analysis, to identify dominant landscape controls on mean monthly maximum stream temperatures. Maximum winter stream temperatures are mainly controlled by elevation, catchment area and hill shading, whereas the maximum temperatures in summer are driven by more complex interactions, which include the influence of riparian forest cover and distance to coast. Multiple linear regression was used to estimate the catchment‐wide distribution of mean weekly maximum stream temperatures for the hottest week of the 2‐year observation period. The results suggested the streams most sensitive to high temperatures are small upland streams at exposed locations without any forest cover and relatively far inland, while lowland streams with riparian forest cover at locations closer to the coast exhibit a moderated thermal regime. Under current conditions, all streams provide a suitable thermal habitat for both, Atlantic salmon and brown trout. Using two climate change scenarios assuming 2·5 and 4 °C air temperature increases, respectively, temperature‐sensitive zones of the stream network were identified, which could potentially have an adverse effect on the thermal habitat of Atlantic salmon and brown trout. Analysis showed that the extension of riparian forests into headwater streams has the potential to moderate changes in temperature under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Evapotranspiration (ET) is a critical component in the hydrological cycle. However, its actual values appear to be difficult to obtain, especially in areas in which precipitation has high inter‐annual variability. Here, we evaluated eight commonly used ET models in semi‐arid and semi‐humid areas of China. The order of overall performance from best to worst is as follows: the revised Priestley–Taylor model (PT‐JPL, 0.71, 1.65 [18.37%], 4.72 [49.19%]) a a Statistics (model abbreviation, coefficient of determination, bias [relative value], standard deviation [relative value]).
, the modified PT‐JPL model (M1‐PT‐JPL, 0.67, ?0.68 [7.56%], 3.87 [40.31%]), the Community Land Model (CLM, 0.68, ?2.52 [28.01%], 5.10 [53.17%]), the modified PT‐JPL model (M2‐PT‐JPL, 0.63, 0.57 [6.27%], 5.04 [52.52%]), the revised Penman–Monteith model (RS‐PM, 0.62, 3.56 [37.40%], 6.11 [63.68%]), an empirical model (Wang, 0.59, ?1.04 [11.57%], 5.61 [58.43%]), the advection‐aridity model (AA, 0.55, 5.56 [61.78%], 7.45 [77.60%]), and the energy balance model (SEBS, 0.35, 5.11 [56.72%], 9.43 [98.18%]). The performance of all of the models is comparably poor in winter and summer, except for the PT‐JPL model, and relatively good in spring and autumn. Because of the vegetation control on ET, the Wang, RS‐PM, PT‐JPL, M1‐PT‐JPL, and M2‐PT‐JPL models perform better for cropland, whereas the AA model, SEBS model and CLM perform better for grassland. The CLM, PT‐JPL, and Wang models perform better in semi‐arid region than in semi‐humid region, whereas the opposite is true for SEBS and RS‐PM. The AA, M1‐PT‐JPL, and M2‐PT‐JPL models perform similarly in semi‐arid and semi‐humid regions. When considering the inter‐annual variability in precipitation, the Wang model has relatively good performance under only some annual precipitation conditions; the performance of the PT‐JPL and AA models is reduced under conditions of high precipitation; the two modified PT‐JPL models inherited the steady performance of the PT‐JPL model and improved the performance under conditions of high annual precipitation by the modification of the soil moisture constraint. RS‐PM is more appropriate for humid conditions. CLM and PT‐JPL models could be effectively applied to all precipitation conditions because of their good performance across a wide annual precipitation range. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
We investigated, through hydrologic modelling, the impact of the extent and density of canopy cover on streamflow timing and on the magnitude of peak and late summer flows in the upper Tuolumne basin (2600–4000 m) of the Sierra Nevada, California, under current and warmer temperatures. We used the Distributed Hydrology Soil Vegetation Model for the hydrologic modelling of the basin, assuming four vegetation scenarios: current forest (partial cover, 80% density), all forest (uniform coverage, 80% density), all barren (no forest) and thinned forest (partial cover, 40% density) for a medium‐high emissions scenario causing a 3.9 °C warming over a 100‐year period (2001–2100). Significant advances in streamflow timing, quantified as the centre of mass (COM) of over 1 month were projected for all vegetation scenarios. However, the COM advances faster with increased forest coverage. For example, when forest covered the entire area, the COM occurred on average 12 days earlier compared with the current forest coverage, with the rate of advance higher by about 0.06 days year?1 over 100 years and with peak and late summer flows lower by about 20% and 27%, respectively. Examination of modelled changes in energy balance components at forested and barren sites as temperatures rise indicated that increases in net longwave radiation are higher in the forest case and have a higher contribution to melting earlier in the calendar year when shortwave radiation is a smaller fraction of the energy budget. These increases contributed to increased midwinter melt under the forest at temperatures above freezing, causing decreases in total accumulation and higher winter and early spring melt rates. These results highlight the importance of carefully considering the combined impacts of changing forest cover and climate on downstream water supply and mountain ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The variation in snowmelt energy and energy components were evaluated with respect to forest density. Surface snowmelt rates, surface evaporation from snow cover and meteorological elements were measured in the open and under sparse (411 trees/ha) and dense (1433 trees/ha) larch canopies. The surface snowmelt rate decreased as the forest density increased. Based on the observations and energy balance analyses, we concluded the following. (1) Albedo decreased while the bulk coefficient for latent heat increased with forest density. (2) The duration of snowmelt increased with forest density because the energy for nocturnal cooling of the snow cover decreased. (3) When comparing the open and forested sites, the changes in snowmelt energy with forest density were caused by sensible heat flux. However, the contribution of net radiation was highest in the forested sites. Therefore, the effects of forest cover on the snowmelt energy were different when comparing both the open and forested sites and the sparse and densely forested sites. (4) The ratio of net radiation to snowmelt energy increased with forest density; although both snowmelt energy and net radiation decreased with increased forest density, the snowmelt energy decreased more rapidly. Sensible heat also decreased as forest density increased. Both albedo and downward long‐wave radiation influenced net radiation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
To evaluate the interactive effects of snow and forest on turbulent fluxes between the forest surface and the atmosphere, the surface energy balance above a forest was measured by the eddy correlation method during the winter of 1995–1996. The forest was a young coniferous plantation comprised of spruce and fir. The study site, in Sapporo, northern Japan, had heavy and frequent snowfalls and the canopy was frequently covered with snow during the study period. A comparison of the observed energy balance above the forest for periods with and without a snow‐covered canopy and an analysis using a single‐source model gave the following results: during daytime when the canopy was covered with snow, the upward latent heat flux was large, about 80% of the net radiation, and the sensible heat flux was positive but small. On the other hand, during daytime when the canopy was dry and free from snow, the sensible heat flux was dominant and the latent heat flux was minor, about 10% of the net radiation. To explain this difference of energy partition between snow‐covered and snow‐free conditions, not only differences in temperature but also differences in the bulk transfer coefficients for latent heat flux were necessary in the model. Therefore, the high evaporation rate from the snow‐covered canopy can be attributed largely to the high moisture availability of the canopy surface. Evaporation from the forest during a 60‐day period in midwinter was estimated on a daily basis as net radiation minus sensible heat flux. The overall average evaporation during the 60‐day period was 0·6 mm day−1, which is larger than that from open snow fields. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
The potential for increased loads of dissolved organic carbon (DOC) in streams and rivers is a concern for regulating the water quality in water supply watersheds. With increasing hydroclimatic variability related to global warming and shifts in forest ecosystem community and structure, understanding and predicting the magnitude and variability of watershed supply and transport of DOC over multiple time scales have become important research and management goals. In this study, we use a distributed process‐based ecohydrological model (Regional Hydro‐Ecological Simulation System [RHESSys]) to explore controls and predict streamflow DOC loads in Biscuit Brook. Biscuit Brook is a forested headwater catchment of the Neversink Reservoir, part of the New York City water supply system in the Catskill Mountains. Three different model structures of RHESSys were proposed to explore and evaluate hypotheses addressing how vegetation phenology and hydrologic connectivity between deep groundwater and riparian zones influence streamflow and DOC loads. Model results showed that incorporating dynamic phenology improved model agreement with measured streamflow in spring, summer, and fall and fall DOC concentration, compared with a static phenology. Additionally, the connectivity of deep groundwater flux through riparian zones with dynamic phenology improved streamflow and DOC flux in low flow conditions. Therefore, this study suggests the importance of inter‐annual vegetation phenology and the connectivity of deep groundwater drainage through riparian zones in the hydrology and stream DOC loading in this forested watershed and the ability of process‐based ecohydrological models to simulate these dynamics. The advantage of a process‐based modelling approach is specifically seen in the sensitivity to forest ecosystem dynamics and the interactions of hydroclimate variability with ecosystem processes controlling the supply and distribution of DOC. These models will be useful to evaluate different forest management approaches toward mitigating water quality concerns.  相似文献   

13.
Air temperature can be an effective predictor of stream temperature. However, little work has been done in studying urban impacts on air‐stream relationships in groundwater‐fed headwater streams in mountainous watersheds. We applied wavelet coherence analysis to two 13‐month continuous (1 hr interval) stream and air temperature datasets collected at Boone Creek, an urban stream, and Winkler Creek, a forest stream, in northwestern North Carolina. The main advantage of a wavelet coherence analysis approach is the ability to analyse non‐stationary dynamics for the temporal covariance between air and stream temperature over time and at multiple temporal scales (e.g. hours, days, weeks and months). The coherence is both time and scale‐dependent. Our research indicated that air temperature generally co‐varied with stream temperature at time scales greater than 0.5 day. The correlation was poor during the winter at the scales of 1 to 64 days and summer at the scales of 1.5 to 4 days, respectively. The empirical models that relate air temperature to stream temperature failed at these scales and during these periods. Finally, urbanization altered the air‐stream temperature correlation at intermediate time scales ranging from 2 to 12 days. The correlation at the urban creek increased at the 12‐day scale, whereas it decreased at scales of 2 to 7 days as compared with the forested stream, which is probably due to heated surface runoff during summer thunderstorms or leaking stormwater or wastewater collection systems. Our results provide insights into air‐stream temperature relationships over both time and scale domains. Identifying controls over time and scales are needed to predict water temperature to understand the future impacts that interacting climate and land use changes will have on aquatic ecosystem in river networks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This study was motivated by an interest in understanding the potential effects of climate change and glacier retreat on late summer water temperatures in alpine areas. Fieldwork was carried out between July and September 2007 at Place Lake, located below Place Glacier in the southern Coast Mountains of British Columbia. Place Lake has an area of 72 000 m2, a single inlet and outlet channel, and an approximate residence time of 4 days. Warming between the inlet and outlet of the lake ranged up to 3 °C and averaged 1.8 °C, which exceeds the amount of warming that occurred over the 1 km reach of Place Creek between the lake outlet and tree line. Over a 23‐day period, net radiation totalled about 210 MJ·m–2, with sensible heat flux adding another 56 MJ m‐2. The latent heat flux consumed about 8% of the surface heat input. The dominant heat sink was the net horizontal advection associated with lake inflow and outflow. Early in the study period, temperatures between the surface and 6‐m depth were dominantly at or above 4 °C and were generally neutral to thermally stable, whereas temperatures decreased with depth below 6 m and exhibited irregular sub‐diurnal variations. The maximum outflow temperature of almost 7 °C occurred in this period. We hypothesize that turbidity currents associated with cold, sediment‐laden glacier discharge formed an underflow and influenced temperatures in the deeper portion of the lake but did not mix with the upper layers. Later in the study period, the lake was dominantly well mixed with some near‐surface stability associated with nocturnal cooling. Further research is required to examine the combined effects of sediment concentrations and thermal processes on mixing in small proglacial lakes to make projections of the consequences of glacier retreat on alpine lake and stream temperatures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
River water temperature is an important water quality parameter that also influences most aquatic life. Physical processes influencing water temperature in rivers are highly complex. This is especially true for the estimation of river heat exchange processes that are highly dependent on good estimates of radiation fluxes. Furthermore, very few studies were found within the stream temperature dynamic literature where the different radiation components have been measured and compared at the stream level (at microclimate conditions). Therefore, this study presents results on hydrometeorological conditions for a small tributary within Catamaran Brook (part of the Miramichi River system, New Brunswick, Canada) with the following specific objectives: (1) to compare between stream microclimate and remote meteorological conditions, (2) to compare measured long‐wave radiation data with those calculated from an analytical model, and (3), to calculate the corresponding river heat fluxes. The most salient findings of this study are (1) solar radiation and wind speed are parameters that are highly site specific within the river environment and play an important role in the estimation of river heat fluxes; (2) the incoming, outgoing, and net long‐wave radiation within the stream environment (under the forest canopy) can be effectively calculated using empirical formula; (3) at the study site more than 80% of the incoming long‐wave radiation was coming from the forest; (4) total energy gains were dominated by solar radiation flux (for all the study periods) followed by the net long‐wave radiation (during some periods) whereas energy losses were coming from both the net long‐wave radiation and evaporation. Conductive heat fluxes have a minor contribution from the overall heat budget (<3·5%); (5) the reflected short‐wave radiation at the water surface was calculated on average as 3·2%, which is consistent with literature values. Results of this study contribute towards a better understanding of river heat fluxes and water temperature models as well as for more effective aquatic resources and fisheries management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Stream bank erosion rates measured over a two-year period on a moorland and a forested stream in the Institute of Hydrology's Balquhidder Paired Catchments in central Scotland were compared. Bank erosion rates are generally higher on the mainstream of the moorland catchment and highest in wintger on both streams. Bank erosion is correlated with the incidence of frost: minimum temperatures measured on stream banks of the forested stream were an average of 3·7°C higher than on stream banks both outside the forest and on the moorland stream. This makes the incidence of frost on forested stream banks half as frequent. Volumes of material eroded from the mainstreams were combined with bulk density measurements and it is estimated that erosion of the mainstream banks is contributing 1·5 and 7·3 per cent of the sediment yield of the forested and moorland catchments, respectively. Analysis of the vertical distribution of erosion on the banks of both streams suggests an undercutting mechanism which is more pronounced in the moorland stream. The influence of trees on bank erosion and possible implications for the management of forest streams are discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
Measurements from a fixed‐bed, Froude‐scaled hydraulic model of a stream in northeastern Vermont demonstrate the importance of forested riparian vegetation effects on near‐bank turbulence during overbank flows. Sections of the prototype stream, a tributary to Sleepers River, have increased in channel width within the last 40 years in response to passive reforestation of its riparian zone. Previous research found that reaches of small streams with forested riparian zones are commonly wider than adjacent reaches with non‐forested, or grassy, vegetation; however, driving mechanisms for this morphologic difference are not fully explained. Flume experiments were performed with a 1:5 scale, simplified model of half a channel and its floodplain, mimicking the typical non‐forested channel size. Two types of riparian vegetation were placed on the constructed floodplain: non‐forested, with synthetic grass carpeting; and forested, where rigid, randomly distributed, wooden dowels were added. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 41 locations within the channel and floodplain at near‐bed and 0·6‐depth elevations. Observations of velocity components and calculations of turbulent kinetic energy (TKE), Reynolds shear stress and boundary shear stress showed significant differences between forested and non‐forested runs. Generally, forested runs exhibited a narrow band of high turbulence between the floodplain and main channel, where TKE was roughly two times greater than TKE in non‐forested runs. Compared to non‐forested runs, the hydraulic characteristics of forested runs appear to create an environment with higher erosion potential. Given that sediment entrainment and transport can be amplified in flows with high turbulence intensity and given that mature forested stream reaches are wider than comparable non‐forested reaches, our results demonstrated a possible driving mechanism for channel widening during overbank flow events in stream reaches with recently reforested riparian zones. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The importance of riparian tree cover in reducing energy inputs to streams is increasingly recognized in schemes to mitigate climate change effects and protect freshwater ecosystems. Assessing different riparian management strategies requires catchment‐scale understanding of how different planting scenarios would affect the stream energy balance, coupled with a quantitative assessment of spatial patterns of streamflow generation. Here, we use the physically based MIKE SHE model to integrate simulations of catchment‐scale run‐off generation and in‐stream hydraulics with a heat transfer model. This was calibrated to model the spatio‐temporal distribution of hourly stream water temperature during warm low flow periods in a Scottish salmon stream. The model was explored as a “proof of concept” for a tool to investigate the effects of riparian management on high stream water temperatures that could affect juvenile Atlantic salmon. Uncertainty was incorporated into the assessment using the generalized likelihood uncertainty estimation approach. Results showed that by decreasing both the warming (daylight hours) and the cooling (night‐time hours) rates, forest cover leads to a reduction of the temperature range (with a delay of the time to peak by up to 2 hr) and can therefore be effectively used to moderate projected climate change effects. The modelling presented here facilitated the quantification of potential mitigating effects of alternative riparian management strategies and provided a valuable tool that has potential to be utilized as an evidence base for catchment management guidance.  相似文献   

19.
Stream temperature was recorded between 2002 and 2005 at four sites in a coastal headwater catchment in British Columbia, Canada. Shallow groundwater temperatures, along with bed temperature profiles at depths of 1 to 30 cm, were recorded at 10‐min intervals in two hydrologically distinct reaches beginning in 2003 or 2004, depending on the site. The lower reach had smaller discharge contributions via lateral inflow from the hillslopes and fewer areas with upwelling (UW) and/or neutral flow across the stream bed compared to the middle reach. Bed temperatures were greater than those of shallow groundwater during summer, with higher temperatures in areas of downwelling (DW) flow compared to areas of neutral and UW flow. A paired‐catchment analysis revealed that partial‐retention forest harvesting in autumn 2004 resulted in higher daily maximum stream and bed temperatures but smaller changes in daily minima. Changes in daily maximum stream temperature, averaged over July and August of the post‐harvest year, ranged from 1.6 to 3 °C at different locations within the cut block. Post‐harvest changes in bed temperature in the lower reach were smaller than the changes in stream temperature, greater at sites with DW flow, and decreased with depth at both UW and DW sites, dropping to about 1 °C at a depth of 30 cm. In the middle reach, changes in daily maximum bed temperature, averaged over July and August, were generally about 1 °C and did not vary significantly with depth. The pre‐harvest regression models for shallow groundwater were not suitable for applying the paired‐catchment analysis to estimate the effects of harvesting. However, shallow groundwater was warmer at the lower reach following harvesting, despite generally cooler weather compared to the pre‐harvest year. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Direct measurements of winter water loss due to sublimation were made in a sub‐alpine forest in the Rocky Mountains of Colorado. Above‐and below‐canopy eddy covariance systems indicated substantial losses of winter‐season snow accumulation in the form of snowpack (0·41 mm d?1) and intercepted snow (0·71 mm d?1) sublimation. The partitioning between these over and under story components of water loss was highly dependent on atmospheric conditions and near‐surface conditions at and below the snow/atmosphere interface. High above‐canopy sensible heat fluxes lead to strong temperature gradients between vegetation and the snow‐surface, driving substantial specific humidity gradients at the snow surface and high sublimation rates. Intercepted snowfall resulted in rapid response of above‐canopy latent heat fluxes, high within‐canopy sublimation rates (maximum = 3·7 mm d?1), and diminished sub‐canopy snowpack sublimation. These results indicate that sublimation losses from the sub‐canopy snowpack are strongly dependent on the partitioning of sensible and latent heat fluxes in the canopy. This compels comprehensive studies of snow sublimation in forested regions that integrate sub‐canopy and over‐story processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号