首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The northern mid‐high latitudes form a region that is sensitive to climate change, and many areas already have seen – or are projected to see – marked changes in hydroclimatic drivers on catchment hydrological function. In this paper, we use tracer‐aided conceptual runoff models to investigate such impacts in a mesoscale (749 km2) catchment in northern Scotland. The catchment encompasses both sub‐arctic montane sub‐catchments with high precipitation and significant snow influence and drier, warmer lowland sub‐catchments. We used downscaled HadCM3 General Circulation Model outputs through the UKCP09 stochastic weather generator to project the future climate. This was based on synthetic precipitation and temperature time series generated from three climate change scenarios under low, medium and high greenhouse gas emissions. Within an uncertainty framework, we examined the impact of climate change at the monthly, seasonal and annual scales and projected impacts on flow regimes in upland and lowland sub‐catchments using hydrological models with appropriate process conceptualization for each landscape unit. The results reveal landscape‐specific sensitivity to climate change. In the uplands, higher temperatures result in diminishing snow influence which increases winter flows, with a concomitant decline in spring flows as melt reduces. In the lowlands, increases in air temperatures and re‐distribution of precipitation towards autumn and winter lead to strongly reduced summer flows despite increasing annual precipitation. The integration at the catchment outlet moderates these seasonal extremes expected in the headwaters. This highlights the intimate connection between hydrological dynamics and catchment characteristics which reflect landscape evolution. It also indicates that spatial variability of changes in climatic forcing combined with differential landscape sensitivity in large heterogeneous catchments can lead to higher resilience of the integrated runoff response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Many studies have analysed the nonstationarity in single hydrological variables due to changing environments. Yet, few researches have been done to investigate how the dependence structure between different individual hydrological variables is affected by changing environments. To investigate how the reservoirs have altered the dependence structure between river flows at different locations on the Hanjiang River, a time‐varying copula model, which takes the nonstationarity in the marginal distribution and/or the time variation in dependence structure between different hydrological series into consideration, is presented in this paper to perform a bivariate frequency analysis for the low‐flow series from two neighbouring hydrological gauges. The time‐varying moments model with either time or reservoir index as explanatory variables is applied to build the time‐varying marginal distributions of the two low‐flow series. It's found that both marginal distributions are nonstationary, and the reservoir index yields better performance than the time index in describing the nonstationarities in the marginal distributions. Then, the copula with the dependence parameter expressed as a function of either time or reservoir index is applied to model the variable dependence between the two low‐flow series. The copula with reservoir index as the explanatory variable of the dependence parameter has a better fitting performance than the copula with the constant or the time‐trend dependence parameter. Finally, the effect of the time variation in the joint distribution on three different types of joint return periods (i.e. AND, OR and Kendall) of low flows at two neighbouring hydrological gauges is presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
H.S. Kim  S. Lee 《水文研究》2014,28(4):2159-2173
The hydrological response characteristics for the catchments in the Republic of Korea are related to a strong seasonality in the rainfall and streamflow distributions with distinct wet and dry seasons. This study aims to improve a model's ability to predict streamflows by minimizing information loss from the available data during the calibration processes. This study assesses calibration techniques incorporating a multi‐objective approach and seasonal calibration. The lumped conceptual rainfall–runoff model IHACRES was applied to selected catchments in Korea. The model was calibrated based on three different methods: the classical approach using a single performance statistic (the single‐objective method), the multi‐objective approach (the multi‐objective method (I)) and the combined approach incorporating multi‐objective and seasonal calibrations (the multi‐objective method (II)). In the multi‐objective approach, the ‘best fit’ models in the calibration period were selected by considering the trade‐offs among multiple statistics. During seasonal calibration, the calibration period was divided into four seasons to investigate whether these calibrated models can improve the model performance with regards to seasonal climate, rainfall and streamflow distributions. The adequacy of the three different calibration methods was assessed through comparison of the variability of model performance in high and low flows and water balance for the entire period and for each seasonal period. The multi‐objective methods yielded more accurate and consistent predictions for high and low flows and water balance simultaneously, compared to the single‐objective method. In particular, the multi‐objective method (II) produces the best modelling capacity to capture the non‐stationary nature of the hydrological response under different climate conditions. The pattern of improvement with the multi‐objective method (II) was generally consistent through the seasons, with the exception of the winter period in the regions partially affected by snow. This exception is due to a potential limitation of the IHACRES model in reflecting the impact of snow on the catchment hydrology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Bias correction methods are usually applied to climate model outputs before using these outputs for hydrological climate change impact studies. However, the use of a bias correction procedure is debatable, due to the lack of physical basis and the bias nonstationarity of climate model outputs between future and historical periods. The direct use of climate model outputs for impact studies has therefore been recommended in a few studies. This study investigates the possibility of using reanalysis‐driven regional climate model (RCM) outputs directly for hydrological modelling by comparing the performance of bias‐corrected and nonbias‐corrected climate simulations in hydrological simulations over 246 watersheds in the Province of Québec, Canada. When using RCM outputs directly, the hydrological model is specifically calibrated using RCM simulations. Two evaluation metrics (Nash–Sutcliffe efficiency [NSE] and transformed root mean square error [TRMSE]) and three hydrological indicators (mean, high, and low flows) are used as criteria for this comparison. Two reanalysis‐driven RCMs with resolutions of 45 km and 15 km are used to investigate the scale effect of climate model simulations and bias correction approaches on hydrology modelling. The results show that nonbias‐corrected simulations perform better than bias‐corrected simulations for the reproduction of the observed streamflows when using NSE and TRMSE as criteria. The nonbias‐corrected simulations are also better than or comparable with the bias‐corrected simulations in terms of reproducing the three hydrological indicators. These results imply that the raw RCM outputs driven by reanalysis can be used directly for hydrological modelling with a specific calibration of hydrological models using these datasets when gauged observations are scarce or unavailable. The nonbias‐corrected simulations (at a minimum) should be provided to end users, along with the bias‐corrected ones, especially for studying the uncertainty of hydrological climate change impacts. This is especially true when using an RCM with a high resolution, since the scale effect is observed when the RCM resolution increases from a 45‐km to a 15‐km scale.  相似文献   

5.
With the recent development of distributed hydrological models, the use of multi‐site observed data to evaluate model performance is becoming more common. Distributed hydrological model have many advantages, and at the same time, it also faces the challenge to calibrate over‐do parameters. As a typical distributed hydrological model, problems also exist in Soil and Water Assessment Tool (SWAT) parameter calibration. In the paper, four different uncertainty approaches – Particle Swarm Optimization (PSO) techniques, Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting algorithm (SUFI‐2) and Parameter Solution (PARASOL) – are taken to a comparative study with the SWAT model applied in Peace River Basin, central Florida. In our study, the observed river discharge data used in SWAT model calibration were collected from the three gauging stations at the main tributary of the Peace River. Behind these approaches, there is a shared philosophy; all methods seek out many parameter set to fit the uncertainties due to the non‐uniqueness in model parameter evaluation. On the basis of the statistical results of four uncertainty methods, difficulty level of each method, the number of runs and theoretical basis, the reasons that affected the accuracy of simulation were analysed and compared. Furthermore, for the four uncertainty method with SWAT model in the study area, the pairwise correlation between parameters and the distributions of model fit summary statistics computed from the sampling over the behavioural parameter and the entire model calibration parameter feasible spaces were identified and examined. It provided additional insight into the relative identifiability of the four uncertainty methods Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The current generation of hydrological models has been widely criticized for their inability to adequately simulate hydrological processes. In this study, we evaluate competing model representations of hydrological processes with respect to their capability to simulate observed processes in the Mahurangi River basin in Northland, New Zealand. In the first part of this two‐part series, the precipitation, soil moisture, and flow data in the Mahurangi were used to estimate the dominant hydrological processes and explore several options for their suitable mathematical representation. In this paper, diagnostic tests are applied to gain several insights for model selection. The analysis highlights dominant hydrological processes (e.g. the importance of vertical drainage and baseflow compared to sub‐surface stormflow), provides guidance for the choice of modelling approaches (e.g. implicitly representing sub‐grid heterogeneity in soils), and helps infer appropriate values for model parameters. The approach used in this paper demonstrates the benefits of flexible model structures in the context of hypothesis testing, in particular, supporting a more systematic exploration of current ambiguities in hydrological process representation. The challenge for the hydrological community is to make better use of the available data, not only to estimate parameter values but also to diagnostically identify more scientifically defensible model structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the Tunga–Bhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC‐HMS 3.4) is used for the hydrological modelling of the study area. Linear‐regression‐based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub‐basins of the study area. The large‐scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 2011–2040, 2041–2070, and 2071–2099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub‐basins in the study area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The level of complexity, and the number of parameters, to include in a hydrological model is a relatively contentious issue in hydrological modelling. However, it can be argued that explicitly representing important run‐off generation processes can improve the practical value of a model's outputs. This paper explores the benefits of including a new function into an existing semi‐distributed hydrological model (the Pitman model) that is widely used in the sub‐Saharan Africa region. The new function was designed to represent saturation‐excess surface run‐off processes at subcatchment scales and was motivated by the evidence of dambo (low topography riparian areas) type features in many sub‐Saharan river basins. The results for uncertainty versions of the model, with and without the new function, were compared for 25 catchments, which were divided up into those where evidence of dambos exists and those where there is no such evidence. The results suggest that the new function certainly improves the model results for the catchments where dambos exist, but not in situations where saturation‐excess surface run‐off is not expected to occur. The overall conclusion is therefore that the addition of the new function is justified.  相似文献   

9.
Soil moisture plays a key role in the hydrological cycle as it controls the flux of water between soil, vegetation, and atmosphere. This study is focused on a year‐round estimation of soil moisture in a forested mountain area using the bucket model approach. For this purpose, three different soil moisture models are utilised. The procedure is based on splitting the whole year into two complement periods (dormant and vegetation). Model parameters are allowed to vary between the two periods and also from year to year in the calibration procedure. Consequently, two sets of average model parameters corresponding to dormant and vegetation seasons are proposed. The process of splitting is strongly supported by the experimental data, and it enables us to variate saturated hydraulic conductivity and pore‐size characterisation. The use of the two different parameter sets significantly enhances the simulation of two (Teuling and Troch model and soil water balance model‐green–ampt [SWBM‐GA]) out of three models in the 6‐year period from 2009 to 2014. For these two models, the overall Nash‐Sutcliffe coefficient increased from 0.64 to 0.79 and from 0.55 to 0.80. The third model (the Laio approach) proved to be insensitive to parameter changes due to its insufficient drainage prediction. The variability of the warm and cold parameter sets between particular years is more pronounced in the warm periods. The cold periods exhibited approximately similar character during all 6 years.  相似文献   

10.
Hydrologic models are useful to understand the effects of climate and land‐use changes on dry‐season flows. In practice, there is often a trade‐off between simplicity and accuracy, especially when resources for catchment management are scarce. Here, we evaluated the performance of a monthly rainfall–runoff model (dynamic water balance model, DWBM) for dry‐season flow prediction under climate and land‐use change. Using different methods with decreasing amounts of catchment information to set the four model parameters, we predicted dry‐season flow for 89 Australian catchments and verified model performance with an independent dataset of 641 catchments in the United States. For the Australian catchments, model performance without catchment information (other than climate forcing) was fair; it increased significantly as the information to infer the four model parameters increased. Regressions to infer model parameters from catchment characteristics did not hold for catchments in the United States, meaning that a new calibration effort was needed to increase model performance there. Recognizing the interest in relative change for practical applications, we also examined how DWBM could be used to simulate a change in dry‐season flow following land‐use change. We compared results with and without calibration data and showed that predictions of changes in dry‐season flow were robust with respect to uncertainty in model parameters. Our analyses confirm that climate is a strong driver of dry‐season flow and that parsimonious models such as DWBM have useful management applications: predicting seasonal flow under various climate forcings when calibration data are available and providing estimates of the relative effect of land use on seasonal flow for ungauged catchments.  相似文献   

11.
Abstract

Hydrological models are often used for studying the hydrological effects of climate change; however, the stability of model performance and parameter values under changing climate conditions has seldom been evaluated and compared. In this study, three widely-used rainfall–runoff models, namely the SimHYD model, the HBV model and the Xin’anjiang model, are evaluated on two catchments subject to changing climate conditions. Evaluation is carried out with respect to the stability in their performance and parameter values in different calibration periods. The results show that (a) stability of model performance and parameter values depends on model structure as well as the climate of catchments, and the models with higher performance scores are more stable in changing conditions; (b) all the tested models perform better on a humid catchment than on an arid catchment; (c) parameter values are also more stable on a humid catchment than on an arid catchment; and (d) the differences in stability among models are somewhat larger in terms of model efficiency than in model parameter values.  相似文献   

12.
There are many traditional methods to find the optimum parameters of a tuned mass damper (TMD) subject to stationary base excitations. It is very difficult to obtain the optimum parameters of a TMD subject to non‐stationary base excitations using these traditional optimization techniques. In this paper, by applying particle swarm optimization (PSO) algorithm as a novel evolutionary algorithm, the optimum parameters including the optimum mass ratio, damper damping and tuning frequency of the TMD system attached to a viscously damped single‐degree‐of‐freedom main system subject to non‐stationary excitation can be obtained when taking either the displacement or the acceleration mean square response, as well as their combination, as the cost function. For simplicity of presentation, the non‐stationary excitation is modeled by an evolutionary stationary process in the paper. By means of three numerical examples for different types of non‐stationary ground acceleration models, the results indicate that PSO can be used to find the optimum mass ratio, damper damping and tuning frequency of the non‐stationary TMD system, and it is quite easy to be programmed for practical engineering applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This study was designed to develop a physically based hydrological model to describe the hydrological processes within forested mountainous river basins. The model describes the relationships between hydrological fluxes and catchment characteristics that are influenced by topography and land cover. Hydrological processes representative of temperate basins in steep terrain that are incorporated in the model include intercepted rainfall, evaporation, transpiration, infiltration into macropores, partitioning between preferential flow and soil matrix flow, percolation, capillary rise, surface flow (saturation‐excess and return flow), subsurface flow (preferential subsurface flow and baseflow) and spatial water‐table dynamics. The soil–vegetation–atmosphere transfer scheme used was the single‐layer Penman–Monteith model, although a two‐layer model was also provided. The catchment characteristics include topography (elevation, topographic indices), slope and contributing area, where a digital elevation model provided flow direction on the steepest gradient flow path. The hydrological fluxes and catchment characteristics are modelled based on the variable source‐area concept, which defines the dynamics of the watershed response. Flow generated on land for each sub‐basin is routed to the river channel by a kinematic wave model. In the river channel, the combined flows from sub‐basins are routed by the Muskingum–Cunge model to the river outlet; these comprise inputs to the river downstream. The model was applied to the Hikimi river basin in Japan. Spatial decadal values of the normalized difference vegetation index and leaf area index were used for the yearly simulations. Results were satisfactory, as indicated by model efficiency criteria, and analysis showed that the rainfall input is not representative of the orographic lifting induced rainfall in the mountainous Hikimi river basin. Also, a simple representation of the effects of preferential flow within the soil matrix flow has a slight significance for soil moisture status, but is insignificant for river flow estimations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Better parameterization of a hydrological model can lead to improved streamflow prediction. This is particularly important for seasonal streamflow forecasting with the use of hydrological modelling. Considering the possible effects of hydrologic non‐stationarity, this paper examined ten parameterization schemes at 12 catchments located in three different climatic zones in east Australia. These schemes are grouped into four categories according to the period when the data are used for model calibration, i.e. calibration using data: (1) from a fixed period in the historical records; (2) from different lengths of historical records prior to prediction year; (3) from different climatic analogue years in the past; and (4) data from the individual months. Parameterization schemes were evaluated according to model efficiency in both the calibration and verification period. The results show that the calibration skill changes with the different historic periods when data are used at all catchments. Comparison of model performance between the calibration schemes indicates that it is worth calibrating the model with the use of data from each individual month for the purpose of seasonal streamflow forecasting. For the catchments in the winter‐dominant rainfall region of south‐east Australia, a more significant shift in rainfall‐runoff relationships at different periods was found. For those catchments, model calibration with the use of 20 years of data prior to the prediction year leads to a more consistent performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Vahid Nourani  Akira Mano 《水文研究》2007,21(23):3173-3180
Rainfall–runoff modelling, as a surface hydrological process, on large‐scale data‐poor basins is currently a major topic of investigation that requires the model parameters be identified by using basin physical characteristics rather than calibration. This paper describes the application of the TOPMODEL framework accompanied by a kinematic wave model to the Karun River sub‐basins in southwestern Iran with just one conceptual parameter for calibration. ISLSCP1, HYDRO1K and Reynolds data sets are presented in a geographical information system and used as data sources for meteorological information, hydrological features and soil characteristics of the study area respectively. The results show that although the model developed can adequately predict flood runoff in the catchment with only one calibrated parameter, it is suggested that the effect of surface reservoirs be considered in the proposed model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Testing hydrological models over different spatio‐temporal scales is important for both evaluating diagnostics and aiding process understanding. High‐frequency (6‐hr) stable isotope sampling of rainfall and runoff was undertaken during 3‐week periods in summer and winter within 12 months of daily sampling in a 3.2‐km2 catchment in the Scottish Highlands. This was used to calibrate and test a tracer‐aided model to assess the (a) information content of high‐resolution data, (b) effect of different calibration strategies on simulations and inferred processes, and (c) model transferability to <1‐km2 subcatchment. The 6‐hourly data were successfully incorporated without loss of model performance, improving the temporal resolution of the modelling, and making it more relevant to the time dynamics of the isotope and hydrometric response. However, this added little new information due to old‐water dominance and riparian mixing in this peatland catchment. Time variant results, from differential split sample testing, highlighted the importance of calibrating to a wide range of hydrological conditions. This also provided insights into the nonstationarity of catchment mixing processes, in relation to storage and water ages, which varied markedly depending on the calibration period. Application to the nested subcatchment produced equivalent parameterization and performance, highlighting similarity in dominant processes. The study highlighted the utility of high‐resolution data in combination with tracer‐aided models, applied at multiple spatial scales, as learning tools to enhance process understanding and evaluation of model behaviour across nonstationary conditions. This helps reveal more fully the catchment response in terms of the different mechanistic controls on both wave celerites and particle velocities.  相似文献   

17.
Uncertainty in discharge data must be critically assessed before data can be used in, e.g. water resources estimation or hydrological modelling. In the alluvial Choluteca River in Honduras, the river‐bed characteristics change over time as fill, scour and other processes occur in the channel, leading to a non‐stationary stage‐discharge relationship and difficulties in deriving consistent rating curves. Few studies have investigated the uncertainties related to non‐stationarity in the stage‐discharge relationship. We calculated discharge and the associated uncertainty with a weighted fuzzy regression of rating curves applied within a moving time window, based on estimated uncertainties in the observed rating data. An 18‐year‐long dataset with unusually frequent ratings (1268 in total) was the basis of this study. A large temporal variability in the stage‐discharge relationship was found especially for low flows. The time‐variable rating curve resulted in discharge estimate differences of ? 60 to + 90% for low flows and ± 20% for medium to high flows when compared to a constant rating curve. The final estimated uncertainty in discharge was substantial and the uncertainty limits varied between ? 43 to + 73% of the best discharge estimate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The change of annual stream flow in the Shiyang river basin, a typical arid‐inland basin in north‐west China, was investigated using hydrological, meteorological and water‐related human activities' data of the past 50 years. The long‐term trends of the hydrological time series were examined by non‐parametric techniques, including the Pettitt and Mann–Kendall tests. Double cumulative curves and multi‐regression methods were used to separate and quantify the effects of climate changes and human activities on the stream flows. The results show that the study area has been experiencing a significant upward warming trend since 1986 and precipitation shows a decreasing trend in the mountainous region but an increasing trend in the plains region. All stream flows in the upper reach and lower reaches of the Shiyang river exhibit decreasing tendencies. Since 1970, human activities, such as irrigation, have had a significant effect on the upstream flow, and account for 60% of total flow decreases in the 1970s. However, climate changes are the main reason for the observed flow decreases in the 1980s and 1990s, with contributions to total flow decrease of 68% and 63%, respectively. Before 1975, flow decreases in the upper reaches were the main factor causing reduced flows in the lower reaches of the Shiyang river. After 1975, the effect of human activities became more pronounced, with contributions of 63%, 68% and 56% to total flow decreases in the lower reaches of the Shiyang river in the periods 1975 to 1980, 1980s and 1990s, respectively. As a result, climate change is responsible for a large proportion of the flow decreases in the upstream section of the catchment during the 1980s and 1990s, while human activities have caused flow decreases downstream during the same period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

Climate models and hydrological parameter uncertainties were quantified and compared while assessing climate change impacts on monthly runoff and daily flow duration curve (FDC) in a Mediterranean catchment. Simulations of the Soil and Water Assessment Tool (SWAT) model using an ensemble of behavioural parameter sets derived from the Generalized Likelihood Uncertainty Estimation (GLUE) method were approximated by feed-forward artificial neural networks (FF-NN). Then, outputs of climate models were used as inputs to the FF-NN models. Subsequently, projected changes in runoff and FDC were calculated and their associated uncertainty was partitioned into climate model and hydrological parameter uncertainties. Runoff and daily discharge of the Chiba catchment were expected to decrease in response to drier and warmer climatic conditions in the 2050s. For both hydrological indicators, uncertainty magnitude increased when moving from dry to wet periods. The decomposition of uncertainty demonstrated that climate model uncertainty dominated hydrological parameter uncertainty in wet periods, whereas in dry periods hydrological parametric uncertainty became more important.
Editor M.C. Acreman; Associate editor S. Kanae  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号