首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight small steep south-west facing catchments (1-63-8-26 ha) have been monitored in Westland, New Zealand since 1974. Two catchments were retained in native mixed evergreen forest and the rest were subjected to various harvesting and land preparation techniques before being planted with Pinus radiata between 1977 and 1980. Stream temperatures were measured in all catchments for 11 years, including up to four years before harvesting. The streamwater temperature regime under the native forest cover has a seasonal cycle, with an annual mean of about 9°C and mean daily temperatures ranging between a winter minimum of about 5.8°C and a summer maximum of 12.S°C. After harvesting, the winter minimum stream temperatures in all trials were unchanged as topography exerts the major control over incoming solar radiation. The largest rises in mean summer stream temperatures, up to 5.5°C, were in the catchments that had been clearcut and burnt before planting. The maximum stream temperature recorded was 22.8°C in a clearcut catchment with no riparian reserve. Summer stream temperatures in this catchment were up to 11°C higher than in an adjacent control catchment. Summer stream temperature rises in catchments with riparian reserves were less than 1.5°C. Seven years after harvesting, stream temperatures were dropping towards pre-treatments levels in only two of the six treated catchments as revegetation of the riparian areas occurred and the plantations became established. As these small headwater streams discharge into streams with flows one or two orders of magnitude larger, the increases in summer stream temperatures will be rapidly dissipated. However, the cumulative impact of harvesting many small headwater catchments that discharge into a larger stream could have a noticeable effect on stream temperature if intact riparian reserves were not retained in both headwater and main streams.  相似文献   

2.
Temperature observations at 25 sites in the 2000 km2 Dee catchment in NE Scotland were used, in conjunction with geographic information system (GIS) analysis, to identify dominant landscape controls on mean monthly maximum stream temperatures. Maximum winter stream temperatures are mainly controlled by elevation, catchment area and hill shading, whereas the maximum temperatures in summer are driven by more complex interactions, which include the influence of riparian forest cover and distance to coast. Multiple linear regression was used to estimate the catchment‐wide distribution of mean weekly maximum stream temperatures for the hottest week of the 2‐year observation period. The results suggested the streams most sensitive to high temperatures are small upland streams at exposed locations without any forest cover and relatively far inland, while lowland streams with riparian forest cover at locations closer to the coast exhibit a moderated thermal regime. Under current conditions, all streams provide a suitable thermal habitat for both, Atlantic salmon and brown trout. Using two climate change scenarios assuming 2·5 and 4 °C air temperature increases, respectively, temperature‐sensitive zones of the stream network were identified, which could potentially have an adverse effect on the thermal habitat of Atlantic salmon and brown trout. Analysis showed that the extension of riparian forests into headwater streams has the potential to moderate changes in temperature under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Stream chemistry is often used to infer catchment‐scale biogeochemical processes. However, biogeochemical cycling in the near‐stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near‐stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole‐catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16‐year average seasonal flow‐weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO3‐N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south‐central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO3‐N concentrations improved when only the proportion of wetland within the near‐stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydrologic connectivity of source areas to streams alters the role of the near‐stream zone environment, particularly during dry periods. The results also suggest that extent of riparian zone control may vary under changing patterns of hydrological connectivity. Predictions of biogeochemically active nutrients, particularly NO3‐N, can be improved by including near‐stream zone catchment morphology in landscape models.  相似文献   

4.
In the Colorado Front Range, forested catchments near the rain–snow transition are likely to experience changes in snowmelt delivery and subsurface water transport with climate warming and associated shifts in precipitation patterns. Snowpack dynamics are strongly affected by aspect: Lodgepole pine forested north‐facing slopes develop a seasonal snowpack, whereas Ponderosa pine‐dotted south‐facing slopes experience intermittent snow accumulation throughout winter and spring. We tested the degree to which these contrasting water input patterns cause different near‐surface hydrologic response on north‐facing and south‐facing hillslopes during the snowmelt period. During spring snowmelt, we applied lithium bromide (LiBr) tracer to instrumented plots along a north–south catchment transect. Bromide broke through immediately at 10‐ and 30‐cm depths on the north‐facing slope and was transported out of soil waters within 40 days. On the south‐facing slope, Br? was transported to significant depths only during spring storms and remained above the detection limit throughout the study. Modelling of unsaturated zone hydrologic response using Hydrus‐1D corroborated these aspect‐driven differences in subsurface transport. Our multiple lines of evidence suggest that north‐facing slopes are dominated by connected flow through the soil matrix, whereas south‐facing slope soils experience brief periods of rapid vertical transport following snowmelt events and are drier overall than north‐facing slopes. These differences in hydrologic response were largely a function of energy‐driven differences in water supply, emphasizing the importance of aspect and climate forcing when considering contributions of water and solutes to streamflow in catchments near the snow line. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This study compared summer stream temperature between two years in the Star Creek catchment, Alberta, a headwater basin on the eastern slopes of the Canadian Rocky Mountains. Star Creek is a subsurface water dominated stream, which represents important habitat for native salmonid species. Hydrometeorological data from May to September of 2010 and 2011 accompanied by stream energy budget calculations were used to describe the drivers of stream temperature in this small forested stream. Mean, maximum, and minimum weekly stream temperatures were lower from May to August and higher in September 2011 compared to 2010. Weekly range in stream temperature was also different between years with a higher range in 2010. Inter‐annual stream temperature variation was attributed discharge differences between years, shown to be primarily governed by catchment‐scale moisture conditions. This study demonstrates that both meteorological and hydrological processes must be considered in order to understand stream temperature response to changing environmental conditions in mountainous regions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Jason A. Leach  Dan Moore 《水文研究》2017,31(18):3160-3177
Stream temperature controls a number of biological, chemical, and physical processes occurring in aquatic environments. Transient snow cover and advection associated with lateral throughflow inputs can have a dominant influence on stream thermal regimes for headwater catchments in the rain‐on‐snow zone. Most existing stream temperature models lack the ability to properly simulate these processes. We developed and evaluated a conceptual‐parametric catchment‐scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model consists of routines for simulating canopy interception, snow accumulation and melt, hillslope throughflow runoff and temperature, and stream channel energy exchange processes. The model was used to predict discharge and stream temperature for a small forested headwater catchment near Vancouver, Canada, using long‐term (1963–2013) weather data to compute model forcing variables. The model was evaluated against 4 years of observed stream temperature. The model generally predicted daily mean stream temperature accurately (annual RMSE between 0.57 and 1.24 °C) although it overpredicted daily summer stream temperatures by up to 3 °C during extended low streamflow conditions. Model development and testing provided insights on the roles of advection associated with lateral throughflow, channel interception of snow, and surface–subsurface water interactions on stream thermal regimes. This study shows that a relatively simple but process‐based model can provide reasonable stream temperature predictions for forested headwater catchments located in the rain‐on‐snow zone.  相似文献   

7.
Urban streams in the Northeastern United States have large road salt inputs during the winter, increased nonpoint sources of inorganic nitrogen and decreased short‐term and permanent storage of nutrients. Restoration activities that re‐establish connection between streams and riparian environments may be effective for improving urban stream water quality. Meadowbrook Creek, a first‐order stream in Syracuse, NY, provides a unique setting to explore impacts of stream–floodplain connection because it flows along a negative urbanization gradient, from channelized and armoured headwaters to a broad, vegetated floodplain with a riparian aquifer. In this study, we investigated how reconnection to groundwater and introduction of riparian vegetation impacted urban surface water chemistry by making biweekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. We used multiple methods to measure groundwater discharge rates along the creek. Chloride concentrations in the upstream, disconnected reach were influenced by discharge of road salt during snow melt events and ranged from 161.2 to 1440 mg/l. Chloride concentrations in the downstream, connected reach had less temporal variation, ranging from 252.0 to 1049 mg/l, because of buffering by groundwater discharge, as groundwater chloride concentrations ranged from 84.0 to 655.4 mg/l. In the summer, there was little to no nitrate in the disconnected reach because of limited sources and high primary productivity, but concentrations reached over 1 mg N/l in the connected reach because of the presence of riparian vegetation. During the winter, when temperatures fell below freezing, nitrate concentrations in the disconnected reach increased to 0.58 mg N/l but were still lower than the connected reach, which averaged 0.88 mg N/l. Urban stream restoration projects that restore floodplain connection may impact water quality by storing high salinity road run‐off during winter overbank events and discharging that water year‐round, thereby attenuating seasonal fluctuations in chloride. Contrary to prior findings, we observed that floodplain connection and riparian vegetation may alter nitrate sources and sinks such that nitrate concentrations increase longitudinally in connected urban streams. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Stream temperature is a critical water quality parameter that is not fully understood, particularly in urban areas. This study explores drivers contributing to stream temperature variability within an urban system, at 21 sites within the Philadelphia region, Pennsylvania, USA. A comprehensive set of temperature metrics were evaluated, including temperature sensitivity, daily maximum temperatures, time >20°C, and temperature surges during storms. Wastewater treatment plants (WWTPs) were the strongest driver of downstream temperature variability along 32 km in Wissahickon Creek. WWTP effluent temperature controlled local (1–3 km downstream) temperatures year-round, but the impacts varied seasonally: during winter, local warming of 2–7°C was consistently observed, while local cooling up to 1°C occurred during summer. Summer cooling and winter warming were detected up to 12 km downstream of a WWTP. Comparing effects from different WWTPs provided guidelines for mitigating their thermal impact; WWTPs that discharged into larger streams, had cooler effluent, or had lower discharge had less effect on stream temperatures. Comparing thermal regimes in four urban headwater streams, sites with more local riparian canopy had cooler maximum temperatures by up to 1.5°C, had lower temperature sensitivity, and spent less time at high temperatures, although mean temperatures were unaffected. Watershed-scale impervious area was associated with increased surge frequency and magnitude at headwater sites, but most storms did not result in a surge and most surges had a low magnitude. These results suggest that maintaining or restoring riparian canopy in urban settings will have a larger impact on stream temperatures than stormwater management that treats impervious area. Mitigation efforts may be most impactful at urban headwater sites, which are particularly vulnerable to stream temperature disruptions. It is vital that stream temperature impacts are considered when planning stormwater management or stream restoration projects, and the appropriate metrics need to be considered when assessing impacts.  相似文献   

9.
Stream temperature is a key physical water‐quality parameter, controlling many biological, chemical, and physical processes in aquatic ecosystems. Maintenance of cool stream temperatures during summer is critical for high‐quality aquatic habitat. As such, transmission of warm water from small, nonfish‐bearing headwater streams after forest harvesting could cause warming in downstream fish‐bearing stream reaches with negative consequences. In this study, we evaluate (a) the effects of contemporary forest management practices on stream temperature in small, headwater streams, (b) the transmission of thermal signals from headwater reaches after harvesting to downstream fish‐bearing reaches, and (c) the relative role of lithology and forest management practices in influencing differential thermal responses in both the headwater and downstream reaches. We measured summer stream temperatures both preharvest and postharvest at 29 sites—12 upstream sites (4 reference, 8 harvested) and 17 downstream sites (5 reference, 12 harvested)—across 3 paired watershed studies in western Oregon. The 7‐day moving average of daily maximum stream temperature (T7DAYMAX) was greater during the postharvest period relative to the preharvest period at 7 of the 8 harvested upstream sites. Although the T7DAYMAX was generally warmer in the downstream direction at most of the stream reaches during both the preharvest and postharvest period, there was no evidence for additional downstream warming related to the harvesting activity. Rather, the T7DAYMAX cooled rapidly as stream water flowed into forested reaches ~370–1,420 m downstream of harvested areas. Finally, the magnitude of effects of contemporary forest management practices on stream temperature increased with the proportion of catchment underlain by more resistant lithology at both the headwater and downstream sites, reducing the potential for the cooling influence of groundwater.  相似文献   

10.
Stream temperatures in urban watersheds are influenced to a high degree by changes in landscape and climate, which can occur at small temporal and spatial scales. Here, we describe a modelling system that integrates the distributed hydrologic soil vegetation model with the semi‐Lagrangian stream temperature model RBM. It has the capability to simulate spatially distributed hydrology and water temperature over the entire network at high time and space resolutions, as well as to represent riparian shading effects on stream temperatures. We demonstrate the modelling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model was able to produce realistic streamflow and water temperature predictions that are consistent with observations. We use the modelling construct to characterize impacts of land use change and near‐stream vegetation change on stream temperatures and explore the sensitivity of stream temperature to changes in land use and riparian vegetation. The results suggest that, notwithstanding general warming as a result of climate change over the last century, there have been concurrent increases in low flows as a result of urbanization and deforestation, which more or less offset the effects of a warmer climate on stream temperatures. On the other hand, loss of riparian vegetation plays a more important role in modulating water temperatures, in particular, on annual maximum temperature (around 4 °C), which could be mostly reversed by restoring riparian vegetation in a fairly narrow corridor – a finding that has important implications for management of the riparian corridor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Concentrations of suspended particulate matter (SPM), NO3-N and P fractions: PO4-P, dissolved organic P (DOP), particulate P (PP) and bioavailable exchangeable P were examined over 5 storm events in two nested agricultural catchments in NE Scotland: a (51 km2) catchment and its headwater (4 km2). NO3-N showed anticlockwise hysteresis for all storms in both catchments. In contrast, the headwater showed strong clockwise hysteresis of SPM, dissolved and particulate P concentrations, but which weakened through summer to spring. Less pronounced hysteresis of P forms in the larger catchment was attributed to a combination of factors: a less energetic system, nutrient leaching from the floodplain, a point source of a small sewage treatment works and the occurrence of coarser soil and sediment parent materials with less P adsorption and transport capacity. The headwater exhibited a strong ‘first flush’ effect of sediment and dissolved P, particularly following dry conditions, received a significant transfer of readily-solubilized organic P from the surrounding soils in late summer and after manure applications in winter, and was the likely cause of large sediment associated P signals observed in the 51 km2 catchment. Our results suggest that steeper gradient headwaters should be targeted for riparian improvements to mitigate soil erosion from headwater fields. The efficiency of riparian erosion controls is also dependant on the size of the store of fine sediment material within the stream channel and this may be large.  相似文献   

12.
There is increasing demand for models that can accurately predict river temperature at the large spatial scales appropriate to river management. This paper combined summer water temperature data from a strategically designed, quality controlled network of 25 sites, with recently developed flexible spatial regression models, to understand and predict river temperature across a 3,000 km2 river catchment. Minimum, mean and maximum temperatures were modelled as a function of nine potential landscape covariates that represented proxies for heat and water exchange processes. Generalised additive models were used to allow for flexible responses. Spatial structure in the river network data (local spatial variation) was accounted for by including river network smoothers. Minimum and mean temperatures decreased with increasing elevation, riparian woodland and channel gradient. Maximum temperatures increased with channel width. There was greater between‐river and between‐reach variability in all temperature metrics in lower‐order rivers indicating that increased monitoring effort should be focussed at these smaller scales. The combination of strategic network design and recently developed spatial statistical approaches employed in this study have not been used in previous studies of river temperature. The resulting catchment scale temperature models provide a valuable quantitative tool for understanding and predicting river temperature variability at the catchment scales relevant to land use planning and fisheries management and provide a template for future studies.  相似文献   

13.
14.
Stream temperature was recorded between 2002 and 2005 at four sites in a coastal headwater catchment in British Columbia, Canada. Shallow groundwater temperatures, along with bed temperature profiles at depths of 1 to 30 cm, were recorded at 10‐min intervals in two hydrologically distinct reaches beginning in 2003 or 2004, depending on the site. The lower reach had smaller discharge contributions via lateral inflow from the hillslopes and fewer areas with upwelling (UW) and/or neutral flow across the stream bed compared to the middle reach. Bed temperatures were greater than those of shallow groundwater during summer, with higher temperatures in areas of downwelling (DW) flow compared to areas of neutral and UW flow. A paired‐catchment analysis revealed that partial‐retention forest harvesting in autumn 2004 resulted in higher daily maximum stream and bed temperatures but smaller changes in daily minima. Changes in daily maximum stream temperature, averaged over July and August of the post‐harvest year, ranged from 1.6 to 3 °C at different locations within the cut block. Post‐harvest changes in bed temperature in the lower reach were smaller than the changes in stream temperature, greater at sites with DW flow, and decreased with depth at both UW and DW sites, dropping to about 1 °C at a depth of 30 cm. In the middle reach, changes in daily maximum bed temperature, averaged over July and August, were generally about 1 °C and did not vary significantly with depth. The pre‐harvest regression models for shallow groundwater were not suitable for applying the paired‐catchment analysis to estimate the effects of harvesting. However, shallow groundwater was warmer at the lower reach following harvesting, despite generally cooler weather compared to the pre‐harvest year. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Water source and lake landscape position can strongly influence the physico‐chemical characteristics of flowing waters over space and time. We examined the physico‐chemical heterogeneity in surface waters of an alpine stream‐lake network (>2600 m a.s.l.) in Switzerland. The catchment comprises two basins interspersed with 26 cirque lakes. The larger lakes in each basin are interconnected by streams that converge in a lowermost lake with an outlet stream. The north basin is primarily fed by precipitation and groundwater, whereas the south basin is fed mostly by glacial melt from rock glaciers. Surface flow of the entire channel network contracted by ~60% in early autumn, when snowmelt runoff ceased and cold temperatures reduced glacial outputs, particularly in the south basin. Average water temperatures were ~4 °C cooler in the south basin, and temperatures increased by about 4–6 °C along the longitudinal gradient within each basin. Although overall water conductivity was low (<27 µS cm?1) because of bedrock geology (ortho‐gneiss), the south basin had two times higher conductivity values than the north basin. Phosphate‐phosphorus levels were below analytical detection limits, but particulate phosphorus was about four times higher in the north basin (seasonal average: 9 µg l?1) than in the south basin (seasonal average: 2 µg l?1). Dissolved nitrogen constituents were around two times higher in the south basin than in the north basin, with highest values averaging > 300 µg l?1 (nitrite + nitrate‐nitrogen), whereas particulate nitrogen was approximately nine times greater in the north basin (seasonal average: 97 µg l?1) than in the south basin (seasonal average: 12 µg l?1). Total inorganic carbon was low (usually <0·8 mg l?1), silica was sufficient for algal growth, and particulate organic carbon was 4·5 times higher in the north basin (average: 0·9 mg l?1) than in the south basin (average: 0·2 mg l?1). North‐basin streams showed strong seasonality in turbidity, particulate‐nitrogen and ‐phosphorus, and particulate organic carbon, whereas strong seasonality in south‐basin streams was observed in conductivity and dissolved nitrogen. Lake position influenced the seasonal dynamics in stream temperatures and nutrients, particularly in the groundwater/precipitation‐fed north‐basin network. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The importance of riparian tree cover in reducing energy inputs to streams is increasingly recognized in schemes to mitigate climate change effects and protect freshwater ecosystems. Assessing different riparian management strategies requires catchment‐scale understanding of how different planting scenarios would affect the stream energy balance, coupled with a quantitative assessment of spatial patterns of streamflow generation. Here, we use the physically based MIKE SHE model to integrate simulations of catchment‐scale run‐off generation and in‐stream hydraulics with a heat transfer model. This was calibrated to model the spatio‐temporal distribution of hourly stream water temperature during warm low flow periods in a Scottish salmon stream. The model was explored as a “proof of concept” for a tool to investigate the effects of riparian management on high stream water temperatures that could affect juvenile Atlantic salmon. Uncertainty was incorporated into the assessment using the generalized likelihood uncertainty estimation approach. Results showed that by decreasing both the warming (daylight hours) and the cooling (night‐time hours) rates, forest cover leads to a reduction of the temperature range (with a delay of the time to peak by up to 2 hr) and can therefore be effectively used to moderate projected climate change effects. The modelling presented here facilitated the quantification of potential mitigating effects of alternative riparian management strategies and provided a valuable tool that has potential to be utilized as an evidence base for catchment management guidance.  相似文献   

18.
Mountainous headwater streams represent a substantial proportion of the global stream network. These small streams may flow episodically, seasonally, or perennially, providing diverse values and services. Given their broad importance and growing pressures on terrestrial and aquatic resources, we must improve our understanding of the drivers of flow permanence to facilitate informed land and water management decisions. We used field observations from >10 cross-sections in each of 101 non-fish bearing, headwater streams across four geomorphic provinces in Northern California to quantify flow permanence and network connectivity during the summer low flow period in 2018. At each stream cross-section, we noted the presence or absence of streamflow and used this information to classify streams as perennial (continuous streamflow in all cross-sections) or non-perennial and connected (surface water in the most downstream cross-section) or disconnected. At each cross-section, we also quantified channel size (width and depth) and grain size. We coupled field observations with geospatial data of catchment physiography, hydrology, and climate in random forest models to investigate controls of flow permanence and network connectivity. Potential drivers of flow permanence or network connectivity included in our models were channel geometry, grain size, slope, aspect, elevation, annual and seasonal precipitation, air temperature, and topographic wetness index. We found more perennial streams in the Klamath Mountains and Sierra Nevada than in the Cascades and N. Coast regions. Streams in the Klamath were the most connected followed by streams in the N. Coast, Sierra Nevada, and Cascades. The most important variables for predicting flow permanence were channel grain size, winter 2018 precipitation, and drainage area. Comparatively, the most important variables for predicting network connectivity were winter and spring 2018 precipitation, grain size, and bankfull depth. Our study illustrated the complexity of the processes that drive flow permanence and highlighted the uncertainty in projecting the precense of water in streams across diverse regions.  相似文献   

19.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   

20.
Although known as ‘islands of fertility’ or ‘resource islands’, information regarding the effect of shrubs upon microclimate in deserts is scarce. Here we report on measurements of evaporation and temperatures that were carried out in and around a pair of shrubs at the Nizzana research site in the western Negev Desert during 1993–94 and during the growing season (November–March) of 1994–95 and 1996–1997. Whereas evaporation was measured monthly using mini‐atmometers (10 cm diameter and 10 cm tall) at an exposed site and under and around the shrub (at the eastern, southern, western and northern aspects), temperature was measured under a shrub canopy, at its northern aspect, and at an exposed habitat. Evaporation was aspect dependent with increasing rates in the following order: exposed > south‐facing > west‐facing ≈ east‐facing > north‐facing > under canopy. Except from the northern aspect, the under‐canopy habitat showed substantially lower rates of evaporation in comparison with all other habitats. The differences between the under‐canopy and the exposed habitat were larger during wintertime (with the under‐canopy habitat having 0·53 times the evaporation rate than that of the exposed habitat) although higher differences in temperatures characterized both habitats in summertime (up to 14·4 °C in summer as compared with 6·9 °C only in winter). The results were explained by extended surface wetness that characterized the under‐canopy habitat following rainstorms. While already being dried out at the exposed habitat, surface wetness at the under canopy habitat persisted for several days afterwards, resulting, following one rainstorm, in vapour pressure of 2·15–2·39 kPa in comparison with only 0·82–0·83 kPa of the exposed habitat. The substantially lower evaporation rates that characterize the under‐canopy habitat may thus play a pivotal role in providing preferential conditions for lush under‐canopy annual growth. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号