首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
湖泊沉积物中磷酸盐氧同位素前处理方法对比   总被引:2,自引:1,他引:1  
磷酸盐氧同位素(δ~(18)OP)是一种有效的磷源示踪方式.由于湖泊沉积物的组成十分复杂,必须对样品进行除碳处理和纯化处理.本文对目前应用较为广泛的几种前处理方法进行比较,包括NaClO处理和H_2O_2处理等除有机碳方法,以及Blake法和Mc Laughlin法等纯化方法,以期获得适用于湖泊沉积物磷酸盐氧同位素的前处理方法.结果表明:(1)NaClO处理可以保证较高的无机磷提取效率,同时能有效地减少无机磷提取液中有机质含量,且对不同形态磷的破坏较小;H2O2对有机质的去除效果不稳定,且处理后样品磷形态之间发生转化,显著增加了提取的无机磷浓度.(2)Blake法和Mc Laughlin法分别采用磷钼酸铵(APM)+磷酸铵镁(MAP)沉淀和Ce PO4沉淀对样品进行纯化.在纯化处理湖泊沉积物过程中,Blake法优于Mc Laughlin法,主要体现为有机质去除率高,并且磷的回收率较为稳定.(3)经Blake法纯化丹麦Nordborg湖沉积物样品得到的Ag_3PO_4中C、N含量低于Mc Laughlin法且重现性好.本文结合NaClO法与Blake法的优点,建立了一种适合湖泊沉积物的磷酸盐氧同位素前处理方法:首先用2.5%NaClO对沉积物样品进行除碳预处理,然后对磷酸盐提取液依次通过氢氧化镁共沉淀(MAGIC)、APM+MAP沉淀、阳离子交换树脂处理,最后生成Ag3PO4沉淀.  相似文献   

2.
碳酸盐胶结物是川西坳陷孝泉-丰谷地区须四段第一重要的胶结物类型.通过碳酸盐胶结物岩石学、矿物学、碳氧同位素以及包裹体均一温度等的系统分析,讨论了研究区须四段致密砂岩中不同类型碳酸盐胶结物的沉淀机制、孔隙流体演化以及分布规律.连晶方解石胶结物具有相对较重的碳、氧同位素(δ13C=2.14‰,δ18O=-5.77‰),沉淀时间早,是在常温常压条件下,直接从过饱和碱性湖水介质中析出的产物.沉淀时流体的氧同位素较轻,主要表现为大气水-海水混合流体的特征(δ18O=-3‰),说明研究区须四段沉积时期的沉淀流体同时受到了大气水和海水的影响;次生孔隙中充填的方解石胶结物具有相对较轻的碳、氧同位素(δ13C=-2.36‰,δ18O=-15.68‰),沉淀时间晚,主要沉淀于中、晚侏罗沉积期的埋藏作用阶段,反映了有机质参与的长石溶蚀过程是该类碳酸盐胶结物沉淀的重要物质来源,粘土矿物转化过程中释放的Ca2+,Fe3+和Mg2+离子也是其重要的物质来源之一.由于埋藏过程中,水岩相互作用的影响,沉淀时流体的氧同位素出现了较明显增大(增重3‰左右);钙屑砂岩中的白云石胶结物沉淀于中侏罗沉积期的埋藏作用阶段,与碳酸盐岩屑具有类似的较重的碳氧同位素特征(δ13C=1.93‰,δ18O=-6.11‰),说明了两者在来源上的一致性,沉淀时流体氧同位素显著偏重(δ18O=2.2‰左右).不同胶结物沉淀时流体氧同位素的差异体现了不同水岩相互作用体系或是不同水岩相互作用强度的影响.这是含较多刚性颗粒的砂岩具有相对偏负的碳同位素(岩屑石英砂岩)、沉淀流体具有相对偏重氧同位素(钙屑砂岩)的主要原因.  相似文献   

3.
冯盛楠  刘兴起  李华淑 《湖泊科学》2020,32(4):1199-1211
湖泊水体的氢氧同位素(δD、δ~(18)O)是研究区域大气降水和水文循环的重要手段之一,目前对其的研究主要以单一湖泊为主.以2016年夏季在中国西部地区采集的33个湖泊水体为研究对象,分析其氢氧同位素的变化特征,并结合当地夏季大气降水、湖水盐度、海拔与纬度等资料,探讨中国西部33个湖泊水体δD、δ~(18)O的空间分布特征及其影响因素.结果表明:33个湖泊水体的δD与δ18O组成主要受控于大气降水,但受蒸发分馏的影响,湖水线的斜率与截距低于大气水线.湖泊水体与夏季大气降水氢氧同位素存在明显的空间分异,这种分异与湖水盐度无关,主要受到区域降水水汽来源不同的影响.青藏高原南北两侧由于水汽来源及蒸发条件的不同,使得青藏高原湖泊水体的氢氧同位素呈现出"北高南低"的特点,新疆西北部受西风影响,湖泊水体的氢氧同位素明显偏负,内蒙古及邻近地区受东南季风的影响,湖水受到蒸发分馏作用使其δD与δ~(18)O偏正.不同区域湖泊水体的氘盈余(d_excess)反映了不同的水汽源地的湿度状况而不能指示湖水的蒸发状况.受降水影响,青藏高原地区湖水氢氧同位素组成与海拔高度呈负相关,与纬度呈正相关.  相似文献   

4.
郯庐断裂及胶辽断块区现代地热流体地球化学   总被引:15,自引:0,他引:15  
地下水深循环过程产生的同位素物理分馏是地热水的δD ,δ18O值总是低于当地浅层地下水的主要原因 .给出了地热水可能的最大循环深度与其δD ,δ18O值降低幅度的关系式 .研究区内地热流体逸出气体属于壳内气体 .郯庐深断裂现今以压性为主的活动方式一直延续至深部 ,基本阻断了深源气体向地表的迁移  相似文献   

5.
为了探求内蒙古呼伦湖上覆水体和沉积物间隙水之间溶质运移机制,对呼伦湖的1个沉积物柱芯的间隙水、3个湖泊水体以及湖周边7个地下水体中的氯离子(Cl~-),氢、氧稳定同位素(δD和δ~(18)O)分别进行分析测试,并利用其示踪性对沉积物中溶质运移特征进行研究.结果显示,δD、δ~(18)O和Cl~-浓度在不同水体中的分布具有相似的分布规律,整体上从底部沉积物到上部湖水浓度分布呈现逐渐递减的抛物线趋势,在间隙水中最大值位于所取沉积物柱芯的最深处,Cl~-浓度为306 mg/L,δD和δ~(18)O分别为-58‰和-5.9‰;最小值位于沉积物柱芯上层,并与上覆水体中的值相似,Cl~-浓度为159 mg/L,δD和δ~(18)O分别为-66‰和-7.3‰.为了明确沉积物柱芯中间隙水的高浓度Cl~-和偏正δD、δ~(18)O的来源,比较不同水体的δ~(18)O-δD关系点分布,表明含有偏正值的δD、δ~(18)O和高浓度Cl~-的间隙水与上覆湖水关系密切,可能是由于低水位时期湖水与间隙水相互发生扩散作用而产生的结果.一维对流扩散迁移模型证实扩散作用是控制着沉积物间隙水中溶质浓度在垂向上分布的主要机制,同时湖水水位的变化会影响沉积物间隙水与上覆水体的扩散过程,特别是在水位上升期,富集在沉积物中的溶质可能成为湖水的重要物质来源,影响上覆水体的水质.因此,对于封闭湖泊水位的控制和管理不仅在维持湖泊水量方面有着直接的作用,同时在稳定湖泊水质条件上也有着重要的意义.  相似文献   

6.
李文宝  杜蕾  王旭阳  杨旭  史小红 《湖泊科学》2019,31(5):1334-1343
基于内蒙古寒旱区达里诺尔湖(简称"达里湖")无河流外泄、冬季湖面冰封、水体流动缓慢等典型区域水文气象特征,对夏、冬季湖泊底层、表层水(冰)、入湖河水、浅层地下水(井水、泉水)等样品中稳定氢、氧同位素(δD、δ18O)值的变化进行对比分析,结果显示湖区不同水体δD和δ18O平均值均存在湖泊水体(水、冰体) > 大气降水 > 入湖河水 > 浅层地下水的变化特征.在达里湖,夏、冬季底层水δD、δ18O值均比表层水(含湖冰)中δD、δ18O值偏负且季节变化幅度较小.此外,冬季不同采样点底层水δD、δ18O平均值的区域差异性比夏季明显,这反映了湖泊底层水体相对封闭、稳定的储存环境,也说明地下水补给过程存在一定程度的区域差异.而基于不同区域底层水δD、δ18O值及氘盈余指数(d)值和水深变化间相互关系的分析,发现水深变化可能是影响达里湖底层水δD、δ18O值分布区域差异及补给过程的主要因素之一:东北部水体较浅(水深小于8 m)区域采样点水体δD、δ18O平均值多数比达里湖整体平均值偏负且d值偏正,指示浅层地下水输入及二次蒸发作用的影响;西南部水体较深(水深超过8 m)区域采样点水体δD、δ18O平均值多数比达里湖整体平均值偏正且d值偏负,说明水体相对稳定,受二次蒸发作用的影响较弱.  相似文献   

7.
内蒙古高原达里诺尔湖夏季水体稳定同位素变化特征   总被引:4,自引:2,他引:2  
基于内蒙古高原寒-旱区达里诺尔湖(简称"达里湖")相对集中的夏季大气降水、强烈的蒸发作用等典型区域气候环境特征,结合湖泊水体温度、盐度等理化指标变化,对夏季达里湖湖水、入湖河水、区域大气降水等样品中稳定氢、氧同位素(δD、δ18O)值变化进行了对比分析.结果显示:虽然整体上达里湖夏季水体并没有形成明显的物理性质"跃层"(如温跃层、盐跃层等),水体理化指标的空间分布相对稳定,但是夏季湖水中δD、δ18O值却随着水深增加逐渐偏负:δD值由表层水体(0~1 m)到底层水体(7~9 m)偏负约1.40‰,δ18O值由表层水体到底层水体偏负约0.27‰.达里湖夏季"大气水线"为δD=8.22δ18O+6.82,显示大气降水中δD、δ18O值受季风降水效应影响的同时受到区域蒸发作用影响.特别是7、8月大气降水同位素变化受降水效应的影响比6、9月更明显,而6、9月大气降水同位素变化受蒸发作用的影响比7、8月更明显.这也导致达里湖夏季上层水体受大气降水的稀释作用影响显著;伴随水深的增加,降水效应及蒸发作用的混合影响逐渐减弱,底层水体受区域地下水补给过程等因素的影响则可能更加明显,即达里湖夏季上层水体和底层水体中稳定同位素组成变化的影响因素存在差异.  相似文献   

8.
桂林地区降水及盘龙洞滴水和现代碳酸盐的氧碳同位素研究表明 :( 1 )从年内和年际的总体特征看 ,桂林地区降雨的δ18O值随着气温的升高和降雨量的增加而减小 ,就相关关系来看 ,与月均气温的相关关系更好 .但夏季风降雨的δ18O值要比冬季风降雨的δ18O值小得多 ;( 2 )洞穴滴水的δ18O明显与同期降雨的δ18O值成很好的相关关系 ;( 3)条件适宜时 ,δ13 C可以作为环境替代指标 ,即δ13 C值越负 ,C3 植物的比例就越大 ,降雨可能较丰沛 ,相反则可能以C4植物为主或为植被被破坏(由于气候原因或人为原因所导致 )后的石漠化环境 .  相似文献   

9.
原生白云石与交代白云石的矿物学对比研究   总被引:4,自引:0,他引:4  
原生白云岩存在于上震旦统灯影组中,选取纯净的未受后期成岩作用影响的原生白云石样品与各时代的交代白云石样品进行矿物学的对比研究,获得重要的对比标志。研究表明,原生白云石具有从海水原始沉淀、沉积的矿物晶体形态、均匀稳定的Mg和Ca元素分布、理想的晶体化学组成、特有规则的晶体调制微结构和低正δ~(13)C、低负δ~(18)O值等特征。这些特征与交代白云石有较大差别。  相似文献   

10.
天津中心城区河网氮磷污染与富营养化特征   总被引:1,自引:0,他引:1  
2013年底天津中心城区河道全部连通,形成中心城区河网.为了掌握河网形成后的水质状况,于2014年3月-2015年2月进行了为期1年的定点水质监测,并对其水体氮、磷时空分布及富营养化特征进行分析.结果表明,河网水体氮污染严重,以铵态氮(NH+4-N)为主;磷污染程度较轻,主要形态为磷酸盐(PO3-4-P);河网水体中氮、磷浓度顺水流方向均呈上游高、下游低的空间分布特征;氮、磷各项指标浓度时间变化趋势基本一致,3月均最高,10月均最低,冬季处于相对较低水平;与河网形成前相比,海河干流NH+4-N、总磷(TP)和PO3-4-P浓度年平均值分别下降6.5%、14.7%和16.4%,津河总氮、NH+4-N、硝态氮、TP和PO3-4-P浓度年平均值分别降低18.6%、34.5%、12.9%、31.6%和32.5%,表明河网形成后氮、磷污染程度较之前有所改善,其中津河改善较为明显;河网水体全年处于中度富营养状态,主要为磷限制性状态;河网富营养化防治应遵循以控制营养盐为主的控源、截污、水环境增容和生态补水策略.  相似文献   

11.
The shallow-water hydrothermal system in Tutum Bay on the west side of Ambitle Island, Papua New Guinea provides us with an exceptional opportunity to study isotope systematics in a near shore setting. Compared to seawater, the hydrothermal fluids in Tutum Bay have lower values for δD, δ18O, δ13C, and 87Sr and higher values for 3H, δ34S(SO4) and δ18O(SO4). The δ18O and δD records for vents 1 and 4 indicate that fluid compositions remained stable over an extended period. Interpretation of isotope data clearly demonstrates the predominantly meteoric origin of Tutum Bay hydrothermal fluids, despite their location in a marine environment. δ18O and δD values are identical to mean average annual precipitation in eastern Papua New Guinea. The hypothesis that these fluids are a simple product of mixing between seawater and onshore hydrothermal fluids from the Waramung (W-1) and Kapkai (W-2) thermal areas has been rejected, because the observed δ37Cl, 3H, δ34S(SO4) and δ18O(SO4) values cannot be explained by a simple mixing model. The application of δ18O(SO4) and δ13C thermometers in combination with 3H values corroborates the three-step model of Pichler et al. [Pichler, T., Veizer, J., Hall, G.E.M., 1999. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Marine Chemistry 64 (3) 229–252], where (1) phase separation in the deep reservoir beneath Ambitle Island produces a high temperature vapor that rises upward and subsequently reacts with cooler ground water to form a low pH, CO2-rich water of approximately 150–160 °C, (2) caused by the steep topography, this CO2-rich fluid moves laterally towards the margin of the hydrothermal system where it mixes with the marginal upflow of the deep reservoir fluid. This produces a dilute chloride water of approximately 165 °C, and (3) possibly the entrainment of minor amounts of ground or seawater during its final ascent.  相似文献   

12.
ABSTRACT

Proper management of coastal freshwater resources depends on an understanding of processes controlling their chemistry and seasonal flowpaths. A quantitative approach involving the coupling of major solutes and isotopes (δ18O, δ2H) of 180 samples in end-member mixing analysis (EMMA) was adopted to elucidate seasonal patterns of hydraulic exchanges amongst coastal waters along the Ebrié Lagoon catchment, Ivory Coast. The results show that the Ebrié Lagoon is a hydrologically dynamic system. In the dry season, evaporation and seawater inflow are the dominating processes, while in the wet season, river discharge is the main water source in the lagoon. Regional geology plays a significant role in aquifer recharge patterns. The Quaternary aquifer responds faster to precipitation, while the Mio-Pliocene aquifer is recharged indirectly via floodplain seepages. Salinization of over 90% of wells arises from hydrological exchanges with the Ebrié Lagoon. A diluted seawater effect was recorded in wells during the wet season owing to the relative increase in freshwater inflow.  相似文献   

13.
The numerous lakes on the Tibetan Plateau play an important role in the regional hydrological cycle and water resources, but systematic observations of the lake water balance are scarce on the Tibetan Plateau. Here, we present a detailed study on the water cycle of Cona Lake, at the headwaters of the Nujiang‐Salween River, based on 3 years (2011–2013) of observations of δ18O and δ2H, including samples from precipitation, lake water, and outlet surface water. Short‐term atmospheric water vapor was also sampled for isotope analyses. The δ2H–δ18O relationship in lake water (δ2H = 6.67δ18O ? 20.37) differed from that of local precipitation (δ2H = 8.29δ18O + 12.50), and the deuterium excess (d‐excess) in the lake water (?7.5‰) was significantly lower than in local precipitation (10.7‰), indicating an evaporative isotope enrichment in lake water. The ratio of evaporation to inflow (E /I ) of the lake water was calculated using both d‐excess and δ18O. The E /I ratios of Cona lake ranged from 0.24 to 0.27 during the 3 years. Observations of atmospheric water vapor isotopic composition (δ A ) improved the accuracy in E /I ratio estimate over a simple precipitation equilibrium model, though a correction factor method provided nearly identical estimates of E /I ratio. The work demonstrates the feasibility of d‐excess in the study of the water cycle for lakes in other regions of the world and provides recommendations on sampling strategies for accurate calculations of E /I ratio.  相似文献   

14.
Carbonate cement is the most abundant cement type in the Fourth Member of the Xujiahe Formation in the Xiaoquan-Fenggu area of the West Sichuan Depression. Here we use a systematic analysis of carbonate cement petrology, mineralogy, carbon and oxygen isotope ratios and enclosure homogenization temperatures to study the precipitation mechanism, pore fluid evolution, and distribution of different types of carbonate cement in reservoir sand in the study area. Crystalline calcite has relatively heavy carbon and oxygen isotope ratios(δ13C = 2.14‰, δ18O = -5.77‰), and was precipitated early. It was precipitated directly from supersaturated alkaline fluid under normal temperature and pressure conditions. At the time of precipitation, the fluid oxygen isotope ratio was very light, mainly showing the characteristics of a mixed meteoric water-seawater fluid(δ18O = -3‰), which shows that the fluid during precipitation was influenced by both meteoric water and seawater. The calcite cement that fills in the secondary pores has relatively lighter carbon and oxygen isotope ratios(δ13C = -2.36‰, δ18O = -15.68‰). This cement was precipitated late, mainly during the Middle and Late Jurassic. An important material source for this carbonate cement was the feldspar corrosion process that involved organic matter. The Ca2+, Fe3+ and Mg2+ ions released by the clay mineral transformation process were also important source materials. Because of water-rock interactions during the burial process, the oxygen isotope ratio of the fluid significantly increased during precipitation, by about 3‰. The dolomite cements in calcarenaceous sandstone that was precipitated during the Middle Jurassic have heavier carbon and oxygen isotope ratios, which are similar to those of carbonate debris in the sandstone(δ13C = 1.93‰, δ18O = -6.11‰), demonstrating that the two are from the same source that had a heavier oxygen isotope ratio(δ18O of about 2.2‰). The differences in fluid oxygen isotope ratios during cement precipitation reflect the influences of different water-rock interaction systems or different water-rock interaction strengths. This is the main reason why the sandstone containing many rigid particles(lithic quartz sandstone) has a relatively negative carbon isotope ratio and why the precipitation fluid in calcarenaceous sandstone has a relatively heavier oxygen isotope ratio.  相似文献   

15.
High-resolution stable oxygen isotope (δ18O on ostracod shells), XRF-scanning and bulk grain-size data obtained on a transect of 6 gravity cores from the continental slope in the northwestern Black Sea give new insight into the hydrological evolution of the Black Sea since the Last Glacial Maximum (LGM). Stable climatic conditions during the LGM were followed by a series of meltwater pulses between 18 and 15.5 kyr BP that resulted in temporary isotopic depletion of the Black Sea waters. Subsequently, steadily increasing δ18O values in all cores are mainly caused by isotopically enriched precipitation at the onset of the Allerød/Bølling warm period. A comparison of the major trends in δ18O at different water depths suggests evaporation-driven deep water formation since ∼14.5 kyr BP, while the two shallowest cores from 168 and 465 m water depth were under the influence of increased warming in the upper water column since 14.5 and 12.5 kyr BP, respectively. The core from 168 m depth seems to be additionally influenced by freshwater input of the Danube. This core provides a high-resolution record from the Younger Dryas/Allerød boundary and suggests that a NAO-like climate mode was governing the interannual variability in the run-off of the Danube, which implies that this climate mode has been a persistent climatic feature over central Europe. The inflow of saline Mediterranean waters occurs between 9 and 8 kyr BP, where a merging of all δ18O records signals an initial homogenisation of the water column.  相似文献   

16.
We report new data on oxygen isotopes in marine sulfate (δ18OSO4), measured in marine barite (BaSO4), over the Cenozoic. The δ18OSO4 varies by 6‰ over the Cenozoic, with major peaks 3, 15, 30 and 55 Ma. The δ18OSO4 does not co-vary with the δ34SSO4, emphasizing that different processes control the oxygen and sulfur isotopic composition of sulfate. This indicates that temporal changes in the δ18OSO4 over the Cenozoic must reflect changes in the isotopic fractionation associated with the sulfide reoxidation pathway. This suggests that variations in the aerial extent of different types of organic-rich sediments may have a significant impact on the biogeochemical sulfur cycle and emphasizes that the sulfur cycle is less sensitive to net organic carbon burial than to changes in the conditions of that organic carbon burial. The δ18OSO4 also does not co-vary with the δ18O measured in benthic foraminifera, emphasizing that oxygen isotopes in water and sulfate remain out of equilibrium over the lifetime of sulfate in the ocean. A simple box model was used to explore dynamics of the marine sulfur cycle with respect to both oxygen and sulfur isotopes over the Cenozoic. We interpret variability in the δ18OSO4 to reflect changes in the aerial distribution of conditions within organic-rich sediments, from periods with more localized, organic-rich sediments, to periods with more diffuse organic carbon burial. While these changes may not impact the net organic carbon burial, they will greatly affect the way that sulfur is processed within organic-rich sediments, impacting the sulfide reoxidation pathway and thus the δ18OSO4. Our qualitative interpretation of the record suggests that sulfate concentrations were probably lower earlier in the Cenozoic.  相似文献   

17.
Knowledge relating to the relationship between the characteristics of precipitation and sources of moisture is essential to improve our understanding of the global water cycle. This study presents the first quantitative estimation of the moisture source regions combined with stable isotope analyses for precipitation at K-puszta, east Hungary. The contributions of the following moisture sources were diagnosed according to the sector analysis of 4-day backward trajectories together with the calculation of evaporation and precipitation fluxes based on the specific humidity: Mediterranean region (57.0%), local moisture (14.8%), Atlantic region (14.2%), Northern Europe (7.4%) and Eastern Europe (6.6%). The δD and δ18O values of daily precipitation were measured and the deuterium excess (d-excess) was calculated. The d-excess showed systematic differences among the marine sources, reflecting the characteristics of the moisture source area. The results suggest that the stable isotope composition of precipitation preserves information regarding the origin of the water vapour.  相似文献   

18.
Chen  Dongyu  Lian  Ergang  Shu  Yeqiang  Yang  Shouye  Li  Yalong  Li  Chao  Liu  Pengfei  Su  Ni 《中国科学:地球科学(英文版)》2020,63(10):1564-1576
Oxygen isotope(δ~(18)O) of seawater is an excellent proxy for tracing the origins of water masses and their mixing processes. Combining with hydrographic observation, hybrid coordinate ocean model(HYCOM) analysis data, and seawater oxygen isotope, we investigated the source of the South China Sea Warm Current(SCSWC) in the southwestern Taiwan Strait and its underlying mechanism. Results show that the Kuroshio subsurface water(KSSW) can intrude the continental slope in the southwestern Taiwan Strait, and thereby climb up the continental slope coupled with upwelling. The δ~(18)O-salinity relationship further indicates that in spring, the SCSWC in the southwestern Taiwan Strait originates from the upslope deflection of the slope current formed by the KSSW intrusion into the South China Sea, rather than from the west segment of the SCSWC formed to the east of Hainan Island. In addition, the southward flowing Zhe-Min Coastal Current(ZMCC) can reach as far as the Taiwan Bank(TB) and deflects offshore over the western TB at approximately 23.5°N, to some extent affecting the SCSWC. Moreover, this study reveals that seawater δ~(18)O is exquisitely sensitive to the determination of the origin and transport of water masses as compared with traditional potential temperature-salinity plot(θ-S) and HYCOM analysis data. In addition, their coupling can more reliably interpret the mixing processes of shelf water masses.  相似文献   

19.
From a molecular level to an ecosystem scale, different coupling mechanisms take place during coupled carbonnitrogen-water(C-N-H_2O) cycle, of which essential are water flux and related biogeochemical processes through physicochemical reactions associated with terrestrial and aquatic ecosystems. Meanwhile, regional coupled C-N-H_2O cycle will subsequently impact regional gross primary productivity(GPP) and C and N exchanges during air-water interactions that occur downstream of watersheds. This study aimed to first synthetically analyze the regional dynamics of C, N and H_2O cycles in ecosystems and determine their interactional relationships; second, to specify regional C-N-H_2O coupled relationships of ecosystems and their theoretical ecological principles; third, to classify coupled regional response and adaptation of the C-N-H_2O cycle to climatic and environmental changes under anthropogenic activities, providing a theoretical basis to fully understand and make adjustments to interactional C, N and H_2O cycling relationships at different ecosystem scales and under associated coupling processes.  相似文献   

20.
We characterize the precipitation and groundwater in a mountainous (peaks slightly above 3000 m a.s.l.), semi‐arid river basin in SE Spain in terms of the isotopes 18O and 2H. This basin, with an extension of about 7000 km2, is an ideal site for such a study because fronts from the Atlantic and the Mediterranean converge here. Much of the land is farmed and irrigated both by groundwater and runoff water collected in reservoirs. A total of approximately 100 water samples from precipitation and 300 from groundwater have been analysed. To sample precipitation we set up a network of 39 stations at different altitudes (800–1700 m a.s.l.), with which we were able to collect the rain and snowfall from 29 separate events between July 2005 and April 2007 and take monthly samples during the periods of maximum recharge of the aquifers. To characterize the groundwater we set up a control network of 43 points (23 springs and 20 wells) to sample every 3 months the main aquifers and both the thermal and non‐thermal groundwater. We also sampled two shallow‐water sites (a reservoir and a river). The isotope composition of the precipitation forms a local meteoric water line (LMWL) characterized by the equation δD = 7·72δ18O + 9·90, with mean values for δ18O and δD of − 10·28‰ and − 69·33‰, respectively, and 12·9‰ for the d‐excess value. To correlate the isotope composition of the rainfall water with groundwater we calculated the weighted local meteoric water line (WLMWL), characterized by the equation δD = 7·40δ18O + 7·24, which takes into account the quantity of water precipitated during each event. These values of (dδD/dδ18O)< 8 and d‐excess (δD–8δ18O)< 10 in each curve bear witness to the ‘amount effect’, an effect which is more manifest between May and September, when the ground temperature is higher. Other effects noted in the basin were those of altitude and the continental influence. The isotopic compositions of the groundwater are represented by the equation δD = 4·79δ18O − 18·64. The groundwater is richer in heavy isotopes than the rainfall, with mean values of − 8·48‰ for δ18O and − 59·27‰ for δD. The isotope enrichment processes detected include a higher rate of evaporation from detrital aquifers than from carbonate ones, the effects of recharging aquifers from irrigation return flow and/or from reservoirs' leakage and enrichment in δ18O from thermal water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号