首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent observational analysis reveals the central role of three cloud types, congestus, stratiform, and deep-convective cumulus clouds, in the dynamics of large scale convectively coupled Kelvin waves, westward propagating 2-day waves, and the Madden–Julian oscillation. Recently, a systematic model convective parametrization highlighting the dynamic role of the three cloud types has been developed by the authors involving two baroclinic modes of vertical structure: a deep-convective heating mode and a second mode with low level heating and cooling corresponding, respectively, to congestus and stratiform clouds. The model includes a systematic moisture equation where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep-convective precipitation and also a nonlinear switch which favors either deep or congestus convection depending on the relative dryness of the middle troposphere. The detailed nonlinear evolution of large scale convectively coupled waves in the model parametrization is studied here in a chaotic intermittent regime of the nonlinear dynamics associated with weaker mean radiative cooling where such waves are isolated in space and time. This regime is utilized to elucidate in a clean fashion several novel features of the model parametrization. In particular, four stages of nonlinear wave evolution occur: in the preconditioning and birth stages, the role of congestus moistening and second baroclinic convergence are crucial while in the dying stage of the large scale convectively coupled wave, the role of the nonlinear switch, and the drying of the troposphere are essential. In the mature phase, the large scale features of the convectively coupled waves resemble those in observations of convectively coupled Kelvin waves including the propagation speed, wave tilt, temperature, heating, and velocity structure.  相似文献   

2.
Despite recent advances in supercomputing, current general circulation models poorly represent the variability associated with organized tropical convection. In a recent study, the authors have shown, in the context of a paradigm two baroclinic mode system, that a stochastic multicloud convective parameterization based on three cloud types (congestus, deep and stratiform) can be used to improve the variability and the dynamical structure of tropical convection. Here, the stochastic multicloud model is modified with a lag type stratiform closure and augmented with an explicit mechanism for congestus detrainment moistening. These modifications improve the representation of intermittent coherent structures such as synoptic and mesoscale convective systems. Moreover, the new stratiform-lag closure allows for increased robustness of the coherent features of the model with respect to the amount of stochastic noise and leading to a multi-scale organization of slowly moving waves envelopes in which short-lived and chaotic convective events persist. Congestus cloud decks dominate the suppressed-dry phase of the wave envelopes. The simulations with the new closure have a higher amount of stochastic noise and result in a Walker type circulation with realistic mean and coherent variability which surpasses results of previous deterministic and stochastic multicloud models in the same parameter regime. Further, deterministic mean field limit equations (DMFLE) for the stochastic multicloud model are considered. Aside from providing a link to the deterministic multicloud parameterization, the DMFLE allow a judicious way of determining the amount of deterministic and stochastic “chaos” in the system. It is shown that with the old stratiform heating closure, the stochastic process accounts for most of the chaotic behavior. The simulations with the new stratiform heating closure exhibit a mixture of stochastic and deterministic chaos. The highly chaotic dynamics in the simulations with congestus detrainment mechanism is due to the strongly nonlinear and numerically stiff deterministic dynamics. In the latter two cases, the DMFLE can be viewed as a “standalone” parameterization, which is capable of capturing some dynamical features of the stochastic parameterization. Furthermore, it is shown that, in spatially extended simulations, the stochastic multicloud model can capture qualitatively two local statistical features of the observations: long and short auto-correlation times of moisture and precipitation, respectively and the approximate power-law in the probability density of precipitation event size for large precipitation events. The latter feature is not reproduced in the column simulations. This fact underscores the importance of gravity waves and large scale moisture convergence.  相似文献   

3.
In this study, we focused on the difference in appearances of the convectively coupled equatorial waves (CCEWs) in a simulation with the CCSR/NIES/FRCGC AGCM, between two experiments, one with and the other without implementation of the convective suppression scheme (CSS) in the prognostic Arakawa–Schubert cumulus parameterization. Realistic CCEW modes, i.e., Kelvin, Rossby, mixed Rossby-gravity (MRG), and n = 0 eastward inertio-gravity (EIG) wave modes, were reproduced in the with-CSS experiment, while only Rossby-wave-like signals appeared in the without-CSS experiment.By comparing the structures of the Kelvin wave mode and the Rossby wave mode in two runs, it was suggested that the structural difference between these two modes in conjunction with the difference in the controlling factor of cumulus convection determines the CCEW features. The CSS implemented here is such that cumulus convection is suppressed until the cloud-layer-averaged relative humidity exceeds the threshold of 80%. In the without-CSS model, only Rossby wave modes are coupled with the convection. This is because CAPE controls cumulus convection in this model, and the larger frictional convergence of Rossby wave mode prepares CAPE to generate favorable condition for cumulus convection. In the case of the with-CSS model, on the other hand, cumulus convection is largely controlled by the humidity in the free atmosphere. The convergence associated with the equatorial waves can produce the moisture anomaly to overcome the relative humidity threshold, and maintains the favorable condition for cumulus convection once it starts. In this case, not only Rossby waves but also Kelvin, MRG, and n = 0 EIG waves are reproduced more realistically. It is suggested that inclusion of some kind of mechanism connecting the free tropospheric moisture with the convection under the condition of abundant convective available potential energy could be a key factor for realistic coupling between large-scale atmospheric waves and convection.  相似文献   

4.
The second Madden–Julian Oscillation (MJO) event during the field campaign of the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (DYNAMO/CINDY2011) exhibi ted an unusual double rainband structure. Using a wavenumber-frequency spectral filtering method, we unveil that this double rainband structure arises primarily from the Kelvin wave component. The zonal phase speed of the double rainbands is about 7.9 degree per day in the equatorial Indian Ocean, being in the range of convectively coupled Kelvin wave phase speeds. The convection and circulation anomalies associated with the Kelvin wave component are characterized by two anomalous convective cells, with low-level westerly (easterly) and high (low) pressure anomalies to the west (east) of the convective centers, and opposite wind and pressure anomalies in the upper troposphere. Such a zonal wind–pressure phase relationship is consistent with the equatorial free-wave dynamics. While the free-atmospheric circulation was dominated by the first baroclinic mode vertical structure, moisture and vertical motion in the boundary layer led the convection.The convection and circulation structures derived based on the conventional MJO filter show a different characteristic. For example, the phase speed is slower (about 5.9 degree per day), and there were no double convective branches. This suggests that MJO generally involves multi-scales and it is incomplete to extract its signals by using the conventional filtering technique.  相似文献   

5.
Observed outgoing longwave radiation (OLR) and ERA-Interim reanalysis data were analyzed to reveal the initiation processes associated with a successive and a primary MJO event during 2000-2001. It was found that the initiation of the successive event was caused by anomalous ascending motion induced by low-level horizontal temperature advection. The anomalous ascending motion, together with horizontal moisture advection, moistened lower troposphere and led to an unstable stratification and triggered convection. The initiation of the primary MJO event, on the other hand, was caused by the accumulation of anomalous moisture associated with three low-frequency modes, a convectively coupled Kelvin wave (CCKW), an westward-propagating equatorial Rossby wave (ER) and a weak planetary-scale MJO mode. It is the merging of the low-level specific humidity anomalies of the three modes that led to the rapid setup of large-scale convectively unstable stratification and favored the development of the eastward-propagating planetary-scale MJO mode.  相似文献   

6.
In observations, the 2-day waves, identified as the convectively coupled equatorial inertio-gravity (IG) waves, only propagate westward. To understand this feature, a simple theoretical model is presented for the convectively coupled equatorial waves (CCEWs). Under the assumption that the convective heating is proportional to the vertical velocity on the first baroclinic mode, the nonlinear governing equation for the meridional velocity of the CCEWs can be derived. The optimal method is used to obtain the dispersion relation from this nonlinear equation, and the results show that the deep convection can slow down the IG waves by decreasing the mean state static stability, but the key leading to the westward propagation of the IG waves is the full meridional variation of the sea surface temperature (SST). The warm SST trapped near the equator excites long westward propagating IG waves, whereas the warm SST trapped near the ITCZ centered at 10° N excites short westward propagating IG waves. This theoretical model provides a simple tool to study the CCEWs in understanding the tropical circulation.  相似文献   

7.
层云加热对热带大气季节内振荡的影响   总被引:2,自引:1,他引:1  
查晶  罗德海 《大气科学》2011,35(4):657-666
本文研究了层云降水加热对于激发热带大气季节内振荡(Madden-Julian oscillation,简称MJO)所起到的作用.将层云加热作用引入到非线性的CISK (Conditional Instability of Second Kind)-Kelvin波方程组,并分别利用截谱方法和四阶Runge-Kutta方法...  相似文献   

8.
The influence of El Nio-Southern Oscillation (ENSO) on the convectively coupled Kelvin waves over the tropical Pacific is investigated by comparing the Kelvin wave activity in the eastern Pacific (EP) El Nio, central Pacific (CP) El Nio, and La Nia years, respectively, to 30-yr (1982-2011) mean statistics. The convectively coupled Kelvin waves in this study are represented by the two leading modes of empirical orthogonal function (EOF) of 2-25-day band-pass filtered daily outgoing longwave radiation (OLR), with the estimated zonal wavenumber of 3 or 4, period of 8 days, and eastward propagating speed of 17 ms-1 . The most significant impact of ENSO on the Kelvin wave activity is the intensification of the Kelvin waves during the EP El Nios. The impact of La Nia on the reduction of the Kelvin wave intensity is relatively weaker, reflecting the nonlinearity of tropical deep convection and the associated Kelvin waves in response to ENSO sea surface temperature (SST) anomalies. The impact of the CP El Nio on the Kelvin waves is less significant due to relatively weaker SST anomalies and smaller spatial coverage. ENSO may also alter the frequency, wavelength, and phase speed of the Kelvin waves. This study demonstrates that low-frequency ENSO SST anomalies modulate high-frequency tropical disturbances, an example of weather-climate linkage.  相似文献   

9.
This study investigates the influence of Simplified Arakawa Schubert (SAS) and Relax Arakawa Schubert (RAS) cumulus parameterization schemes on coupled Climate Forecast System version.1 (CFS-1, T62L64) retrospective forecasts over Indian monsoon region from an extended range forecast perspective. The forecast data sets comprise 45 days of model integrations based on 31 different initial conditions at pentad intervals starting from 1 May to 28 September for the years 2001 to 2007. It is found that mean climatological features of Indian summer monsoon months (JJAS) are reasonably simulated by both the versions (i.e. SAS and RAS) of the model; however strong cross equatorial flow and excess stratiform rainfall are noted in RAS compared to SAS. Both the versions of the model overestimated apparent heat source and moisture sink compared to NCEP/NCAR reanalysis. The prognosis evaluation of daily forecast climatology reveals robust systematic warming (moistening) in RAS and cooling (drying) biases in SAS particularly at the middle and upper troposphere of the model respectively. Using error energy/variance and root mean square error methodology it is also established that major contribution to the model total error is coming from the systematic component of the model error. It is also found that the forecast error growth of temperature in RAS is less than that of SAS; however, the scenario is reversed for moisture errors, although the difference of moisture errors between these two forecasts is not very large compared to that of temperature errors. Broadly, it is found that both the versions of the model are underestimating (overestimating) the rainfall area and amount over the Indian land region (and neighborhood oceanic region). The rainfall forecast results at pentad interval exhibited that, SAS and RAS have good prediction skills over the Indian monsoon core zone and Arabian Sea. There is less excess rainfall particularly over oceanic region in RAS up to 30 days of forecast duration compared to SAS. It is also evident that systematic errors in the coverage area of excess rainfall over the eastern foothills of the Himalayas remains unchanged irrespective of cumulus parameterization and initial conditions. It is revealed that due to stronger moisture transport in RAS there is a robust amplification of moist static energy facilitating intense convective instability within the model and boosting the moisture supply from surface to the upper levels through convergence. Concurrently, moisture detrainment from cloud to environment at multiple levels from the spectrum of clouds in the RAS, leads to a large accumulation of moisture in the middle and upper troposphere of the model. This abundant moisture leads to large scale condensational heating through a simple cloud microphysics scheme. This intense upper level heating contributes to the warm bias and considerably increases in stratiform rainfall in RAS compared to SAS. In a nutshell, concerted and sustained support of moisture supply from the bottom as well as from the top in RAS is the crucial factor for having a warm temperature bias in RAS.  相似文献   

10.
Abstract

Using GATE A/B‐scale U.S.S.R. ship data, heat and moisture budget analyses have been carried out for the three‐day period: 0000 GMT, 7 September to 2400 GMT, 9 September, 1974. The period has been subdivided into an undisturbed period (0000 GMT, 7 September ‐1800 GMT, 8 September) and a disturbed period (1800 GMT, 8 September ‐ 2400 GMT, 9 September) based on surface precipitation and satellite cloud observations. During the undisturbed period, precipitation was very light (1–3 mm day‐1). On the other hand, the precipitation rate became well over 10 mm day‐1 during the disturbed period. A/B‐scale heat and moisture budget results for both periods are presented.

It is found that during the undisturbed period, cumulus clouds have heating and moistening effects in the lower troposphere below 700 mb, and cooling and moistening effects in the upper troposphere above 600mb. In the disturbed period, clouds have strong heating and drying effects throughout the entire cloud layer.

Using the diagnostic scheme developed by Cho (1977), the collective properties of cumulus clouds for both the undisturbed and the disturbed periods are also determined. During the undisturbed period, some clouds reached as high as the 300‐mb level, however, little precipitation was produced. The total cloud mass flux is found to be negative in the upper troposphere and can be attributed to downdrafts induced by the evaporation of cloud liquid water. On the other hand, total cloud mass flux for the disturbed period is positive throughout the entire troposphere.  相似文献   

11.
本文从赤道β平面近似下的线性化扰动方程组出发,基于第二类条件不稳定(CISK)理论,研究了热带对流层大气准40天低频振荡的动力机制。研究发现,当对流层中、上层存在较大的对流凝结加热时可激发出纬向波数为1、周期为40天左右的不稳定Kelvin波,它以每天8到11个经度的相速缓慢向东移动。由此指出,观测到的热带对流层大气30—50天的低频振荡可能正是这种由对流凝结加热所驱动的缓慢东移的Kelvin波的具体表现。这可对热带对流层大气30—50天低频振荡现象的动力机制给以初步的物理解释。   相似文献   

12.
广东省新丰江流域4—5月暖云的微物理特征   总被引:7,自引:1,他引:6  
本文对新丰江流域初夏暧云的含水量与小云滴谱特征进行了分析。指出暖积云的含水量比暖性层积云大;广东初夏暧性层积云的含水量大于北方降水性As—Ns云系。被探测云的主要降水机制均为碰并增长过程,但浓积云中云滴碰并增长条件比层积云优越;与湖南等地积云相比,广东积云更具有海洋性积云的特征。   相似文献   

13.
热带大气和海洋运动的频率差异在海气系统演变中的作用   总被引:2,自引:0,他引:2  
严邦良 《大气科学》1999,23(1):77-90
对热带太平洋地区850 hPa纬向风场、海表温度场月平均距平进行了谱分析。结果表明:纬向风距平与海表温度距平的振幅在El Ni?o或La Ni?a期间同时增长。而在其他期间,波振幅随时间呈相反变化趋势。在El Ni?o或La Ni?a事件发展期间,纬向风距平的位相角与海表温度距平位相角的差值在90o左右,而在事件的衰减期间,它们的位相角的差值在0o左右。本文还利用长波近似、海洋对大气加热取局地热力平衡近似时的简单热带海气耦合模式,研究了大气变量和海洋变量位相差随时间变化对海气耦合解的影响。在海气耦合模式中,当大气模式取为非定常时,大气和海洋Kelvin波之间以及Rossby波之间存在着能量转换,使大气和海洋波振幅呈相反变化趋势。此时,耦合波振幅随位相角差的变化没有共同的增长或衰减区间。大气Kelvin波与海洋Rossby波或大气Rossby波与海洋Kelvin波相互作用时,波振幅随位相差的变化存在着相同增长和衰减区间,它们的振幅要么同时增长,要么同时减少。当大气模式取定常时,因为相互作用波之间的位相差是一常数,波振幅随时间无限制增长。本文还在大气模式取为非定常和定常两种情况下,对海气耦合模式进行了数值求解。结果表明,当大气模式取为非定常时,数值解随时间的变化趋势跟观测结果有较好一致性。当大气模式取为定常时,数值解随时间的变化趋势跟观测结果差别较大。  相似文献   

14.
下曳气流在积云对流中的作用   总被引:1,自引:0,他引:1  
薛建军  谈哲敏  闫之辉 《气象》1999,25(11):9-14
利用国家气象中心高分辨率有限区域业务预报模式(HLAFS)对有无下曳气流的积云参数化方案进行了对比试验,通过对积云内容各物理量及大尺度物理量场的诊断分析研究下曳气流对积云对流发生发展的作用以及对大尺度热力,动力场的影响。结果表明:(1)下曳气流具有湿冷的特征,主要出现在强对流时段时流层中下层;(2)下曳气流的引入,促进了模式中强积云对流的发生发展,并在更高更多的空间层次上更强地加热及干化环境大气,  相似文献   

15.
深对流云输送对于对流层O3、NOx在分析的作用   总被引:4,自引:0,他引:4  
利用一个冰雹云模式与云化学输送模块耦合而成的三维对流云化学/输送模式, 研究对流云对重要的大气污染物臭氧 (O3)、氮氧化物 (NOx, 包括NO 和NO2) 的输送作用。模式较好地体现了一个单体积云的发展过程及其特征。云化学/输送模式的结果表明, 云内强烈的垂直输送能在30 m in 左右, 把低层低体积分数的O3和高体积分数的NO2快速、有效地输送到对流层的上部, 造成化学物种的再分布。而在云顶附近, 由于对流穿透了对流层的顶部,造成了上层高体积分数O3的向下侵入,说明云的对流活动除了能把边界层内的污染物向上输送, 其夹卷作用还可以造成平流层和对流层化学物质的交换。  相似文献   

16.
The popular method of presenting wavenumber–frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called “convectively coupled Kelvin (mixed Rossby-gravity) waves” are presented as existing only in the symmetric (anti-symmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of “convectively coupled Kelvin waves,” which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, “convectively coupled Kelvin waves” do show anti-symmetric components, and “convectively coupled mixed Rossby-gravity waves (also known as Yanai waves)” do show a hint of symmetric components. These results bolster a published proposal that these waves should be called “chimeric Kelvin waves,” “chimeric mixed Rossby-gravity waves,” etc. This revised method of presenting power spectrum diagrams offers an additional means of comparing the GCM output with observations by calling attention to the capability of GCMs to correctly simulate the asymmetric characteristics of equatorial waves.  相似文献   

17.
 Experiments using a GCM with two different vertical resolutions show differences in the amount of variability in the tropical upper tropospheric zonal wind component associated with the Madden-Julian Oscillation (MJO). The GCM with lower vertical resolution shows very little variability in this quantity whereas when the vertical resolution is doubled in the free troposphere, the GCM produces variability which is of the same strength as observations. However, the eastward propagation of an enhanced convective region from the Indian Ocean into the west Pacific is not well represented in either simulation of this atmospheric GCM. A water-covered or “aqua-planet” version of the same GCM is used to investigate the behaviour of tropical convection when the vertical resolution is doubled. When the vertical resolution is increased, the spectrum of tropical cloud types changes from a bimodal distribution with peaks representing shallow cumulus and deep cumulonimbus clouds to a trimodal distribution with a third peak in mid-troposphere near the melting level. Associated with periods when these mid-level congestus clouds are dominant, the detrainment from these clouds significantly moistens the mid-troposphere. The appearance of these congestus clouds is shown to be partly due to improved resolution of the freezing level and the convective processes occurring at this level. However, due to the way in which convective detrainment is parametrized in this model, the vertical profile becomes rather noisy and this too contributes to the change in the nature of the convective clouds. The resulting cloud distribution more closely resembles observations, particularly during the suppressed phase of the MJO when cumulus congestus is the dominant cloud type. Received: 17 April 2000 / Accepted: 30 November 2000  相似文献   

18.
运用WRF模式对2009年8月发生在华北地区的一次暴雨过程进行了数值模拟,按照性质的不同对模拟降水进行了研究,还进行了湿度场试验,最后利用模式输出结果对水汽螺旋度和水汽涡度收支进行了诊断分析。结果表明,数值模式比较合理地再现了本次暴雨天气过程。显式降水在模拟的总降水量中占了很大的比重,但是在暴雨爆发初期,积云降水起了重要作用。对流层中层的水汽饱和程度对模拟降水性质及降水量大小有重要影响,显式降水一般发生在空气饱和程度较高的区域,而位势不稳定则是诱发积云降水的主要原因。对流层中低层水汽螺旋度的强度变化在一定程度上代表了降水系统的强弱变化,其高值区与强降水落区在出现的时间和空间上都存在较好的一致性。水汽涡度收支对于水汽涡度及水汽螺旋度的变化具有很好的指示意义,可以作为预报降水的一个动力指标。  相似文献   

19.
The LMDZ4 general circulation model is the atmospheric component of the IPSL–CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley–Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke’s convection scheme, used in previous versions, the Emanuel’s scheme improves the representation of the Hadley–Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke’s parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model.  相似文献   

20.
A cumulonimbus cloud may ascend and spawn its anvil cloud, precipitation, and downdrafts within an hour or so. This paper inquires why a similar progression of events (life cycle) is observed for tropical weather fluctuations with time scales of hours, days, and even weeks. Regressions using point data illustrate the characteristic unit of rain production: the mesoscale convective system (MCS), covering tens of kilometers and lasting several hours, with embedded convective rain cells. Meanwhile, averages over larger spatial areas indicate a self-similar progression from shallow to deep convection to stratiform anvils on many time scales.Synthetic data exercises indicate that simple superpositions of fixed-structure MCS life cycles (the Building Block hypothesis) cannot explain why longer period life cycles are similar. Rather, it appears that an MCS may be a small analogue or prototype of larger scale waves. Multiscale structure is hypothesized to occur via a Stretched Building Block conceptual model, in which the widths (durations) of zones of shallow, deep, and stratiform anvil clouds in MCSs are modulated by larger scale waves.Temperature (T) and humidity (q) data are examined and fed into an entraining plume model, in an attempt to elucidate their relative roles in these large-scale convection zone variations. T profile variations, with wavelengths shorter than troposphere depth, appear important for high-frequency ( 2–5-day period) convectively coupled waves, as density directly links convection (via buoyancy) and large-scale wave dynamics (via restoring force). Still, the associated q anomalies are several times greater than adiabatic, suggesting a strong amplification by shallow convective feedbacks. For lower frequency (intraseasonal) variability, q anomalies are considerably larger compared to T, and may be dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号