首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
判定局地海-气相互作用的特征对海-气耦合模式中应用哪种形式的“强迫模拟”具有重要指导作用。本文根据海表热通量异常与海表温度异常及海表温度变率之间的相关关系,对全球大洋季节内尺度上的海-气相互作用特征进行了综合分析。结果表明:(1)南、北半球亚热带地区海-气相互作用的特征主要表现为大气对海洋的强迫,且在夏季(北半球为6—8月,南半球为12—翌年2月)强迫作用的范围最大,冬季强迫作用的范围最小;(2)赤道中、东太平洋及赤道大西洋地区海-气相互作用的特征全年表现为海洋对大气的强迫,印度洋索马里沿岸、阿拉伯海以及孟加拉湾地区仅在6—8月表现出海洋强迫大气的现象,而孟加拉湾则在9—11月表现为大气强迫海洋;(3)45°N(S)以上的高纬度地区海表温度的异常和变率无法用局地热通量的交换来解释,这是因为该区域海表温度的变化主要由平流等海洋内部动力过程决定,因此海-气之间在季节内尺度上的相互作用不明显。在某些海区,季节内尺度上的海-气相互作用关系与季节以上时间尺度的这种关系可能会有明显不同。  相似文献   

2.
热带印度洋降水、蒸发的时空特征及其对海表盐度的影响   总被引:3,自引:2,他引:1  
许金电  高璐 《海洋学报》2018,40(7):90-102
本文利用降水、蒸发等资料分析热带印度洋年降水量、蒸发量、净淡水通量的分布特征,并选取4个典型海域来分析降水量、蒸发量、净淡水通量的季节变化和年际变化。结果表明:东印度洋的苏门答腊岛西部海域年降水量最大,季节变化较小,属全年降雨型;孟加拉湾的东北部和安达曼海的北部海域年降水量较大,其年际变化以4.2 mm/a的速率增长,强降水出现在5-9月;阿拉伯海的西部海域年降水量较小;南印度洋东部(20°~30°S,80°~110°E)海域年降水量较小,年蒸发量较大,年蒸发量在2000年之前以5.1 mm/a的速率增长,之后以4.5 mm/a的速率减小。本文还采用Argo盐度等资料探讨降水、蒸发对海表盐度的影响,研究结果表明:降水量远大于蒸发量的海域,海表盐度较低;降水量远小于蒸发量的海域,海表盐度较高。表层水平环流是导致高净淡水通量中心与低盐中心并不重合的主要原因,也是导致强蒸发中心与高盐中心并不重合的主要原因。选取的4个典型海域海表盐度的季节变化与净淡水通量关系不大,而是与表层水平环流有关。孟加拉湾强降水对表层盐度的影响显著,强降水发生后表层盐度降低0.2~0.8,其影响深度为30~50 m。  相似文献   

3.
掌握南海三维温盐场特征对于研究南海海洋动力环境及其对海洋气候变化的影响具有重要意义。基于海洋再分析数据GLORYS12V1和AVHRR OISST数据,开展了南海温盐空间分布及季节变化分析,以及海表温度对台风过程的响应特征分析。分析结果表明:南海海表温度一般为25~32℃,最高温度出现在8月的黄岩岛附近海域,海表盐度一般为32~35 psu,最高盐度出现在7月的东海附近海域;温盐垂向结构表现为表层高温低盐,随着深度增加温盐季节性变化越小。南海地区温跃层深度存在明显季节变化特征,秋冬季节温跃层深度大于春夏两季。根据“威马逊”台风期间海表温度变化特征分析海表温度对台风过程的响应,台风期间南海水体垂向混合作用增强,海表温度降温明显。  相似文献   

4.
本文利用Argo表层盐度、OSCAR海流等数据,基于盐度收支方程的平流输送项来阐述海洋平流输送对热带印度洋表层盐度的调整作用;利用淡水输运量计算公式揭示6条关键断面海洋平流输送对表层盐度空间结构的调整机制。结果表明,海洋平流将赤道西印度洋和阿拉伯海的高盐水输送到低盐海域的赤道东印度洋和孟加拉湾、安达曼海;将赤道东印度洋和孟加拉湾、安达曼海的低盐水输送到高盐海域的赤道西印度洋、阿拉伯海以及赤道南印度洋海域,起到了调整印度洋盐度基本平衡的作用。断面淡水输运量的分析结果表明,导致苏门答腊岛西部海域的强降水中心与低盐中心不重合,澳大利亚西部海域的强蒸发中心与高盐中心不重合的主要原因是水平环流所致;夏季,来自赤道西印度洋和阿拉伯海的高盐水在西南季风环流的驱动下,入侵孟加拉湾,是导致孟加拉湾夏季表层盐度较高的主要原因。  相似文献   

5.
本文利用Argo盐度、SODA海流量、OAFlux蒸发量和TRMM降水量等数据,采用盐度收支方程定量给出了印度洋混合层盐度的收支,揭示了整个印度洋净淡水通量项、平流项、垂向卷夹项的分布、季节变化特征及其对混合层盐度变化的主要贡献。结果表明,就多年平均而言,平流项负贡献(15.14%)大于正贡献(9.89%),说明平流输送把低盐水输送到高盐海域,导致印度洋高盐海域混合层的盐度降低。净淡水通量项的分布和季节变化与降水量基本一致,且正贡献(13.70%)大于负贡献(7.81%),说明净淡水通量项使印度洋的混合层盐度升高(因为多年平均蒸发量大于降水量)。盐度季节变化显著海域的进一步分析表明,6?11月,西南季风漂流把赤道西印度洋的低盐水(相对阿拉伯海高盐水而言)输送到阿拉伯海西部海域,导致该海域的盐度降低。平流输送把孟加拉湾湾口和中部的高盐水带到北部海域,是导致北部海域盐度升高的主要原因。  相似文献   

6.
南极印度洋扇区分布了许多南极底层水的生成区,此海域海水盐度变化对全球的气候变化有着深远影响。本文采用EN4再分析数据、实测海豹资料和WOD18数据,结合大气再分析和海冰密集度数据,对南极印度洋扇区表面盐度长期变化及其对大尺度环流异常的响应进行探究。2008年以来,南极沿岸出现显著的海表面持续性高盐异常,其中印度洋扇区变化最为显著,表层高盐水主要集中在达恩利冰间湖附近与沙克尔顿冰架以北的海域。沿岸海域的高盐陆架水向北扩张且影响深度不断加深,高盐的绕极深层水上涌也更加明显。此高盐异常与南极涛动(Antarctic Oscillation,AAO)、印度洋偶极子(Indian Ocean Dipole,IOD)两种大尺度环流密切相关。AAO与IOD正位相下,西风显著增强,促进海冰大量生成,为海表面提供了大量的盐通量。同时,海表面出现更显著的风场旋度负异常与低压异常,促进高盐深层水上涌,对高盐异常有重要维持作用。此外,纬向风剪切与蒸发增强也是影响该高盐异常的重要局地过程。  相似文献   

7.
影响南海混合层盐度季节变化的因素分析   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对1950-2012年的南海混合层盐度数据进行分析,发现影响南海北部和南部盐度季节变化的最主要因素存在很大的差异.在南海北部,影响混合层盐度季节变化的最主要因素是蒸发降水,其次是水平平流.随着逐步南移,蒸发降水对盐度季节变化的影响递减,水平平流的影响逐渐增大;而在南海南部,水平平流的作用超过蒸发降水成为影响盐度的季节变化的最主要因素.在整个南海区域,冬季海水垂直混合变强,混合层变厚,下层高盐海水进入混合层,使混合层海水盐度变高,从而对冬季海水盐度的上升趋势产生促进作用;夏季南海北部混合层底存在上升流,南海东南部由于Ekman输运导致混合层变厚,都会将混合层以下高盐海水带入混合层,使混合层海水盐度变高,从而对夏季海水盐度下降趋势产生阻碍作用,但垂直混合对盐度季节变化的影响不大,远小于蒸发降水和水平平流.  相似文献   

8.
在北半球的春季,热带三大洋的海洋–大气系统年际变化会对同期太平洋厄尔尼诺–南方涛动(ElNi?o-Southern oscillation,ENSO)产生响应,同时也能通过区域海洋–大气耦合过程影响ENSO的发展。基于国际公开使用的海表温度资料和降水资料,通过联合正交经验分解方法分析,可以发现全球大洋春季存在两种显著的海气耦合模态。第一模态表现为:在热带中东太平洋,海表温度增暖、降水增多;在热带大西洋和热带印度洋,降水呈现经向偶极型分布以及跨赤道的海表温度梯度异常;即伴随ENSO在春季消亡期的空间型态,大西洋出现经向模态,印度洋出现反对称模态。第二模态表现为:太平洋经向海表温度和降水模态,即太平洋经向模态。回归分析结果表明, ENSO盛期的大气环流调整引起了热带大西洋和印度洋降水辐合带异常,并通过海面风场异常激发海盆内部的海洋–大气反馈,引起春季经向模态。进一步研究发现,冬、春季大西洋和印度洋热带辐合带分别位于赤道以北和以南,导致两个海盆经向模态的降水异常相对赤道呈反对称分布。在春季,太平洋经向模态的暖中心延伸到赤道上,引起西风异常,为后续El Ni?o的发展提供了有利条件。文章揭示了...  相似文献   

9.
基于中国东部1955—2004年233个台站逐日降水和NCEP/NCAR再分析高度场、风场、比湿、地面气压以及NOAA海表温度资料,运用SVD、合成分析等方法研究了太平洋SSTA同中国东部夏季极端降水事件之间的相互关系,结果表明:前期冬季太平洋SSTA同我国东部夏季极端降水事件的关系比较显著;前冬赤道中东太平洋是影响我国华北地区夏季极端降水事件的关键区,若前冬该海域海温发生异常,从冬到夏大气环流先后通过PNA(反PNA)和WP(反WP)遥相关型使得西太平洋副热带高压发生异常,进而使得华北夏季极端降水事件发生异常;前冬热带西太平洋是影响我国东北南部及江南地区夏季极端降水事件的关键区,若前冬该海域海温发生异常,从冬到夏105°~135°E的平均经向垂直环流圈发生异常,使得夏季东北南部与江南地区垂直运动发生异常,进而使得东北南部和江南夏季极端降水事件发生异常。  相似文献   

10.
利用SeaFlux再分析数据和经验模型研究了热带印度洋海表日增温年循环和半年循环的时空分布特征及其机理。研究结果表明,热带印度洋海表日增温年循环振幅在绝大部分海区都较大;而半年循环振幅仅在北印度洋较大。对年循环而言,在17°S以南海区以太阳辐射年循环的贡献为主,而在17°S以北海区以风速年循环的贡献为主;对于半年循环,在北印度洋以风速半年循环的贡献为主。本文还重点关注了以下两个海区:1)阿拉伯海西部,海表日增温年循环比半年循环振幅小;2)孟加拉湾中部,情况刚好相反。两海区相比,海表日增温年循环振幅在孟加拉湾中部较大;而半年循环振幅在阿拉伯海西部较大。这些差异都是由两海区不同的太阳辐射和风速年循环和半年循环造成的。  相似文献   

11.
基于Argo浮标的热带印度洋混合层深度季节变化研究   总被引:2,自引:0,他引:2  
根据2004-2005年热带印度洋(30°S以北)的Argo浮标(自持式海洋剖面观测浮标)温度-盐度剖面观测资料,采用位势密度判据(Δσθ=0.03 kg/m3),针对每个Argo浮标的温度-盐度观测剖面确定了海洋混合层的深度,然后采用Krig插值方法构建了3°×3°空间分辨率的月平均网格化混合层深度产品。通过与已有气候平均混合层深度资料的比较表明了该产品的合理性,在此基础上进一步对热带印度洋海盆尺度的混合层深度空间特征和季节变化规律进行了讨论。研究结果表明,Argo浮标资料可用于热带印度洋混合层变化的研究,为进一步研究热带印度洋海-气相互作用提供了基础资料。  相似文献   

12.
本文利用2011年8月至2014年3月Aquarius卫星盐度产品结合Argo等实测盐度资料,探讨了孟加拉湾海表盐度的季节及年际变化特征。结果显示,Aquarius与Argo盐度呈显著线性正相关,总体较Argo盐度值低,偏差为-0.13,其中在孟加拉湾北部海域负偏差值比南部海域更大,分别为-0.28和-0.10。Aquarius卫星与Argo浮标在表层盐度观测深度上的差别是造成此系统偏差的主因。Aquarius盐度资料清晰显示了孟加拉湾海表盐度具有明显的季节变化特征,包括阿拉伯海高盐水的入侵引起湾南部海域盐度的变化以及湾北部淡水羽分布范围的季节性迁移等主要特征。此外,分析还揭示了2011(2012)年春季整个湾内出现异常高盐(低盐)现象。研究表明,2010(2011)年湾北部夏季降雨减少(增加)导致该海域海水盐度偏高(偏低),并通过表层环流向南输运引起次年春季湾内表层盐度出现异常高盐(低盐)现象,春季风应力旋度正(负)距平通过影响盐度垂直混合过程对同期表层盐度异常高盐(低盐)变化也有影响。  相似文献   

13.
海表盐度是研究海洋变化及其气候效应重要的物理量。本文将2018年SMAP卫星的月均、日均海表盐度产品分别与Argo月均网格化产品、实时散点盐度数据进行比较,评定其精度,并分析全球海表盐度分布特征。结果表明:SMAP卫星月均产品RMSE为0.17,BIAS为0.11,STD为0.17,R为0.98,t检验呈显著相关;SMAP卫星日均产品RMSE为0.28,BIAS为0.23,STD为0.26,R为0.81,相较月均产品,精度较低。SMAP卫星月均产品偏差在中纬度海域较小,在高纬度海域较大;SMAP卫星日均产品偏差在太平洋海域为-0.6~0.6,在地中海海域超过1.0。全球海表盐度在25.0~40.0之间,沿纬度方向呈带状分布,其中大西洋海表盐度普遍高于太平洋和印度洋。  相似文献   

14.
文章利用ERA-40海表10m风场,采用一元线性回归方法,计算印度洋海表风速在45年间(1957年9月至2002年8月)的逐年变化趋势,为"21世纪海上丝绸之路"建设、海上风能开发和全球气候变化研究等提供科学依据。研究表明:海表风速呈显著性逐年递增的区域主要分布于25°S—10°N的海域和南半球咆哮西风带所控制的海域,递增趋势为0.01~0.035m·s-1·a-1,仅零星海域呈显著性递减趋势,其余海域的海表风速无显著变化趋势;南、北印度洋的海表风速分别以0.010 2m·s-1·a-1和0.004 7m·s-1·a-1的速度显著性逐年线性递增,年平均海表风速分别在7.5m·s-1左右和5.2m·s-1左右;南、北印度洋存在共同的2.6~2.7a和5.2a的变化周期以及26a以上的长周期变化,且海表风速的突变期分别为1989年和1978—1980年。  相似文献   

15.
为探究不同季节下黄海暖流在源区的状态,利用韩国海洋数据中心(Korea Oceanographic Data Center)发布的水文数据,对黄海暖流源区附近温盐结构及其季节变化进行了分析。结果表明:年平均状态下对马暖流在济州岛东南存在向西向入侵的趋势,其入侵存在明显的季节变化:秋季最强,冬、春季开始减弱,夏季最弱。济州岛西侧,约在33°30′N、125°30′E处存在一支伸向西北的高盐舌,该高盐舌盐度同样具有明显的季节变化:冬季最强,春季开始减弱,夏季降至最低,秋季盐度开始缓慢回升。黄海区盐度的变化要滞后于对马暖流区盐度变化。冬季朝鲜沿岸水南下入侵程度最强,能到达34°N以南的位置。  相似文献   

16.
海洋锋是特性明显不同的两种或几种水体之间的水平分布高梯度带。海洋锋对海战场环境存在重要影响。文中基于高性能计算机平台,采用海洋动力模式和先进的数据同化技术制作的海洋数值再分析产品(China Ocean Reanalysis,CORA),研究了东中国海温度锋和盐度锋分别在表层和50 m层深度上的季节变化特征。通过分析发现温度锋在冬季主要分布在东海及台湾海峡,在夏季主要分布在渤海及黄海;春秋两季的变化介于冬夏两季之间;东海黑潮区四季皆存在温度锋。盐度锋主要存在于黄河和长江等径流入海区附近。温度锋和盐度锋的季节变化主要受气象条件、河流入海和近岸升降流季节变化的共同影响。  相似文献   

17.
利用美国国家海洋大气管理局2007年发布的全球海域温、盐数据库资料,美国地球物理数据中心2006年发布的海底地形数据库资料以及日本海洋科学与技术机构2003年发布的1997—2002年东海地区月平均降水量资料,研究东海黑潮表层盐度的月季分布特征,并分析其影响因素。结果表明,东海黑潮表层盐度存在明显的月季变化特征。总体而言,12月至次年3月表层盐度高,6—9月表层盐度低,4、5月和10、11月为过渡阶段;表层盐度高值分布在东海黑潮主段靠近东边界一侧;6—9月入口段的表层盐度高于出口段的表层盐度,其他月份入口段的表层盐度低于出口段的表层盐度。东海黑潮表层盐度主要受表层温度、降水、径流的影响。冬、春、秋季的表层盐度分布在黑潮主段靠近陆架一侧区域受表层温度影响大;降水对东海黑潮表层盐度产生局部小范围的影响,时间主要集中在1月和6—8月份,区域分布在低纬25°N以南和30°N附近。长江冲淡水夏季对东海黑潮表层盐度的影响大于其他季节对东海黑潮表层盐度的影响,7月长江径流量达到最大值时,对应的黑潮扇形区的盐度最低。  相似文献   

18.
本文利用海洋观测资料和全球海洋环流模式数据(Estimating the Circulation and Climate of the Ocean, ECCO)研究了赤道印度洋上层海洋盐度的年际变化及其相关的海洋动力过程。研究结果表明,上层海洋盐度年际变化主要受印度洋偶极子事件影响,且盐度变化在正、负印度洋偶极子事件中存在不对称特征,其在偶极子正事件中表现更强烈。进一步研究表明,赤道印度洋上层盐度变化主要受纬向平流输运调控,尤其是Wyrtki急流对盐度变化有重要影响。在正印度洋偶极子事件期间,Wyrkti急流减弱甚至消失,流场负异常的强度明显较负偶极子事件期间的流场正异常强度强。印度洋偶极子存在正偏度是造成盐度和流场在正、负印度洋偶极子事件中存在不对称性的主要原因。  相似文献   

19.
利用2003年冬季"科学一号"考察船在帕里西维拉海盆获得的CTD调查资料,结合同一时间西北太平洋海区的卫星高度计观测结果,分析讨论了该海区上层水体的温盐特征及其受中尺度涡活动的影响等。结果表明:在调查期间,研究区海域曾同时出现冷、暖涡活动过程,其影响深度均大于200m;冷涡活动区位于研究区内136°—138°E之间的海域,沿北东方向延伸;冷涡水体的盐度在100m以浅高于周围水体,在150m以深则低于周围水体;暖涡活动区出现在138.5°—139°E之间,暖涡活动特征在50m以浅水体中表现并不明显,其水体盐度在100m以深起初表现为低盐中心,在150m以深逐渐转化为高盐中心;研究区200m以浅水体可以大致分为三层,80m以浅为高温低盐的表层水,80—140m之间为受中尺度涡影响的温盐性质复杂的混合层水,140—200m之间为低温高盐的次表层水。  相似文献   

20.
刘雨  徐康  王卫强  谢强  王玉国 《海洋与湖沼》2021,52(5):1104-1114
上层经向翻转环流(shallow meridional overturning circulation, SMOC)主导热带-副热带上层海洋水体交换,对海洋物质输运和热量交换具有重要意义。基于7套海洋再分析数据产品,本文主要探讨了印度洋SMOC的冬夏季节变化及其差异的原因。结果显示,印度洋SMOC主要由南半球副热带环流圈(southern subtropical cell, SSTC)和跨赤道环流(cross-equatorial cell, CEC)组成,并且具有显著的季节差异。夏季风期间, SSTC和CEC均为表层南向输运,表层以下北向输运的逆时针环流结构。冬季风盛行时, SSTC仍维持逆时针结构,但环流中心南移且深度加深,强度弱于夏季;然而, CEC却转向为表层北向输运,表层以下向南输运的顺时针环流结构,其环流中心位置与夏季接近,环流强度与夏季相当。这种印度洋SMOC冬夏结构差异究其原因主要由风生环流主导, CEC冬夏季节环流方向反转是北印度洋冬夏季风转向的结果,而南印度洋信风的季节性位移和强度变化是SSTC强度和位置季节差异的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号