首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
利用方差统计方法分析了前期高原大气热源异常时四川及其周边区域的主汛期的位势场、相对湿度场、垂直速度场以及风场的变化。结果表明,当前期高原大气热源异常时,次年汛期四川及其周边区域的各要素场会出现显著变化。当前期高原加热场异常偏强,在次年的5~6月东北冷涡异常偏强、7~9月青藏高压显著偏强,而副热带高压的位置明显偏东;当前期高原加热场异常偏弱时,次年河套西风槽则异常偏强,青藏高压明显偏弱。其次当前期高原加热场异常时在次年汛期比湿场、垂直速度以及风场变率上都有异常。分析结果对于进一步理解青藏高原对四川及周边地区的天气及气候变化具有一定的意义。   相似文献   

2.
华北汛期降水与亚洲季风异常关系的研究   总被引:15,自引:1,他引:15  
文中诊断分析了华北汛期降水与亚洲季风区环流异常以及低纬地区热源异常的关系,结果表明:在华北汛期干旱年,亚洲季风偏弱,而在华北汛期降水偏多年,亚洲季风较强,并巳存在两个明显的变化中心,一个位于印度半岛中北部地区,另一个位于菲律宾群岛附近。华北汛期干旱年上述两个地区的热源偏弱,而降水偏多年则偏强。 华北地区干旱年和降水偏多年的前期亚洲季风区热源就已存在明显的不同:华北汛期干旱年前期,亚洲季风区的热源偏弱且位置偏南,表现出季节变化推迟的趋势;华北汛期降水偏多年前期,亚洲季风区的热源偏强且位置偏北,表现出季节变化提早的趋势。 利用IAP L9R15 AGCM气候数值模式,进一步研究了亚洲季风区凝结潜热加热异常对大气环流和华北地区降水的影响,结果表明,印度半岛中北部地区和菲律宾附近地区的凝结潜热加热异常将引起青藏高压和西太平洋副高的异常变化,进而影响到华北地区的降水。  相似文献   

3.
青藏高原热力异常与华北汛期降水关系的研究   总被引:24,自引:3,他引:24  
利用1980~1994年NCEP/NCAR再分析资料,以及我国336个测站1956~1994年月降水量资料,通过诊断分析和数值实验,研究了夏季高原上热力异常与华北汛期降水的关系.结果表明:华北汛期干旱年,青藏高压及西太平洋副热带高压偏南、偏东,华北汛期降水偏多年则相反;华北汛期旱年时,高原上升、高原东侧邻近地区下沉的垂直环流明显加强,而降水偏多年时,垂直环流减弱,华北地区为上升气流控制;夏季高原为热源和水汽汇区,它们的异常对华北地区降水有很大影响,当热源和水汽汇增强(减弱)时,华北地区降水偏少(偏多).数值试验表明,高原上潜热加热异常引起青藏高压、西太平洋副热带高压、亚洲季风以及欧亚中高纬地区环流的变化,进而影响到华北地区的降水.  相似文献   

4.
利用1951~2000年NCEP/NCAR逐日再分析资料计算了大气热源,并对夏季青藏高原东部大气热源异常和西太平洋暖池区大气热源异常对中国夏季降水的影响作了对比分析研究.结果表明,如果高原东部夏季大气热源显著偏强(偏弱),则长江流域地区的夏季降水显著偏多(偏少),而华南东部地区夏季降水偏少(偏多).菲律宾南部附近的热带西太平洋暖池区上空夏季大气热源显著偏强(偏弱)时,同期长江中下游地区偏涝(偏旱),而华南地区、江苏北部-山东南部则偏旱(偏涝).夏季青藏高原东部大气热源异常和热带西太平洋暖池区大气热源异常对中国夏季降水的影响是有差别的,中国的夏季降水受高原东部大气热源影响的显著范围要比受西太平洋暖池区大气热源影响的显著范围要大.无论是高原热源异常还是西太平洋暖池热源异常,东亚地区的大气环流都存在类似EAP型的遥相关波列.大气热源的异常是通过直接影响垂直运动场的异常,进而影响到我国的夏季降水的异常.夏季高原热源或西太平洋暖池热源偏强(偏弱)时,西太平洋副高的脊线比常年位置偏南(偏北).  相似文献   

5.
利用1957—2006年中国740站逐日降水资料和NCEP/NCAR逐日再分析资料,采用相关分析和合成分析等方法,分析了青藏高原及其邻近地区大气热源影响华北汛期降水的年代际变化的原因。结果表明:华北汛期降水量与青藏高原及其邻近地区的大气热源显著正相关,与江淮流域的视水汽汇显著反相关。以1978年为界,高原上空大气热源由之前的异常偏强改为之后的异常偏弱,直接导致了高原东部邻近地区包括华北在内的纬向垂直环流的年代际变化,即由之前的异常上升改变为之后的异常下沉,华北汛期降水也因此发生了由偏多变为偏少的年代际变化。华北上空视水汽汇的年代际减少,也是华北汛期降水年代际减少的重要的热力因素之一。  相似文献   

6.
青藏高原热源异常对1999年东亚夏季风异常活动的影响   总被引:13,自引:4,他引:9  
孙颖  丁一汇 《大气科学》2002,26(6):817-828
以1999年青藏高原的热源异常为出发点,讨论了其对东亚夏季风异常活动的影响,并从陆气相互作用的角度分析了该年热源异常的原因.结果表明,1999年青藏高原大气热源建立的时间明显偏晚,春夏季热源强度异常偏弱.这使得向高原的低层流入气流明显偏弱,垂直上升运动减弱,向高原的辐合减少,季风经圈环流变弱,高原南侧、东南侧的西南夏季风减弱,引起了夏季风的爆发偏晚及在中国东部北进的偏弱.而进一步对热源异常成因的分析表明,陆面因子的异常变化所引起的感热加热偏弱是热源偏弱的主要因子.高原积雪的减幅在春夏季变小,地表温度的增加变慢,地表温度偏低,引起了感热加热在春夏季的偏弱,进而导致了热源异常.  相似文献   

7.
利用1960-1995年青藏高原地面热源强度距平资料、高原A指数资料以及毕节地区8站1960-2004年5-9月总降雨量的平均值,通过相关分析,得出:1月份高原地面加热场偏强时,毕节地区汛期降雨偏多,5-9月份西伸脊点偏东;1月份高原地面加热场偏弱时,毕节地区汛期降雨偏少,5-9月份西伸脊点偏西。由此表明:1月份青藏高原地面加热场可以作为预测毕节地区旱涝的重要预测信号。  相似文献   

8.
印度洋潜热通量对南海夏季风爆发的影响   总被引:2,自引:0,他引:2  
利用OAFlux热通量资料和ERA-Interim高度场资料,分析了热带印度洋区域潜热通量的变化与南海夏季风爆发之间的关系,初步探讨了热带印度洋潜热通量变化对南海夏季风爆发早晚的影响过程。结果表明,2月热带印度洋区域的潜热通量与南海夏季风爆发之间存在密切的联系,当2月热带印度洋区域潜热通量较常年偏多(少)时,当年南海夏季风爆发偏晚(早)。当2月热带印度洋的潜热通量异常偏多(少)时,海洋向大气释放更多(少)的潜热,潜热通量通过对流凝结作用对大气加热形成大气热源,再通过大气环流逐渐影响2—4月的高度场,使得南海上空的850 hPa高度场出现异常偏高(低),即副热带高压偏强(弱)。异常强(弱)的副热带高压结合孟加拉湾弱(强)的异常西南风,造成南海夏季风爆发偏晚(早)。因此可以认为热带印度洋2月的潜热通量变化是影响南海夏季风爆发的重要因素。   相似文献   

9.
热带太平洋-印度洋海温异常综合模对南亚高压的影响   总被引:20,自引:5,他引:15  
杨辉  李崇银 《大气科学》2005,29(1):99-110
从综合考虑热带太平洋和印度洋海温异常特征出发,研究了热带太平洋-印度洋海温异常综合模对南亚高压的影响.当热带太平洋-印度洋海温异常综合模为正位相(西印度洋和东太平洋海温距平为正,东印度洋-西太平洋海温距平为负),南亚高压偏弱,位置偏东偏南;当热带太平洋-印度洋海温异常综合模为负位相(西印度洋和东太平洋海温距平为负,东印度洋-西太平洋海温距平为正),南亚高压偏强,位置偏西偏北.热带太平洋-印度洋海温异常综合模影响南亚高压主要通过三种机制:一是通过影响亚洲季风从而影响了降水潜热形成的大气加热场分布,在正(负)位相年,青藏高原大气热源为负(正)异常,因此青藏高原上空空气上升减弱(加强),南亚高压偏弱(偏强);南海季风和热带辐合带加强(减弱),菲律宾附近的大气热源加强(减弱),有利于上空青藏高原东南侧反气旋(气旋)式的距平环流,因此南亚高压偏东偏南(偏西偏北).二是热带太平洋-印度洋海温的纬向热力对比引起赤道纬向垂直(Walker)环流异常,必将引起高空纬向风异常,在正(负)位相年,南亚高压南部的印度洋高空会出现西(东)风异常,导致南亚高压偏弱(偏强).三是综合模的正(负)异常加强(减小)西印度洋经度范围的区域Hadley环流,其北侧伊朗高原上的异常下沉(上升)支,造成南亚高压偏弱(偏强),位置偏东偏南(偏西偏北).  相似文献   

10.
2006年川渝地区夏季干旱的成因分析   总被引:2,自引:1,他引:1  
利用NCEP/NCAR再分析月平均资料、全国160站降水资料、向外长波辐射OLR(outgoinglongwave radiation)资料和所计算的热源资料,分析了2006年夏季东亚大气环流的异常特征,并研究了热力异常与川渝地区夏季降水的关系。结果表明,2006年夏季由南向北的水汽输送较常年偏弱;西太洋副热带高压较常年异常偏强,脊线位置明显偏北,川渝地区受高压系统影响盛行下沉气流,中高纬环流场则表现为乌拉尔山地区和东北亚区域无明显阻塞高压形势,冷空气活动比常年弱;南亚高压比常年偏北偏强,持续控制川渝地区;2006年夏季青藏高原热源偏弱,热带西太平洋暖池区热源偏强,是引起西太平洋副热带高压偏北偏强的重要原因之一。川渝地区夏季降水与西太平洋副热带高压的异常变化有密切关系,川渝地区夏季干旱年,西太平洋副热带高压偏北,并且引起西太平洋副热带高压偏北的原因与2006年类似。  相似文献   

11.
青藏高原大气热量的简单计算方法及其应用   总被引:1,自引:2,他引:1  
利用1961-1995年青藏高原及其邻近地区198个地面站月平均常规观测资料与青藏高原大气热量(〈Q1〉)资料,建立了一种计算青藏高原大气热量的简便方法.利用计算出的大气热量分析了各个季节青藏高原各地区〈Q1〉的气候特征,以及冬季高原〈Q1〉与春季大气环流场的关系.结果发现,各个季节高原东北部地区大气热量值都小于南部地区;高原各区大气热量在20世纪70年代到80年代初都表现出了显著的上升趋势.高原冬季热源与春季高原周围地区的位势高度场存在着明显的负相关,气候模拟证实了冬季高原地区热源变化对春季东亚大气环流的这种影响.  相似文献   

12.
青藏高原低涡活动对降水影响的统计分析   总被引:6,自引:0,他引:6  
郁淑华  高文良  彭骏 《高原气象》2012,31(3):592-604
利用1998—2004年逐日08:00(北京时,下同)和20:00 500hPa高空图、日雨量和青藏高原低涡(下称高原低涡)切变线年鉴资料,统计分析了冬、夏半年不同生命史的高原低涡对我国和四川盆地东、西部降水的影响。结果表明,冬、夏半年高原低涡以东部涡占多数,6-10月有三分之一的东部涡能移出高原。冬半年高原低涡出现次数少,约占全年的五分之一,但也可造成高原及其周边地区的雨雪天气,特别是生命史超过36h以上的高原低涡有近半数可移出高原,造成高原区域暴雨雪,四川盆地中雨,半数可造成云南大雨雪或暴雨雪。夏半年,随着低涡生命史的增长,高原低涡影响高原及其周边地区和我国其他地区的降水范围和强度在增大,生命史超过60h以上的高原低涡可造成高原暴雨、甘肃中雨以上、四川盆地暴雨或大暴雨及云南大部分地区大雨以上的降水,每年都有1~5次可影响到华中、华东地区产生大雨以上的降水。100°E以东的高原低涡,不论是否移出,均可造成四川盆地中雨以上的降水。影响四川盆地降水的高原低涡以偏东路径为主,但东南路径影响更强。  相似文献   

13.
青藏高原地表热源异常与四川盆地夏季降水的关联   总被引:2,自引:1,他引:2       下载免费PDF全文
陈忠明  闵文彬  刘富明 《气象》2003,29(5):9-12
利用所计算的1961—1995年高原热源资料、四川与重庆的降水资料以及500hPa月平均高度场资料,分析了高原地表热源异常对四川盆地降水与旱涝的影响。结果表明,高原地表热源异常与四川盆地降水和旱涝有显著的相关;高原地表热源异常通过强迫500hPa东亚大气环流异常来影响四川盆地降水。  相似文献   

14.
郁淑华  何光碧 《高原气象》1997,16(3):306-311
使用η模式对1995年8月24日四川盆地西部一次突发性暴雨进行了数值模拟和无高原切变线、无西昌小高压的数值试验。由试验结果分析得出:(1)高原切变线活动可使四川盆地西部暴雨增强,而西昌小高压的存在则便四川盆地西部暴雨减弱;(2)高原切变线活动使暴雨增强的主要机制是暴雨区上空对流层低层流场辐合、上升运动、正涡度、水汽通量辐合和对流层中层流场辐合、水汽通量辐合等的加强;(3)对流层低层的动力、水汽条件  相似文献   

15.
文中对 1 998年 1月 1日到 8月 31日共 2 4 3d的南海季风试验再分析资料的地面感热场和潜热场进行 EOF分析 ,由感热的第一特征向量场发现 ,中南半岛地区、青藏高原的东北部和印度半岛的大部分是感热通量大值区 ,而海洋上是小值区 ,海陆热力差异十分明显 ,这种海陆感热对比是促使季风爆发的大背景。由感热的时间经度演变图可以看出 ,中南半岛所在经度范围内南北连续的感热分布对南海季风的早爆发具有重要作用。由温度平流项的分布可发现 ,中南半岛的加热作用明显早于青藏高原地区 ,使得中南半岛对南海季风的早期爆发有重要作用 ,而青藏高原对于南海季风的维持具有重要意义。由于印度半岛与中南半岛的海陆分布的差异 ,使得两个地区的温度平流项也有所不同  相似文献   

16.
春季青藏高原地区大气热源的气候特征分析   总被引:1,自引:0,他引:1  
利用1948-2009年NCEP/NCAR逐日再分析资料采用倒算法计算了青藏高原地区大气热量源汇的值,分析了春季青藏高原地区大气热源的水平和垂直气候分布特征及时空变化特征.结果表明:春季青藏高原上空,大气热量源汇的整层积分为正值,即高原上空大气为热源,但在高原上空大气高层存在局部为冷源的分布.与周边地区相比较,高原对其上空大气的加热作用在三月份最为显著.春季3、4、5月青藏高原区域大气的加热存在一个自西向东逐渐扩展的过程.春季青藏高原东部和西部为大气热源年变化较大的区域,且高原东部和西部大气热源表现出反位相分布的特征.  相似文献   

17.
近50年青藏高原东部降水的时空变化特征   总被引:1,自引:0,他引:1  
胡豪然  梁玲 《四川气象》2013,(4):1-7,15
选用1967~2012年青藏高原东部60个站点的降水资料,分析了该地区降水的时空演变特征,结果表明:高原东部降水呈由东南向西北递减的态势,高值区位于西藏东部和川西高原,低值区位于柴达木盆地;降水场可以划分为八个小区,分别是西藏东部和川西高原西部区、藏南谷地区、青南高原区、柴达木盆地区、藏北高原区、川西高原北部区、青藏高原东南缘区以及青海东北部区.年降水表现出强增加趋势,20世纪60年代后期到90年代后期相对偏少,20世纪末以来相对偏多;除川西高原北部区外,其余各区不同程度的表现出增加趋势.春季降水表现出“偏少~偏多”的年代际变化特征,在1995年附近发生由少到多的突变,20世纪60年代后期到90年代中期相对偏少,90年代后期以来相对偏多;八个分区均不同程度的表现出增加趋势.夏季降水呈增加趋势,20世纪60年代后期到90年代后期相对偏少,20世纪末以来相对偏多;八个分区均不同程度的表现出增加趋势.秋季降水的线性趋势趋近于零且没有表现出年代际变化特征;除川西高原北部区呈减少趋势外,各区均不同程度的表现出增加趋势.冬季降水表现出“偏少~偏多~偏少”的年代际变化特征,分别在1986和1996年附近发生由少到多和由多到少的突变,20世纪60年代后期到80年代中期相对偏少,80年代后期到90年代中期相对偏多,90年代后期以来相对偏少;除西藏东部和川西高原西部区及青海东北部区外,各区均不同程度的表现出“偏少~偏多~偏少”的年代际变化特征.  相似文献   

18.
近50年青藏高原东部降水的时空变化特征   总被引:2,自引:0,他引:2  
选用1967~2012年青藏高原东部60个站点的降水资料,分析了该地区降水的时空演变特征,结果表明:高原东部降水呈由东南向西北递减的态势,高值区位于西藏东部和川西高原,低值区位于柴达木盆地;降水场可以划分为八个小区,分别是西藏东部和川西高原西部区、藏南谷地区、青南高原区、柴达木盆地区、藏北高原区、川西高原北部区、青藏高原东南缘区以及青海东北部区。年降水表现出强增加趋势,20世纪60年代后期到90年代后期相对偏少,20世纪末以来相对偏多;除川西高原北部区外,其余各区不同程度的表现出增加趋势。春季降水表现出“偏少~偏多”的年代际变化特征,在1995年附近发生由少到多的突变,20世纪60年代后期到90年代中期相对偏少,90年代后期以来相对偏多;八个分区均不同程度的表现出增加趋势。夏季降水呈增加趋势,20世纪60年代后期到90年代后期相对偏少,20世纪末以来相对偏多;八个分区均不同程度的表现出增加趋势。秋季降水的线性趋势趋近于零且没有表现出年代际变化特征;除川西高原北部区呈减少趋势外,各区均不同程度的表现出增加趋势。冬季降水表现出“偏少~偏多~偏少”的年代际变化特征,分别在1986和1996年附近发生由少到多和由多到少的突变,20世纪60年代后期到80年代中期相对偏少,80年代后期到90年代中期相对偏多,90年代后期以来相对偏少;除西藏东部和川西高原西部区及青海东北部区外,各区均不同程度的表现出“偏少~偏多~偏少”的年代际变化特征。   相似文献   

19.
青藏高原近50年来气温的年代际变化   总被引:93,自引:27,他引:66  
根据青藏高原及周边地区一百多个气象台站的月平均气温资料,利用统计方法,分析了近50年来气温的年代际变化。结果表明:整个高原地区温度变化可分为6个不同的区域。在时间演变上可划分出相对高温时段(1963年以前)、相对低温时段(1963—1987年)和另一个相对高温时段(1987年以后)。还从天文因素、地球系统各圈层及气候系统内各因子相互作用和相互制约出发,探讨了引起高原气候变化的可能原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号