首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The study area is a one of the sub-basin of Vaigai River basin in the Theni and Madurai districts, Western Ghats of Tamil Nadu. The Vaigai sub-basin extends approximately over 849 km2 and it has been sub-divided into 48 watersheds. It lies between 09°30′00″ and 10°00′00″N latitudes and 77°15′10″ and 77°45′00″ E longitudes in the western part of Tamil Nadu, India. It originates at an altitude of 1661m in the Western Ghats of Tamil Nadu in Theni district. The drainage pattern of these watersheds are delineated using geo-coded Indian remote sensing satellite (IRS) ID, linear image self-scanning (LISS) III of geo-coded false colour composites (FCC), generated from the bands 2, 3 and 4 on 1:50,000 scale in the present study. The Survey of India (SOI) toposheets 58G/5, 58 G/6, 58G/9 and 58G/10 on a scale of 1:50,000 scale was used as a base for the delineation of watershed. In the present study, the satellite remote sensing data has been used for updation of drainages and the updated drainages have been used for morphometric analysis. The morphometric parameters were divided in three categories: basic parameters, derived parameters and shape parameters. The data in the first category includes area, perimeter, basin length, stream order, stream length, maximum and minimum heights and slope. Those of the second category are bifurcation ratio, stream length ratio, RHO coefficient, stream frequency, drainage density, and drainage texture, constant of channel maintenance, basin relief and relief ratio. The shape parameters are elongation ratio, circularity index and form factor. The morphometric parameters are computed using ESRI’s ArcGIS package. Drainage density ranges from 1.10 to 4.88 km/km2 suggesting very coarse to fine drainage texture. Drainage frequency varies from 1.45 to 14.70 which is low to very high. The bifurcation ratio ranges from 0.55 to 4.37. The low values of bifurcation ratios and very low values of drainage densities indicate that the drainage has not been affected by structural disturbances and also that the area is covered under dense vegetation cover. Elongation ratio ranges from 0.11 to 0.57. Drainage texture has the minimum of 1.63 and maximum of 11.44 suggesting that the drainage texture is coarse to fine. It is concluded that remote sensing and GIS have been proved to be efficient tools in drainage delineation and updation. In the present study these updated drainages have been used for the morphometric analysis.  相似文献   

2.
A morphometric evaluation of Tamiraparani subbasin was carried out to determine the drainage characteristics using GIS model technique. Extraction of the subbasin and stream network model has been developed to quantify the drainage parameters in the study area. The input parameters required to run this model are: a pour point, a minimum upstream area in hectares, and a digital elevation model. After execution, the model provides a drainage basin with Strahler’s classified stream network supported by thematic layers like aspect, slope, relief, and drainage density. The developed model reveals that the drainage area of this subbasin is 2,055 km2 and shows subdendritic to dendritic drainage pattern. The basin includes seventh order stream and mostly dominated by lower stream order. The slope of the study area varies from 0° in the east to 61° towards west. The presence of Western Ghats is the chief controlling factor for slope variation. Moreover, the slope variation is controlled by the local lithology and erosion cycles. The bifurcation ratio indicates that the geological structures have little influence on the drainage networks and the drainage density reveals that the nature of subsurface strata is permeable.  相似文献   

3.
GIS and Remote Sensing have proved to be an indispensible tool in morphometric analysis. The identification of morphometric properties based on a geographic information system (GIS) was carried out in two watersheds in the Thrissur district of Kerala, India. These watersheds are parts of Western Ghats, which is an ecologically sensitive area. Quantitative geomorphometric analysis was carried out for the Chimmini and Mupily watersheds independently by estimating their (a) linear aspects like stream number, stream order, stream length, mean stream length, stream length ratio, bifurcation ratio, length of overland flow, drainage pattern (b) aerial aspects like circulatory ratio, elongation ratio, drainage density and (c) relief aspects like basin relief, relief ratio, relative relief and ruggedness number. The drainage areas of Chimmini and Mupily watersheds are 140 and 122 km2 respectively and show patterns of dendritic to sub-dendritic drainage. The Chimmini watershed was classified as a sixth order drainage basin, whereas Mupily watershed was classified as a fifth order basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in the stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds. The slope of both watersheds varied from 0° to 50° and 0° to 42° respectively and the slope variation is chiefly controlled by the local geology and erosion cycles. Moreover, these studies are useful for planning rain water harvesting and watershed management.  相似文献   

4.
Demand for irrigation water increases day by day along with meteorological vagaries and extension of irrigated area in the drought-prone Barind area of Bangladesh. This increasing stress on water resource is gradually making the area water scare. The study is aimed at studying the morphometric parameters of the Atrai-Sib river basin in the Barind area and on their relevance in water resource management based on satellite images and SRTM DEM. Computation and delineation of linear and areal aspects of the river basin and its morphometric components reveals that stream order ranges from first to eighth order showing dendritic drainage pattern. The basin represents homogeneity of soil texture; possibility of flash flood after heavy rainfall with low discharge of runoff; and is not largely affected by structural disturbance. Moderate drainage density of the river basin area indicates semipermeable soil lithology with moderate vegetation. Mean bifurcation ratio of the basin is calculated as 3.92 and elongation ratio 0.75, which indicate elongated shape of the river basin with low to moderate relief bounded in the east and west by ‘moderate to steep’ sloping land area. It reveals a flatter peak of runoff flow for longer duration and gravity flow of water. The gentle but undulating slope of the basin represents ‘excellent’ category for groundwater management as the site is favorable for infiltration due to maximum time of runoff water percolation. The east facing slopes of the basin show higher moisture content and higher vegetation than the west-facing slope. The land use pattern of the area shows that major part (95.29%) comes under the cultivated land which will support future river basin development and management. Results obtained from the study would be useful in categorization of river basins for future water resource development and management, and selection of suitable sites for water conservation structures such as check dam, percolation tank, artificial recharge of groundwater through MAR technique etc.  相似文献   

5.
The Asna river basin is located in Hingoli and Nanded districts of Marathwada region of Maharashtra. A geomorphometric analysis is an important method for the investigation and management of natural resources of watershed. The geomorphometric analysis of Asna river basin classifies three sub-basins that have been delineated using GIS and remote sensing through measurements of linear, aerial, and relief aspects. The Asna river basin comprises an area of 1187 km2 with seventh-order drainage pattern. As per Strahler classification, the upper part of the basin shows dendritic to sub-dendritic and the lower part exhibits parallel to sub-parallel drainage pattern. The total numbers of stream segments are 2422 and length of streams is 2187.92 km. The bifurcation value ranges from 1.26 to 5.58 indicating that there are no structural disturbances. The form factor value (0.49) indicates that the shape of the basin is moderately circular. The high values of drainage density, stream frequency, and low infiltration number indicate the high runoff due to impermeable lithology. The slope of the basin varies from 1 to 32.2%, terrain elevation ranges from 333 to 551 m, and overall relief of the basin is 218 m amsl. River sub-basin prioritization has an immense importance in natural resource management, especially in semi-arid regions. The present study is an attempt to prioritize the sub-basins of Asna river based on geomorphometric parameters. The weightage is assigned to different morphometric parameters of sub-basins based on erosion potential. The Asna river sub-basins have been classified into three categories as high, medium, and low on the basis of priorities for soil and water conservation. It is confirmed that sub-basin I is characterized as highly vulnerable to erosion and has high sedimentation load; sub-basin II has low priority, i.e., very low erodibility; and sub-basin III is of moderate type. The morphometric analysis and prioritization methods can be applied to hydrological studies in surface as well as subsurface water, climatic studies, rainwater harvesting, groundwater recharging sites, and watershed management.  相似文献   

6.
The drainage basin parameters of the groundwater-fed Chhoti Gandak River originating in the terai area of the Ganga Plain were analyzed using topographical sheets, satellite data, and field documentation with emphasis to its implication for flood mitigation and recharging of groundwater. The analyses indicate dominance of first order streams, gentle slope gradient, low surface run-off, low sediment production, high infiltration rate, and low value of basin relief. The low water storage capacity, spreading of water and concentration of peak discharge in the distal part of the river basin explain that whenever precipitation is high in the catchment area there is flood in the distal part of the basin. The bifurcation ratio value (4.34) of this basin describes that the drainage is carved naturally by slope and local relief and not influenced by geological structures like lineaments and faults.  相似文献   

7.
A morphometric analysis was carried out to describe the topography and drainage characteristics of Papanasam and Manimuthar watersheds. These watersheds are part of Western Ghats, which is an ecologically sensitive region. The drainage areas of Papanasam and Manimuthar watersheds are 163 and 211 km2, respectively and they show patterns of dendritic to sub-dendritic drainage. The slope of both watersheds varied from 0° to 59° and 0° to 55°, respectively. Moreover, the slope variation is chiefly controlled by the local geology and erosion cycles. Each watershed was classified as a fifth-order drainage basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds.  相似文献   

8.
Morphometric analysis using remote sensing (RS) and geographical information system (GIS), in the recent study, has become an efficient method in the assessment of groundwater potential of a river basin. The present study focused on the morphometric analysis of Araniar river basin using RS and GIS techniques in the identification of groundwater potential zones for effective planning and management of groundwater resources of the basin. The study area was divided into six subbasins for the purpose of micro-level morphometric analysis. The main stream of the basin is of fifth order and drainage patterns of subbasins are mostly of dendritic and parallel type. Based on the linear, areal and relief parameters of subbasins, the groundwater potential zones of the basin were identified and the results substantiated with geomorphology map derived from RS data. The elongated shape, favourable drainage network, permeable geologic formation and low relief of the subbasins WS3, WS5 and WS6 make them the promising groundwater potential zones of Araniar river basin. The statistical analysis and overlay analysis of the morphometric parameters also indicated the subbasins WS3, WS5 and WS6 as high groundwater potential zones. The groundwater potential zone map when overlaid with groundwater fluctuation map indicated the suitable sites for artificial recharge structures.  相似文献   

9.
A morphometric analysis was done to determine the drainage characteristics of Lules River basin using land-sat imageries and topographical maps. This catchment was divided into seven sub-basins for the analysis: Liquimayo, Hoyada, Ciénaga, De Las Tablas, Siambón, Potrerillo and San Javier. Yungas ecoregion covers almost all the watershed. The drainage patterns of the sub-basins are dendritic and parallel. The basin includes seventh order stream and lower streams order mostly dominate the basin. The development of stream segments is affected by slope and local relief. The mean bifurcation ratio indicates that the drainage pattern is not much influenced by geological structures. The shape parameters also reveal the elongation of the basin and sub-basins.  相似文献   

10.
Remote Sensing and GIS techniques have been proved to be efficient tools in the delineation, updating and morphometric analysis of drainage basin. The present study incorporates a morphometric analysis of three sub-basins of Fatehabad area of Agra district using remote sensing and GIS techniques. The morphometric parameters of the sub-basins are classified under linear, areal and relief aspects. The drainage pattern exhibited by the main river Yamuna and its tributaries shows a dendritic pattern indicating homogenously underlain material while the mean bifurcation ratio values suggest that the geological structures are not disturbing the drainage pattern. The form factor value of sub-basins suggests that the main basin is more or less elongated. Circularity ratio values of the three sub-basins fall within range of elongated basin and low discharge. The area has low density indicating that the region has high permeable sub-soil material and dense vegetation. The values of drainage texture, drainage density and infiltration number indicate that sub-basin-III has the highest infiltration rate and low runoff, hence contributing most to the underground water resources. This study also indicates porous and permeable sub-soil condition in sub-basin-III. The values of sub-basin-I indicate low permeable subsoil material owning to high infiltration number value, hence low infiltration and high runoff.  相似文献   

11.
Hydrogeological mapping and drainage analysis can form an important tool for groundwater development. Assessment of drainage and their relative parameters have been quantitatively carried out for the Morar River Basin, which has made positive scientific contribution for the local people of area for the sustainable water resource development and management. Geographical Information System has been used for the calculation and delineation of the morphometric characteristics of the basin. The dendritic type drainage network of the basin exhibits the homogeneity in texture and lack of structural control. The stream order ranges from first to sixth order. The drainage density in the area has been found to be low which indicates that the area possesses highly permeable soils and low relief. The bifurcation ratio varies from 2.00 to 5.50 and the elongation ratio (0.327) reveals that the basin belongs to the elongated shaped basin category. The results of this analysis would be useful in determining the effect of catchment characteristics such as size, shape, slope of the catchment and distribution of stream net work within the catchment.  相似文献   

12.
An examination of river channels has ability to provide substantial information regarding the geomorphic characteristics, control of lithology, tectonic uplift and geomorphic evolution during the geological past of an area. In this paper, a detailed study of geomorphic and structural investigation has been carried out for Pravara basin, Maharashtra, with the help of 90-m resolution SRTM DEM and geospatial techniques. Drainage network analysis performed in this paper demonstrates the general geomorphic characteristics, while the analysis of longitudinal profile synthesises lithological control over Pravara basin. Pravara is a 6th order drainage basin, encompassing an area of 2637 km2. Bifurcation ratio reveals low to moderate structural control. Due to the hard rock lithology, the drainage density and stream frequency are low, and it indicates higher permeability in the sub-surface layers. The shape parameters denote that Pravara is highly elongated and it is easier to control floods in this basin. Relief parameters show very steep slope and higher vulnerability to the slope failure in some areas. Upstream of Pravara river has shown that series of breaks and knickzones indicate active erosion and acute lithological control on the channel. Major breaks are observed only in the main channel whereas in two major tributaries, no such breaks found, instead these tributaries are characterised by several knickzones which indicate regional variation in the lithological physiognomies. Different lithological stages on knickpoint and channel incision substantiate rejuvenation of Pravara river in several phases during geological past. The geospatial methodology carried out in this study can be pragmatic elsewhere around this world to recognise the geomorphic appearances and lithological control of a drainage basin.  相似文献   

13.
A geomorphologic and morphometric analysis was performed to determine the characteristics of the de La Flecha river basin, located in the southwest of San Juan province (31°50′S, 68°57′W), Precordillera of San Juan. The drainage networks were derived from shuttle radar topographic mission (SRTM), satellite imageries (Landsat TM and Spot image) and field works. The paper also addresses a preliminary evaluation of the flood hazard responsible for severe damage to people and infrastructure in the downstream region. The study area covers about 300 km2, comprising of six sub-watersheds, ranging from 31.7 to 81.8 km2. The irregular morphology of the basin and the diversity of alluvial deposits found along the de La Flecha river allow the authors to infer that it is in an active tectonic environment with strong lithological and structural controls. One feature common to all analyzed sub-basins is their elongated shape, which allows for a rapid concentration of water that intensifies the power of the flash floods. The drainage network in the different sub-basins has, in general, two predominant patterns; one is parallel to sub-parallel to the headers and foothill areas; and the other, in the alluvial zone, is divergent. Los Berros, Cañada Honda and Media Agua towns, located downstream of the basin, are the most affected by flash floods coming from the mountainous area.  相似文献   

14.
An attempt to carry out morphometric, statistical, and hazard analyses using ASTER data and GIS technique of Wadi El-Mathula watershed, Central Eastern Desert, Egypt. Morphometric analysis with application of GIS technique is essential to delineate drainage networks; basin geometry, drainage texture, and relief characteristics, through detect forty morphometric parameters of the study watershed and its sub-basins. Extract new drainage network map with DEM, sub-basin boundaries, stream orders, drainage networks, slope, drainage density, flow direction maps with more details is very necessary to analyze different morphometric and hydrologic applications for the study basin. Statistical analysis of morphometric parameters was done through cluster analysis, regression equations, and correlation coefficient matrix. Clusters analyses detect three independents variables which are stream number, basin area, and stream length have a very low linkage distance of 0.001 (at very high similarity of 99.95%) in a cluster with the basin width. Main channel length and basin perimeter (at very high similarity of 99.83%) are in a cluster with basin length. Using the regression equations and graphical correlation matrix indicates the mathematical relationships and helps to predict the behavior between any two variables. Hazard analysis and hazard degree assessment for each sub-basin were performed. The hazardous factors were detected and concluded that most of sub-basins are classified as moderately to highly hazardous. Finally, we recommended that the flood possibilities should be taken in consideration during future development of these areas.  相似文献   

15.
The morphometric analysis of river basins represents a simple procedure to describe hydrologic and geomorphic processes operating on a basin scale. A morphometric analysis was carried out to evaluate the drainage characteristics of two adjoining, mountain river basins of the southern Western Ghats, India, Muthirapuzha River Basin (MRB) in the western slopes and Pambar River Basin (PRB) in the eastern slopes. The basins, forming a part of the Proterozoic, high-grade, Southern Granulite Terrain of the Peninsular India, are carved out of a terrain dominantly made of granite- and hornblende-biotite gneisses. The Western Ghats, forming the basin divide, significantly influences the regional climate (i.e., humid climate in MRB, while semi-arid in PRB). The Survey of India topographic maps (1:50,000) and Shuttle Radar Topographic Mission digital elevation data were used as the base for delineation and analysis. Both river basins are of 6th order and comparable in basin geometry. The drainage patterns and linear alignment of the drainage networks suggest the influence of structural elements. The Rb of either basins failed to highlight the structural controls on drainage organization, which might be a result of the elongated basin shape. The irregular trends in Rb between various stream orders suggest the influence of geology and relief on drainage branching. The Dd values designate the basins as moderate- to well-drained with lower infiltration rates. The overall increasing trend of Rl between successive stream orders suggests a geomorphic maturity of either basins and confirmed by the characteristic I hyp values. The Re values imply an elongate shape for both MRB and PRB and subsequently lower vulnerability to flash floods and hence, easier flood management. The relatively higher Rr of PRB is an indicative of comparatively steeply sloping terrain and consequently higher intensity of erosion processes. Further, the derivatives of digital elevation data (slope, aspect, topographic wetness index, and stream power index), showing significant differences between MRB and PRB, are useful in soil conservation plans. The study highlighted the variation in morphometric parameters with respect to the dissimilarities in topography and climate.  相似文献   

16.
The Indus basin—one of the largest fluvial-controlled landscapes of the world, provides a major agro-economic resource base while showcasing unique morphometry along its course. However, despite its large socio-economic relevance in South Asia, a distinct account of morphometric variations down its course still remains elusive. Here, for the first time a quantitative demarcation of the Indus basin into—upper, middle, and lower basin is proposed based on analyses of critical morphometric parameters (viz. gradient/river length ratio, elevation-relief ratio, channel width, sinuosity, and slope). Geostatistical and hydrological operations performed on digital elevation models, suggest that the highest and lowest relief sectors are tectonically more stable than the middle relief sector, inferred from a convex hypsometric curve. Elevation-relief ratio for the basin indicates tectonic stability with ~?31% of remnant rock still in place. Cross-sectional transects also demonstrate anomalous patterns that deviate from predictive characteristics of youthful, mature, and senile stages of river development. All parameters are spatially coalesced to provide a first-ever holistic morphometric account of the Indus basin while describing fine-scale planform variations of the spectacular dynamics of this enormous river basin.  相似文献   

17.
The dynamic interaction of endogenic and exogenic processes in active geodynamic context leads to the deterioration of the physico-mechanical characteristics of the rocks, inducing slopes instability. In such context, the morphometric parameters and the analysis of landslide distribution contribute to appraise the evolutive state of hydrographic basins. The aim of the study is the morphometric characterization of the Roccella Torrent basin (Rtb) located in South Italy. Landsliding and tectonic structure dynamically interact with the drainage pattern that records these effects and permits the definition of the evolutive geomorphic stage of the basin. The Air Photograph Investigation and field surveys permitted to draw the main geomorphic features, the drainage pattern of the Rtb, to calculate the morphometric parameters and to delimit the landslides’ bodies. Detailed analysis about the landslide distribution within a test site 17 km2 wide were carried out to elaborate indicative indexes of the landslides type and to single out the lithotypes that are more involved in slope instability phenomena. The morphometric parameters indicate the rejuvenation state within the Rtb where the stream reaches show the effects of increased energy relief in agreement with the geological settings of this sector of the Apennine–Maghrebian Chain.  相似文献   

18.
The drainage basin of the Kalyani river, a tributary of Gomati river has been mapped and delineated using Survey of India toposheets (1:50,000 scale) and remote sensing satellite data. The digitization, slope map preparation and statistical calculations have been carried out with the help of geographical information system (Arc GIS 10). Kalyani a fifth order river exhibits meandering behavior having 2.45 sinuosity index (SI). The Kalyani river basin has about 1235 km2area with NW-SE sloping trend. The total number of first, second, third, and fourth order streams are 373, 71, 12 and 2 respectively, showing dominance of first order streams in the basin. The mean bifurcation ratio (Rb) of the entire basin is 4.8, which indicates that the drainage is not much influenced by geological structures and exhibits dendritic drainage pattern. Relief ratio (Rr) indicates low to medium surface run-off, and low stream power for erosion. The analysis of river bank height ‘r’ (escarpment) and longitudinal profile of the river closely reveals neotectonic activity at some locations in the basin. To prepare a comprehensive watershed development and management plan, it is important to understand the topography and drainage characteristics of the region.  相似文献   

19.
Glaciers are retreating and thinning in the high altitude of the Himalayas due to global warming, causing into formation of numerous glacial lakes. It is necessary to monitor these glacial lakes consistently to save properties and lives downstream from probable disastrous glacial lake outburst flood. In this study, image processing software ArcGIS and ERDAS Imagine have been used to analyse multispectral image obtained by Earth resource satellite Landsat for delineating the glacial lakes with the help of image enhancement technique like NDWI. Landsat data since 1972 through 2013 have been used and maximum seven glacial lakes (L1–L7) have been detected and delineated in Dhauliganga catchment, they are situated above 4000 masl. The Glacial Lake L2 (Lat 30°26′45″E and Long 80°23′16″N) is the largest whose surface area was 132,300 m2 in Sept 2009, and L6 (Lat 30°23′27″E and Long 80°31′52″N) is highly unstable with variation rate ?55 to +145 % with increasing trend. Additionally, glacial lakes L2 (Lat 30°26′45″E and Long 80°23′16″N) and L6 (Lat 30°23′27″E and Long 80°31′52″N) have been identified as potentially hazardous. These lakes may probably burst; as a result, huge reserve of water and debris may be released all on a sudden. This may transform into hazardous flash flood in downstream causing loss of lives, as well as the destruction of houses, bridges, fields, forests, hydropower stations, roads, etc. It is to note that Dhauliganga river considered in this study is a tributary of Kaliganga river, and should not be confused with its namesake the Dhauliganga river, which is a tributary of Alaknanda river.  相似文献   

20.
Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order sub-basins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km 2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the sub-surface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the drainage basin. The slope map of Suketi river basin has been classified into three main zones, which delineate the runoff zone in the mountains, recharge zone in the transition zone between mountains and valley plane, and discharge zone in the plane areas of Balh valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号