首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Large rounded pyrite grains (>1 mm), commonly referred to as “buckshot” pyrite grains, are a characteristic feature of the auriferous conglomerates (reefs) in the Witwatersrand and Ventersdorp supergroups, Kaapvaal Craton, South Africa. Detailed petrographic analyses of the reefs indicated that the vast majority of the buckshot pyrite grains are of reworked sedimentary origin, i.e., that the pyrite grains originally formed in the sedimentary environment during sedimentation and diagenesis. Forty-one of these reworked sedimentary pyrite grains from the Main, Vaal, Basal, Kalkoenkrans, Beatrix, and Ventersdorp Contact reefs were analyzed for their multiple sulfur isotope compositions (δ34S, Δ33S, and Δ36S) to determine the source of the pyrite sulfur. In addition, five epigenetic pyrite samples (pyrite formed after sedimentation and lithification) from the Middelvlei and the Ventersdorp Contact reefs were measured for comparison. The δ34S, Δ33S, and Δ36S values of all 41 reworked sedimentary pyrite grains indicate clear signatures of mass-dependent and mass-independent fractionation and range from ?6.8 to +13.8?‰, ?1.7 to +1.7?‰, and ?3.9 to +0.9?‰, respectively. In contrast, the five epigenetic pyrite samples display a very limited range of δ34S, Δ33S, and Δ36S values (+0.7 to +4.0?‰, ?0.3 to +0.0?‰. and ?0.3 to +0.1?‰, respectively). Despite the clear signatures of mass-independent sulfur isotope fractionation, very few data points plot along the primary Archean photochemical array suggesting a weak photolytic control over the data set. Instead, other factors command a greater degree of influence such as pyrite paragenesis, the prevailing depositional environment, and non-photolytic sulfur sources. In relation to pyrite paragenesis, reworked syngenetic sedimentary pyrite grains (pyrite originally precipitated along the sediment-water interface) are characterized by negative δ34S and Δ33S values, suggesting open system conditions with respect to sulfate supply and the presence of microbial sulfate reducers. On the contrary, most reworked diagenetic sedimentary pyrite grains (pyrite originally precipitated below the sediment-water interface) show positive δ34S and negative Δ33S values, suggesting closed system conditions. Negligible Δ33S anomalies from epigenetic pyrite suggest that the sulfur was sourced from a mass-dependent or isotopically homogenous metamorphic/hydrothermal fluid. Contrasting sulfur isotope compositions were also observed from different depositional environments, namely fluvial conglomerates and marine-modified fluvial conglomerates. The bulk of the pyrite grains from fluvial conglomerates are characterized by a wide range of δ34S values (?6.2 to +4.8?‰) and small Δ33S values (±0.3?‰). This signature likely represents a crustal sulfate reservoir derived from either volcanic degassing or from weathering of sulfide minerals in the hinterland. Reworked sedimentary pyrite grains from marine-modified fluvial conglomerates share similar isotope compositions, but also produce a positive Δ33S/δ34S array that overlaps with the composition of Archean barite, suggesting the introduction of marine sulfur. These results demonstrate the presence of multiple sources of sulfur, which include atmospheric, crustal, and marine reservoirs. The prevalence of the mass-dependent crustal sulfur isotope signature in fluvial conglomerates suggests that sulfate concentrations were probably much higher in terrestrial settings in comparison to marine environments, which were sulfate-deficient. However, the optimum conditions for forming terrestrial sedimentary pyrite were probably not during fluvial progradation but rather during the early phases of flooding of low angle unconformities, i.e., during retrogradational fluvial deposition, coupled in some cases with marine transgressions, immediately following inflection points of maximum rate of relative sea level fall.  相似文献   

2.
The discovery of 33S anomalies in Archean sedimentary rocks has established that the early Earth before ∼2.2 Ga (billion years ago) had a very different sulfur cycle than today. The origin of the anomalies and the nature of early sulfur cycle are, however, poorly known and debated. In this study, we analyzed the total sulfur and oxygen isotope compositions, the δ18O, Δ17O, δ34S, Δ33S, and Δ36S, for the >3.2 Ga Fig Tree barite deposits from the Barberton Greenstone Belt, South Africa. The goal is to address two questions: (1) was Archean barite sulfate a mixture of 33S-anomalous sulfate of photolysis origin and 33S-normal sulfate of other origins? (2) did the underlying photochemical reactions that generated the observed 33S anomalies for sulfide and sulfate also generate 17O anomalies for sulfate?We developed a new method in which pure barite sulfate is extracted for oxygen and sulfur isotope measurements from a mixture of barite sands, cherts, and other oxygen-bearing silicates. The isotope data reveal that (1) there is no distinct 17O anomaly for Fig Tree barite, with an average Δ17O value the same as that of the bulk Earth (−0.02 ± 0.07‰, N = 49); and (2) the average δ18O value is +10.6 ± 1.1‰, close to that of the modern seawater sulfate value (+9.3‰). Evidence from petrography and from the δ18O of barites and co-existing cherts suggest minimum overprinting of later metamorphism on the sulfate’s oxygen isotope composition. Assuming no other processes (e.g., biological) independently induced oxygen isotope exchange between sulfate and water, the lack of reasonable correlation between the δ18O and Δ33S or between the δ34S and Δ33S suggests two mutually exclusive scenarios: (1) An overwhelming majority of the sulfate in the Archean ocean was of photolysis origin, or (2) The early Archean sulfate was a mixture of 33S-normal sulfates and a small portion (<5%?) of 33S-anomalous sulfate of photolysis origin from the atmosphere. Scenario 1 requires that sulfate of photolysis origin must have had only small 33S or 36S anomalies and no 17O anomaly. Scenario 2 requires that the photolysis sulfate have had highly negative δ34S and Δ33S values, recommending future theoretical and experimental work to look into photochemical processes that generate sulfate in Quadrant I and sulfide in Quadrant III in a δ34S (X)-Δ33S (Y) Cartesian plane. A total sulfur and oxygen isotope analysis has provided constraints on the underlying chemical reactions that produced the observed sulfate isotope signature as well as the accompanying atmospheric, oceanic, and biological conditions.  相似文献   

3.
We report sulfur isotope anomalies with Δ33S, the deviation from a mass-dependent fractionation line for the three-isotope system (34S/32S vs. 33S/32S), ranging up to ±2‰ within individual Archean sedimentary sulfides from a variety of localities. Our measurements, which are made in situ by multicollector secondary ion mass spectrometry, unequivocally corroborate prior bulk measurements of mass-independent fractionations (MIF) in sulfur and provide additional evidence for an anoxic atmosphere on the Earth before ∼2 Ga. This technique also offers new opportunities for exploring ancient sulfur metabolisms preserved in the rock record. The presence of MIF sulfur in sulfides from a >3.8-Ga Fe-rich quartzite from Akilia (island), West Greenland, is consistent with a marine sedimentary origin for this rock.  相似文献   

4.
The first data on the multi-isotope composition of sulfur (32S, 33S, 34S) in samples from the Fennoscandian Shield were obtained by the laser local method. An anomalous concentration of the stable isotope 33S was registered in some samples. Δ33S ranges from–0.45 to +0.24‰, which indicates the mass-independent fractionation of S isotopes and provides evidence for the processes of primarily sedimentary accumulation of sulfides in the Archean oxygen-free atmosphere.  相似文献   

5.
《Chemical Geology》2006,225(1-2):30-39
The discovery of mass-independent isotope effects observed in Archean rocks, certain classes of meteorites, and atmospheric aerosols has had profound implications to our understanding of ancient and present atmospheric sulfur chemistry. We present a new technique that takes advantage of continuous He flow isotope-ratio-monitoring gas chromatography–mass spectrometry to achieve precise analysis of all four stable sulfur isotopes (32S, 33S, 34S, and 36S) at nanomole level samples. The technique involves fluorination of sulfide (silver sulfide or pyrite), and separation of product gas by gas chromatography and the removal of mass-131 interference by a liquid-nitrogen ethanol slush at − 110 °C. This technique works with an optimum sample size of 100 to 200 nmol with precision for Δ33S and Δ36S at 0.1 and 0.5‰ (2σ). Samples, as small as tens of nanomole, can be analyzed using this new method. One of the major sources of error in irm-GCMS is found to be tailing of the major ion beam (32SF5+) onto minor beams (33SF5+ and 36SF5+), which results in contraction of the measured δ33S and δ36S scales. This effect is corrected by measuring a series of reference sulfide samples with mass-dependent sulfur isotope compositions. This methodology increases the spatial resolution of the laser ablation in situ analysis and considerably reduces the analysis time as compared with conventional dual inlet methods.  相似文献   

6.
Multiple sulfur isotope system is a powerful new tracer for atmospheric, volcanic, and biological influences on sulfur cycles in the anoxic early Earth. Here, we report high-precision quadruple sulfur isotope analyses (32S/33S/34S/36S) of barite, pyrite in barite, and sulfides in related hydrothermal and igneous rocks occurring in the ca. 3.5 Ga Dresser Formation, Western Australia. Our results indicate that observed isotopic variations are mainly controlled by mixing of mass-dependently (MD) and non-mass-dependently fractionated (non-MD) sulfur reservoirs. Based on the quadruple sulfur isotope systematics (δ34S-Δ33S-Δ36S) for these minerals, four end-member sulfur reservoirs have been recognized: (1) non-MD sulfate (δ34S = −5 ± 2‰; Δ33S = −3 ± 1‰); (2) MD sulfate (δ34S = +10 ± 3‰); (3) non-MD sulfur (δ34S > +6‰; Δ33S > +4‰); and (4) igneous MD sulfur (δ34S = Δ33S = 0‰). The first and third components show a clear non-MD signatures, thus probably represent sulfate and sulfur aerosol inputs. The MD sulfate component (2) is enriched in 34S (+10 ± 3‰) and may have originated from microbial and/or abiotic disproportionation of volcanic S or SO2. Our results reconfirm that the Dresser barites contain small amounts of pyrite depleted in 34S by 15-22‰ relative to the host barite. These barite-pyrite pairs exhibit a mass-dependent relationship of δ33S/δ34S with slope less than 0.512, which is consistent with that expected for microbial sulfate reduction and is significantly different from that of equilibrium fractionation (0.515). The barite-pyrite pairs also show up to 1‰ difference in Δ36S values and steep Δ36S/Δ33S slopes, which deviate from the main Archean array (Δ36S/Δ33S = −0.9) and are comparable to isotope effects exhibited by sulfate reducing microbes (Δ36S/Δ33S = −5 to −11). These new lines of evidence support the existence of sulfate reducers at ca. 3.5 Ga, whereas microbial sulfur disproportionation may have been more limited than recently suggested.  相似文献   

7.
Here, we present new measurements of 32S, 33S, 34S, and 36S in sedimentary sulfides and couple these measurements with modeling treatments to study the sulfur cycle of a late Paleoproterozoic marine basin. We target the transition in ocean chemistry from the deposition of Paleoproterozoic iron formations (Gunflint Formation, Biwabik Formation, Trommald Formation, and Mahnomen iron formations) to the inferred sulfidic ocean conditions recorded by overlying shale (Rove Formation). The data suggest that certain features of the global sulfur cycle, such as a control by sulfate reducing prokaryotes, and low (mM) concentrations of oceanic sulfate, were maintained across this transition. This suggests that the transition was associated with changes in the structure of the basin-scale sulfur cycle during deposition of these sediments. Sulfide data from the iron formations are interpreted to reflect sedimentary sulfides formed from microbial reduction of pore-water sulfate that was supplied through steady-state exchange with an overlying oceanic sulfate reservoir. The sulfide data for the euxinic Rove Formation shales reflect the operation of a sulfur cycle that included the loss of sulfide by a Rayleigh-like process. We suggest that the prevalence of large and variable heavy isotope enrichments observed in Rove Formation sulfide minerals reflect a sustained and significant net loss of sulfide from the euxinic water column, either as a result of a shallow chemocline and degassing to the atmosphere or as a result of a water column pyrite sink. The inclusion of 36S measurements (in addition to 32S, 33S, and 34S) illustrates the mass-dependent character of these sedimentary environments, ruling out contributions from the weathering of Archean sulfides and pointing to at least modest levels of sustained atmospheric oxygen (>10−5 present atmospheric levels of O2).  相似文献   

8.
We present multiple sulfur isotope measurements of sulfur compounds associated with the oxidation of H2S and S0 by the anoxygenic phototrophic S-oxidizing bacterium Chlorobium tepidum. Discrimination between 34S and 32S was +1.8 ± 0.5‰ during the oxidation of H2S to S0, and −1.9 ± 0.8‰ during the oxidation of S0 to , consistent with previous studies. The accompanying Δ33S and Δ36S values of sulfide, elemental sulfur, and sulfate formed during these experiments were very small, less than 0.1‰ for Δ33S and 0.9‰ for Δ36S, supporting mass conservation principles. Examination of these isotope effects within a framework of the metabolic pathways for S oxidation suggests that the observed effects are due to the flow of sulfur through the metabolisms, rather than abiotic equilibrium isotope exchange alone, as previously suggested. The metabolic network comparison also indicates that these metabolisms work to express some isotope effects (between sulfide, polysulfides, and elemental sulfur in the periplasm) and suppress others (kinetic isotope effects related to pathways for oxidation of sulfide to sulfate via the same enzymes involved in sulfate reduction acting in reverse). Additionally, utilizing fractionation factors for phototrophic S oxidation calculated from our experiments and for other oxidation processes calculated from the literature (chemotrophic and inorganic S oxidation), we constructed a set of ecosystem-scale sulfur isotope box models to examine the isotopic consequences of including sulfide oxidation pathways in a model system. These models demonstrate how the small δ34S effects associated with S oxidation combined with large δ34S effects associated with sulfate reduction (by SRP) and sulfur disproportionation (by SDP) can produce large (and measurable) effects in the Δ33S of sulfur reservoirs. Specifically, redistribution of material along the pathways for sulfide oxidation diminishes the net isotope effect of SRP and SDP, and can mask the isotopic signal for sulfur disproportionation if significant recycling of S intermediates occurs. We show that the different sulfide oxidation processes produce different isotopic fields for identical proportions of oxidation, and discuss the ecological implications of these results to interpreting minor S isotope patterns in modern systems and in the geologic record.  相似文献   

9.
Multiple sulfur isotope ratios (^34S/^33S/^32S) of Archean bedded sulfides deposits were measured in the Yanlingguan Formation of the Taishan Group in Xintai, Shandong Province, East of China; 633S = -0.7%o to 3.8‰,δ^34S = 0.1‰-8.8‰, △^33S = -2.3‰ to -0.7‰. The sulfur isotope compositions show obvious mass-independent fractionation (MIF) signatures. The presence of MIF of sulfur isotope in Archean sulfides indicates that the sulfur was from products of photochemical reactions of volcanic SO2 induced by solar UV radiation, implying that the ozone shield was not formed in atmosphere at that time, and the oxygen level was less than 10-5 PAL (the present atmosphere level). The sulfate produced by photolysis of SO2 with negative △^33S precipitated near the volcanic activity center; and the product of element S with positive △^33S precipitated far away from the volcanic activity center. The lower △^33S values of sulfide (-2.30‰ to --0.25‰) show that Shihezhuang was near the volcanic center, and sulfur was mostly from sulfate produced by photolysis. The higher △^33S values (-0.5‰ to -‰) indicate that Yanlingguan was far away from the volcanic center and that some of sulfur were from sulfate, another from element S produced by photolysis. The data points of sulfur isotope from Yanlingguan are in a line parallel to MFL (mass dependent fractionation line) on the plot of δ^34S--δ^33S, showing that the volcanic sulfur species went through the atmospheric cycle into the ocean, and then mass dependent fractionation occurred during deposition of sulfide. The data points of sulfur isotope from Shihezhuang represent a mix of different sulfur source.  相似文献   

10.
Determining the source of sulfur in an ore deposit is key to understanding the nature of the ore forming processes. The Neoarchaean Paulsens sediment-hosted gold deposit (∼1 Moz @ 7.6 g/t) located in the Pilbara Craton of Western Australia exhibits many of the characteristics of Phanerozoic shale hosted gold deposits (e.g. Huijiabao Trend, Northern Carlin Trend and Sukhoi Log), in that 1) black shales are the dominant host rock, 2) gold is hosted in pyrite as both free gold and dissolved gold in the lattice of the pyrite, and 3) multiple generations of pyrite have formed due to a variety of geological processes. In this contribution we utilised Secondary Ion Mass Spectrometer (SIMS) to measure the in-situ quadrupole (32S, 33S, 34S and 36S) sulfur isotope compositions of the different generations of pyrite. Our results indicate that the both diagenetic and hydrothermal pyrite generations display similar and anomalous Δ33S signatures (up to +0.4‰). Further, the Δ33S-Δ36S arrays in the hydrothermal pyrite generations lie on a slope which is similar to that of the diagenetic pyrite. These data support the hypothesis that the sulfur in the ore zones came from the host Hardey Formation black shales.We also performed trace element analyses of syn-sedimentary and early diagenetic pyrite from the Hardey Formaiton using Nano Secondary Ion Mass Spectrometry (NanoSIMS), Electron Probe Microanalysis (EPMA) and Laser Ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS), all of which show that the syn-sedimentary and early diagenetic pyrite contain high concentrations of many trace elements (As, Ni, Co, Cu, Ag, Se, Te, Bi), including up to 1.5 ppm Au. These metals contents are also abundant in the several generations of mineralised hydrothermal pyrite and form clear patterns of growth associated with couple dissolution reprecipitation reactions. These findings clearly indicate that the fluid that transported the Au must have also been enriched in the base and precious metals that are contained in the early, syn-diagenesis pyrite.Data from this study clearly support the hypothesis that in some sediment-hosted gold systems, all the sulfur and gold required to form the deposit are sourced from the local sedimentary package. By using the presence of anomalous mass independent sulfur isotope signatures as chemically conservative and indelible tracers, it is possible to fingerprint the source of sulfur in a wide range of mineral systems, thus enhancing predictive exploration strategies at the regional to camp scales.  相似文献   

11.
This study examines the sulfur isotope record of seawater sulfate proxies using δ34S and Δ33S to place constraints on the average global fractionation (Δ34Spy) associated with pyrite formation and burial and the exponent λ that relates variations of the 34S/32S to variations of the 33S/32S. The results presented here use an analysis of the sulfur isotope record from seawater sulfate proxies and sedimentary sulfide to extract this quantity as the arithmetic difference between δ34S of seawater sulfate and contemporaneous sulfide. It also uses an independent method that draws on inferences about the Δ33S evolution of seawater sulfate to evaluate this further. These two methods yield similar results suggesting that Δ34Spy and λ changed over the course of the Phanerozoic from slightly lower values of Δ34Spy (lower values of λ) in the early Phanerozoic (Cambrian-Permian) to higher values of Δ34Spy (higher values of λ) starting in the Triassic. This change of Δ34Spy and the exponent λ is interpreted to reflect a change in the proportion of sulfide that was reoxidized and processed by bacterial disproportionation on a global scale. The revised record of Δ34Spy also yields model pyrite burial curves making them more closely resemble model evolution curves for other element systems and global sea level curves. It is suggested that possible links to sea level may occur via changes in the area of submerged continental shelves which would provide additional loci for pyrite burial.The slightly different constraints used by the two approaches to calculate this fractionation may allow for additional information to be obtained about the sulfur cycle with future studies. For instance, the correspondence of these results suggests that the inferred variation of 34S/32S of pyrite is real, and that there is no significant missing sink of fractionated sulfur at the resolution of the present study (such as might be associated with organic sulfur). Burial of organic sulfur may, however, have been important at some times in the Phanerozoic and shorter timescale deviations between results provided by these methods may be observed with higher resolution sampling. If observed, this would suggest either that the record for pyrite (or less likely sulfate) is biased, or that another sink (possibly as organic sulfur) was important during these times in the Phanerozoic.  相似文献   

12.
Previous efforts to constrain the timing of Paleoproterozoic atmospheric oxygenation have documented the disappearance of large, mass-independent sulfur isotope fractionation and an increase in mass-dependent sulfur isotope fractionation associated with multiple glaciations. At least one of these glacial events is preserved in diamictites of the ∼2.4 Ga Meteorite Bore Member of the Kungarra Formation, Turee Creek Group, Western Australia. Outcrop exposures of this unit show the transition from the Boolgeeda Iron Formation of the upper Hamersley Group into clastic, glaciomarine sedimentary rocks of the Turee Creek Group. Here we report in situ multiple sulfur isotope and elemental abundance measurements of sedimentary pyrite at high spatial resolution, as well as the occurrence of detrital pyrite in the Meteorite Bore Member. The 15.3‰ range of Δ33S in one sample containing detrital pyrite (−3.6‰ to 11.7‰) is larger than previously reported worldwide, and there is evidence for mass-independent sulfur isotope fractionation in authigenic pyrite throughout the section (Δ33S from −0.8‰ to 1.0‰). The 90‰ range in δ34S observed (−45.5‰ to 46.4‰) strongly suggests microbial sulfate reduction under non-sulfate limiting conditions, indicating significant oxidative weathering of sulfides on the continents. Multiple generations of pyrite are preserved, typically represented by primary cores with low δ34S (<−20‰) overgrown by euhedral rims with higher δ34S (4-7‰) and enrichments in As, Ni, and Co. The preservation of extremely sharp sulfur isotope gradients (30‰/<4 μm) implies limited sulfur diffusion and provides time and temperature constraints on the metamorphic history of the Meteorite Bore Member. Together, these results suggest that the Meteorite Bore Member was deposited during the final stages of the “Great Oxidation Event,” when pO2 first became sufficiently high to permit pervasive oxidative weathering of continental sulfides, yet remained low enough to permit the production and preservation of mass-independent sulfur isotope fractionation.  相似文献   

13.
Sulfur mass-independent fractionation (S-MIF) preserved in Archean sedimentary pyrite is interpreted to reflect atmospheric chemistry. Small ranges in Δ33S that expanded into larger fractionations leading up to the Great Oxygenation Event (GOE; 2.45–2.2 Ga) are disproportionately represented by sequences from the Kaapvaal and Pilbara Cratons. These patterns of S-MIF attenuation and enhancement may differ from the timing and magnitude of minor sulfur isotope fractionations reported from other cratons, thus obscuring local for global sulfur cycling dynamics. By expanding the Δ33S record to include the relatively underrepresented São Francisco Craton in Brazil, we suggest that marine biogeochemistry affected S-MIF preservation prior to the GOE. In an early Neoarchean sequence (2763–2730 Ma) from the Rio das Velhas Greenstone Belt, we propose that low δ13Corg (<?30‰) and dampened Δ33S (0.4‰ to ?0.7‰) in banded iron formation reflect the marine diagenetic process of anaerobic methane oxidation. The overlying black shale (TOC up to 7.8%) with higher δ13Corg (?33.4‰ to ?19.2‰) and expanded Δ33S (2.3‰ ± 0.8‰), recorded oxidative sulfur cycling that resulted in enhance preservation of S-MIF input from atmospheric sources of elemental sulfur. The sequence culminates in a metasandstone, where concomitant changes to more uniform δ13Corg (?30‰ to ?25‰), potentially associated with the RuBisCO I enzyme, and near-zero Δ33S (?0.04‰ to 0.38‰) is mainly interpreted as evidence for local oxygen production. When placed in the context of other sequences worldwide, the Rio das Velhas helps differentiate the influences of global atmospheric chemistry and local marine diagenesis in Archean biogeochemical processes. Our data suggest that prokaryotic sulfur, iron, and methane cycles might have an underestimated role in pre-GOE sulfur minor isotope records.  相似文献   

14.
Greenstone belts contain several clues about the evolutionary history of primitive Earth. Here, we describe the volcano-sedimentary rock association exposed along the eastern margin of the Gavião Block, named the Northern Mundo Novo Greenstone Belt (N-MNGB), and present data collected with different techniques, including U–Pb–Hf–O isotopes of zircon and multiple sulfur isotopes (32S, 33S, 34S, and 36S) of pyrite from this supracrustal sequence. A pillowed metabasalt situated in the upper section of the N-MNGB is 3337 ± 25 Ma old and has zircon with εHf(t) =  ?2.47 to ?1.40, Hf model ages between 3.75 Ga and 3.82 Ga, and δ18O = +3.6‰ to +7.3‰. These isotopic data, together with compiled whole-rock trace element data, suggest that the mafic metavolcanic rocks formed in a subduction-related setting, likely a back-arc basin juxtaposed to a continental arc. In this context, the magma interacted with older Eoarchean crustal components from the Gavião Block. Detrital zircons from the overlying quartzites of the Jacobina Group are sourced from Paleoarchean rocks, in accordance with previous studies, yielding a maximum depositional age of 3353 ± 22 Ma. These detrital zircons have εHf(t) =  ?5.40 to ?0.84, Hf model ages between 3.66 Ga and 4.30 Ga, and δ18O = +4.8‰ to +6.4‰. The pyrite multiple sulfur isotope investigation of the 3.3 Ga supracrustal rocks from the N-MNGB enabled a further understanding of Paleoarchean sulfur cycling. The samples have diverse isotopic compositions that indicate sulfur sourced from distinct reservoirs. Significantly, they preserve the signal of the anoxic Archean atmosphere, expressed by MIF-S signatures (Δ33S between ?1.3‰ to +1.4‰) and a Δ36S/Δ33S slope of ?0.81 that is indistinguishable from the so-called Archean array. A BIF sample has a magmatic origin of sulfur, as indicated by the limited δ34S range (0 to +2‰), Δ33S ~ 0‰, and Δ36S ~ 0‰. A carbonaceous schist shows positive δ34S (2.1‰–3.5‰) and elevated Δ33S (1.2‰–1.4‰) values, with corresponding negative Δ36S between ?1.2‰ to ?0.2‰, which resemble the isotopic composition of Archean black shales and suggest a source from the photolytic reduction of elemental sulfur. The pillowed metabasalt displays heterogeneous δ34S, Δ33S, and Δ36S signatures that reflect assimilation of both magmatic sulfur and photolytic sulfate during hydrothermal seafloor alteration. Lastly, pyrite in a massive sulfide lens is isotopically similar to barite of several Paleoarchean deposits worldwide, which might indicate mass dependent sulfur processing from a global and well-mixed sulfate reservoir at this time.  相似文献   

15.
The role of sulfur in two hydrothermal vent systems, the Logatchev hydrothermal field at 14°45′N/44°58′W and several different vent sites along the southern Mid-Atlantic Ridge (SMAR) between 4°48′S and 9°33′S and between 12°22′W and 13°12′W, is examined by utilizing multiple sulfur isotope and sulfur concentration data. Isotope compositions for sulfide minerals and vent H2S from different SMAR sites range from + 1.5 to + 8.9‰ in δ34S and from + 0.001 to + 0.051‰ in Δ33S. These data indicate mixing of mantle sulfur with sulfur from seawater sulfate. Combined δ34S and Δ33S systematics reveal that vent sulfide from SMAR is characterized by a sulfur contribution from seawater sulfate between 25 and 33%. This higher contribution, compared with EPR sulfide, indicates increased seawater sulfate reduction at MAR, because of a deeper seated magma chamber and longer fluid upflow path length, and points to fundamental differences with respect to subsurface structures and fluid evolution at slow and fast spreading mid-ocean ridges.Additionally, isotope data uncover non-equilibrium isotopic exchange between dissolved sulfide and sulfate in an anhydrite bearing zone below the vent systems at fluid temperatures between 335 and 400 °C. δ34S values between + 0.2 to + 8.8‰ for dissolved and precipitated sulfide from Logatchev point to the same mixing process between mantle sulfur and sulfur from seawater sulfate as at SMAR. δ34S values between ? 24.5 and + 6.5‰ and Δ33S values between + 0.001 and + 0.125‰ for sulfide-bearing sediments and mafic/ultramafic host rocks from drill cores taken in the region of Logatchev indicate a clear contribution of biogenic sulfides formed via bacterial sulfate reduction. Basalts and basaltic glass from SMAR sites with Δ33S = ? 0.008‰ reveal lower Δ33S lower values than suggested on the basis of previously published isotopic measurements of terrestrial materials.We conclude that the combined use of both δ34S and Δ33S provides a more detailed picture of the sulfur cycling in hydrothermal systems at the Mid-Atlantic Ridge and uncovers systematic differences to hydrothermal sites at different mid-ocean ridge sites. Multiple sulfur isotope measurements allow identification of incomplete isotope exchange in addition to isotope mixing as a second important factor influencing the isotopic composition of dissolved sulfide during fluid upflow. Furthermore, based on Δ33S we are able to clearly distinguish biogenic from hydrothermal sulfides in sediments even when δ34S were identical.  相似文献   

16.
Geochemical evidence reported from Paleoproterozoic sediments has long been used to evaluate the transition from the anoxic Archean atmosphere to an oxygenated atmosphere. Sulfur isotopes (32S, 33S, 34S and 36S) in sedimentary sulfides and sulfates are an especially sensitive means to monitor this transition, such that the timing of the Paleoproterozoic “Great Oxidation Event” can be investigated using mass-independently fractionated (MIF) sulfur isotope systematics expressed as Δ33S. Here we report data from 83 individual analyses of pyrite, pyrrhotite and chalcopyrite on a new suite of 30 different samples from Finland, South Africa, Wyoming and Ontario that span ∼600 My and follow one or several “Snowball Earth” events in the Paleoproterozoic. The samples were measured using a high-resolution secondary ion mass spectrometry technique in multicollection mode that investigates multiple sulfur isotopes in microdomains (<30 μm) within individual sulfide grains while preserving petrographic context. We focused on sediments deposited in the aftermath of the Paleoproterozoic glaciations (between 1.9 and 2.2 Ga) to trace fluctuations in atmospheric O2 concentrations that were likely affected by an interplay of O2 sinks in the atmosphere and the upper ocean and continental crust, and by the emergence and diversification of aerobic organisms. Our results demonstrate that MIF sulfur isotopes are absent in sediments deposited after the period of protracted global cooling in the Paleoproterozoic and independently confirm observations that MIF ceased during this time. We interpret our results by integrating Δ33S and δ34S data in sulfides, δ13C data in carbonates and the estimated timing of glaciation events in the Paleoproterozoic. Data strongly hint at the presence of microbial sulfate reduction and fluctuations in the concentration of dissolved seawater sulfate and/or in δ34Ssulfate in the aftermath of glaciations and likely were affected by changing erosion rates and nutrient delivery to the oceans. These changes modulated the population of primary producers, especially oxygenic photosynthesizers, and led to fluctuations in the abundance of atmospheric O2, CO2 and CH4. Our results support the interpretation that the world-wide δ13Ccarb excursion observed between ∼2.25 and 2.05 Ga (Karhu and Holland, 1996) was a period of significant accumulation of O2 in the atmosphere.  相似文献   

17.
A new compilation of N‐isotope and abundance data for metasedimentary rocks, and hyrdothermal micas that proxy for bulk crust, show systematic patterns. (1) δ15N values of kerogen in Precambrian cherts are more negative relative to siliciclastic counterparts, probably due to a mantle hydrothermal component. (2) There is a secular trend from average δ15N 15.3 ± 1.8‰ in Archean shales, through intermediate values in the Proterozoic, to Phanerozoic counterparts where δ15N averages +3.5‰. (3) Hydrothermal micas in metamorphic hydrothermal systems of Palaeozoic and Mesozoic age that proxy for crust have δ15N within the range of contemporaneous sedimentary rocks. (4) Hydrothermal micas track the secular trend of δ15N for kerogen from 2.7 Ga to the Phanerozoic. (5) Within Precambrian datasets δ15N does not increase with decreasing N content; accordingly, high δ15N values cannot stem either from metamorphism or form Rayleigh fractionation. (6) Previous studies show isotopic shifts during metamorphism are only +1 to +3‰ up to amphibolite facies. Values of 10–24‰ are attributed to a high δ15N Archean atmosphere, a residual signature of CI carbonaceous chondrites where δ15N is +30‰ to + 42‰.  相似文献   

18.
The source of sulfur in giant Norilsk-type sulfide deposits is discussed. A review of the state of the problem and a critical analysis of existing hypotheses are made. The distribution of δ34S in sulfides of ore occurrences and small and large deposits and in normal sedimentary, metamorphogenic, and hypogene sulfates is considered. A large number of new δ34S data for sulfides and sulfates in various deposits, volcanic and terrigenous rocks, coals, graphites, and metasomatites are presented. The main attention is focused on the objects of the Norilsk and Kureika ore districts. The δ34S value varies from -14 to + 22.5‰ in sulfides of rocks and ores and from 15.3 to 33‰ in anhydrites. In sulfide-sulfate intergrowths and assemblages, δ34S is within 4.2-14.6‰ in sulfides and within 15.3-21.3‰ in anhydrites. The most isotopically heavy sulfur was found in pyrrhotite veins in basalts (δ34S = 21.6‰), in sulfate veins cutting dolomites (δ34S = 33‰), and in subsidence caldera sulfates in basalts (δ34S = 23.2-25.2‰). Sulfide ores of the Tsentral’naya Shilki intrusion have a heavy sulfur isotope composition (δ34S = + 17.7‰ (n = 15)). Thermobarogeochemical studies of anhydrites have revealed inclusions of different types with homogenization temperatures ranging from 685 °C to 80 °C. Metamorphogenic and hypogene anhydrites are associated with a carbonaceous substance, and hypogene anhydrites have inclusions of chloride-containing salt melts. We assume that sulfur in the trap sulfide deposits was introduced with sulfates of sedimentary rocks (δ34S = 22-24‰). No assimilation of sulfates by basaltic melt took place. The sedimentary anhydrites were “steamed” by hydrocarbons, which led to sulfate reduction and δ34S fractionation. As a result, isotopically light sulfur accumulated in sulfides and hydrogen sulfide, isotopically heavy sulfur was removed by aqueous calcium sulfate solution, and “residual” metamorphogenic anhydrite acquired a lighter sulfur isotope composition as compared with the sedimentary one. The wide variations in δ34S in sulfides and sulfates are due to changes in the physicochemical parameters of the ore-forming system (first of all, temperature and Pch4) during the sulfate reduction. The regional hydrocarbon resources were sufficient for large-scale ore formation.  相似文献   

19.
The problems involved with the interpretation of carbon isotopes as indicators for early life in highly metamorphosed early Archean rocks have prompted the search for additional chemical and isotopic biomarkers. Here we report an attempt to identify the origin of carbonaceous matter in the 3.8 Ga old Isua Supracrustal Belt in southern West Greenland by measuring the concentration and isotopic composition of a trapped nitrogen component. Stepped-combustion/pyrolysis-mass spectrometry of carbonaceous matter in several rock samples revealed three different reservoirs of trapped nitrogen: (1) nitrogen associated with a very small amount of reactive carbonaceous material, (2) nitrogen intercalated in graphite, correlated with intercalated radiogenic argon, (3) nitrogen strongly retained at defects or chemically bound in the graphite structure. The δ15N of nitrogen associated with reactive carbonaceous matter (ca. +6‰) overlaps with that of average Phanerozoic sedimentary organic matter, and is believed to be part of nonindigenous postmetamorphic biologic material. In situ Raman spectroscopy confirmed the high degree of crystallinity of the metamorphosed indigenous carbonaceous material, and this material is further referred to as graphite. Graphite interpreted as epigenetic (associated with Mg,Mn-siderite in metacarbonates) contains a very small strongly retained nitrogen component with a low δ15N ratio (−3 to −1‰). This range overlaps with values that are typically found in Archean kerogens, but also those of a metamorphically emplaced inorganic basaltic source. Geological constraints suggest that this graphite incorporated nitrogen from surrounding metabasaltic rocks. Graphite interpreted as syngenetic and biogenic found in a turbidite deposit is relatively similar to this Mg,Mn-siderite-derived graphite, based on degree of graphite crystallinity, amount of trapped radiogenic argon, low nitrogen concentration and δ15N signature. We conclude that nitrogen concentration and its isotope ratio in graphite cannot be used conclusively as a biomarker in these rocks from the highly metamorphosed Isua Supracrustal Belt.  相似文献   

20.
The Poyi Cu-Ni deposit is hosted by the Early Permian Pobei mafic-ultramafic complex along the northern margin of the Tarim Plate. This series of multiple intrusions in the Poyi deposit can be divided into four lithologies: gabbro, dunite, hornblende peridotite, and wehrlite. The ore body consists mainly of disseminated sulfides hosted by hornblende peridotite. All the Poyi deposit sulfides show positive Δ33S values from 0.004 to 0.221‰ and negative δ34S values from −0.8 to −3.5‰. High Ni contents occur in the hornblende peridotites, which exhibit the highest Δ33S value of 0.221‰ and the lowest δ34S value of −3.5‰, indicating contamination by sulfides from Archean sedimentary rocks. This contamination was important during sulfide saturation in the Poyi intrusions and likely occurred at depth before the emplacement of the Poyi intrusions. The intrusions incorporated country rocks during their emplacement and consolidation, and the degree of assimilation increases from the central lithofacies (i.e., the hornblende peridotite) to the marginal lithofacies (i.e., the wehrlite, dunite, olivine gabbro, and gabbro). Higher Ni contents are correlated with lower degrees of contamination; thus, we infer that the contamination by the country Paleoproterozoic rocks, which contain significant amounts of gneiss and marble, hindered sulfide saturation.The whole-rock Ni content is negatively correlated with the MgO and Fo contents in the olivine and positively correlated with the FeO and MnO contents in the olivine. During crystallization, olivine becomes gradually richer in FeO but poorer in MgO, and Mn tends to be enriched in the late stages of the melt. We infer that the fractional crystallization of olivine was an important factor during sulfide saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号