首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Gondwana Research》2011,19(4):632-637
In South China, the Datangpo black shales (663 Ma–654.5 Ma) were deposited during the Cryognian interglacial time between the Sturtian and Marinoan glaciations. Multi-geochemical proxies, including different iron speciation and relevant ratios (FeHR/FeT, FeP/FeHR and FeT/Al ratios) and molybdenum concentrations, were used to reconstruct the paleo-depositional environment of this black shale horizon. The ratios of different iron species (FeHR/FeT > 0.38 and FeP/FeHR < 0.80) suggest an overall anoxic conditions (ferruginous) over the deposition of the black shales, although intermittent euxinic (FeHR/FeT > 0.38 and FeP/FeHR  0.80) and oxic (FeHR/FeT < 0.38) intervals could have occurred. Furthermore, FeT/Al ratios (FeT/Al  0.51) confirm that water column may not be persistent euxinia during the deposition of the Datangpo black shales. Meanwhile, molybdenum concentrations show a decreasing trend towards the top of the black shales, reconciling the gradual oxygenating trend during this period as stated above. Compared to δ34SPy values in the Mesoproterozoic deep ocean, more positive δ34SPy values of this study may result from a small size of sulfate reservoir. The small-size sulfate reservoir and concurrent enrichment of molybdenum indicate that the ocean chemistry in the Cryogenian Period is similar to that in the Archean Eon.  相似文献   

2.
In South China, the Datangpo black shales (663 Ma–654.5 Ma) were deposited during the Cryognian interglacial time between the Sturtian and Marinoan glaciations. Multi-geochemical proxies, including different iron speciation and relevant ratios (FeHR/FeT, FeP/FeHR and FeT/Al ratios) and molybdenum concentrations, were used to reconstruct the paleo-depositional environment of this black shale horizon. The ratios of different iron species (FeHR/FeT > 0.38 and FeP/FeHR < 0.80) suggest an overall anoxic conditions (ferruginous) over the deposition of the black shales, although intermittent euxinic (FeHR/FeT > 0.38 and FeP/FeHR ≈ 0.80) and oxic (FeHR/FeT < 0.38) intervals could have occurred. Furthermore, FeT/Al ratios (FeT/Al ≤ 0.51) confirm that water column may not be persistent euxinia during the deposition of the Datangpo black shales. Meanwhile, molybdenum concentrations show a decreasing trend towards the top of the black shales, reconciling the gradual oxygenating trend during this period as stated above. Compared to δ34SPy values in the Mesoproterozoic deep ocean, more positive δ34SPy values of this study may result from a small size of sulfate reservoir. The small-size sulfate reservoir and concurrent enrichment of molybdenum indicate that the ocean chemistry in the Cryogenian Period is similar to that in the Archean Eon.  相似文献   

3.
Holocene sediments from the Gotland Deep basin in the Baltic Sea were investigated for their Fe isotopic composition in order to assess the impact of changes in redox conditions and a transition from freshwater to brackish water on the isotope signature of iron. The sediments display variations in δ56Fe (differences in the 56Fe/54Fe ratio relative to the IRMM-14 standard) from −0.27 ± 0.09‰ to +0.21 ± 0.08‰. Samples deposited in a mainly limnic environment with oxygenated bottom water have a mean δ56Fe of +0.08 ± 0.13‰, which is identical to the mean Fe isotopic composition of igneous rocks and oxic marine sediments. In contrast, sediments that formed in brackish water under periodically euxinic conditions display significantly lighter Fe isotope signatures with a mean δ56Fe of −0.14 ± 0.19‰. Negative correlations of the δ56Fe values with the Fe/Al ratio and S content of the samples suggest that the isotopically light Fe in the periodically euxinic samples is associated with reactive Fe enrichments and sulfides. This is supported by analyses of pyrite separates from this unit that have a mean Fe isotopic composition of −1.06 ± 0.20‰ for δ56Fe. The supply of additional Fe with a light Fe isotopic signature can be explained with the shelf to basin Fe shuttle model. According to the Fe shuttle model, oxides and benthic ferrous Fe that is derived from dissimilatory iron reduction from shelves is transported and accumulated in euxinic basins. The data furthermore suggest that the euxinic water has a negative dissolved δ56Fe value of about −1.4‰ to −0.9‰. If negative Fe isotopic signatures are characteristic for euxinic sediment formation, widespread euxinia in the past might have shifted the Fe isotopic composition of dissolved Fe in the ocean towards more positive δ56Fe values.  相似文献   

4.
Speciation and reactivity characterization of solid-phase Fe in marine sediments are of significance to understanding its heterogeneous mineralogy and crystallinity, the diagenetic cycling of Fe and its regulating roles on many other elements in sediments. In this study, a combination of sequential and single-step extractions was used for the determination of seven Fe pools in surface sediments of the East China Sea (ECS) continental shelf: (1) carbonate associated Fe (Fe(II)carb) plus acid volatile sulfide-Fe (Fe(II)AVS), (2) easily reducible amorphous/poorly crystalline Fe oxides (Feox1), (3) reducible crystalline Fe oxides (Feox2), (4) magnetite (Femag), (5) poorly reactive sheet silicate Fe (FePRS), (6) pyrite-Fe (Fepy), and (7) unreactive silicate Fe (FeU). Total Fe (FeT) in the sediments is largely determined by terrestrial aluminosilicate particles as indicated by a great similarity of the FeT with that of the Yangtze River and global riverine particulates. The size of FePRS is found to be the largest pool, followed by FeU, Feox2, Femag, Fe(II)AVS+carb, Feox1 and Fepy. The large FePRS may result from neoformation of Fe-rich clay minerals via reverse weathering and subsequent ageing. The small sizes of Fe(II)AVS+carb and Fepy pools is believed to be the result of low SO4 reduction due to generally low labile organic matter together with the oxic/suboxic, dynamic environments of the surface sediments. The occurrence of Feox1, Feox2 and FePRS in the sediments is closely associated with the clay fraction as indicated by a high spatial correlation between the former and the latter. Highly reactive Fe(FeHR) in the sediments is comparable to that in global marine sediments, but apparently lower than in the Yangtze River and global riverine particulates due probably to sequestration in the Yangtze Estuary. The ratios of FeHR/FeT, FePR/FeT and FeU/FeT in the ECS surface sediments consistently show more similarity to those in the Yangtze River particulates than in the global continental margin or deep-sea sediments. The surface sediments maintain a high level of buffering capacity toward sulfidation suggested by a large fraction of highly reactive Fe(III) oxides (Fe(III)HR) in FeHR.  相似文献   

5.
贵州渣拉沟剖面下寒武统黑色硅质岩微量元素富集机制   总被引:5,自引:1,他引:4  
向雷  蔡春芳  贺训云  姜磊 《岩石学报》2012,28(3):971-980
华南早寒武世发育了一套富有机质黑色硅质岩,其成因尚有较大争议。选择贵州省三都县渣拉沟剖面早寒武世牛蹄塘组底部硅质岩段进行研究,发现该硅质岩具有微量元素富集的特征。其可能的原因包括,静海环境、上升流和热液活动。Ce/Ce*比值显示硅质岩沉积时水体为次氧化条件,不支持静海环境;而Ba、Zn、Cu、Ni、Cd、P与有机碳含量不存在相关关系,也不支持上升流为微量元素富集的主要原因。Al-Fe-Mn三角图、Al2O3/(Fe2O3+Al2O3)、REY配分模式等指标则表明存在热液活动。上述认识与现代上升流、静海环境的微量元素富集系数对比结果相吻合。与华南地区早寒武世初期不同沉积环境硅质岩对比,发现:深海环境并不富集Ba、Zn、Cu、Ni等氧化还原敏感元素,而沿着斜坡相带同沉积断层分布的热液活动,更有可能造成这些微量元素的富集。  相似文献   

6.
We report solid phase sulfur speciation of six cores from sediments underlying oxic, suboxic and anoxic-sulfidic waters of the Black Sea. Our dataset includes the five sulfur species [pyrite-sulfur, acid volatile sulfides (AVS), zerovalent sulfur (S(0)), organic polysulfides (RSx), humic sulfur] together with reactive iron and manganese, as quantified by dithionite extraction, and total organic carbon. Pyrite – sulfur was the major phase in all cores [200-400 µmol (g dry wt)- 1] except for the suboxic core. However, zerovalent sulfur and humic sulfur also reached very significant levels: up to about 109 and 80 µmol (g dry wt)- 1, respectively. Humic sulfur enrichment was observed in the surface fluff layers of the eastern central basin sediments where Unit-1 type depositional conditions prevail. Elemental sulfur accumulated as a result of porewater sulfide oxidation by reactive iron oxides in turbidities from the anoxic basin margin and western central basin sediments. The accumulation of elemental sulfur to a level close to that of pyrite-S in any part of central Black Sea sediments has never been reported before and our finding indicates deep basin turbidites prevent the build-up of dissolved sulfide in the sediment. This process also contributes to diagenetic pyrite formation whereas in the non-turbiditic parts of the deep basin water column formed (syngenetic) pyrite dominates the sulfur inventory. In slope sediments under suboxic waters, organic sulfur (humic sulfur + organic polysulfides) account for 33-42% of total solid phase S, indicating that the suboxic conditions favor organosulfur formation. Our study shows that the interactions between depositional patterns (Unit 1 vs. turbidite), redox state of overlying waters (oxic-suboxic-sulfidic) and organic matter content determine sulfur speciation and enable the accumulation of elemental sulfur and organic sulfur species close to a level of pyrite-S.  相似文献   

7.
A section through the late Archean Mt. McRae Shale comprising, in ascending order, a lower shale interval (LSI), a banded iron formation (BIF), an upper shale (USI) and a carbonate (C1) has been analyzed for total Fe and Al contents and authigenic Fe present as carbonate, oxide, sulfide and silicate phases. The authigenic mineralogy is controlled by the episodic addition of Fe from hydrothermal activity and removal of Fe by sulfide, relative to rates of clastic sedimentation. The LSI and BIF have mean FeT/Al values of 2 and 5, respectively, that record iron enrichment from hydrothermal sources. Iron was precipitated primarily as siderite accompanied by Fe-rich chlorite from anoxic bottom waters rich in dissolved Fe. Pyrite formation was probably limited by the availability of sulfate, which was present at low concentrations and became rapidly depleted. The USI has generally lower FeT/Al values (0.6-1.3), similar to those found in Paleozoic shales, with the exception of one interval where enrichment may reflect either a weak hydrothermal source or the operation of an iron shuttle. This interval contains authigenic Fe predominantly as pyrite, where high values for DOP (>0.8) indicate the existence of a water column that became rich in dissolved sulfide (euxinic) when sulfate concentrations increased due to a transient or secular increase in ocean/atmosphere oxygenation. High concentrations of dissolved sulfide maintained low concentrations of dissolved Fe, which allowed only minor amounts of Fe to be precipitated as carbonates and silicates. The USI also has elevated concentrations of organic matter that most probably reflect increased productivity and likely limited euxinia to midportions of the water column on the basin margin. The carbonate C1 represents a basinal chemistry where sulfide has been removed and FeT/Al values are ∼1 indicating that hydrothermal activity again produced dissolved Fe-rich bottom waters. Detailed iron speciation of the Mt. McRae Shale can be used to recognize spatial and temporal variations in iron and sulfur inputs to the late Archean Hamersley Basin, just prior to the Paleoproterozoic rise in atmospheric oxygenation, and our refined methods have relevance to all Fe-rich deposits.  相似文献   

8.
Oxygenation of the Earth's atmosphere occurred in two major steps, near the beginning and near the end of the Proterozoic Eon (2500 to 542 Ma ago), but the details of this history are unclear. Chromium isotopes in iron-rich chemical sediments offer a potential to highlight fine-scale fluctuations in the oxygenation of the oceans and atmosphere and to add a further dimension in the use of redox-sensitive tracers to solve the question regarding fluctuations of atmospheric oxygen levels and their consequences for Earth's climate. We observe strong positive fractionations in Cr isotopes (δ53Cr up to + 5.0‰) in iron-rich cherts and banded iron formation horizons within the Arroyo del Soldado Group (Ediacaran; Uruguay) that can be explained by rapid, effective oxidation of Fe(II)-rich surface waters. These fluctuations are correlated with variations in ratios of highly reactive iron (FeHR) to total iron (Fetot) which indicate a predominance of anoxic water columns (FeHR/Fetot > 0.38) during the onset of oxidation pulses. We favor the scenario by which isotopically heavy Cr(VI) entered the basin after pulses of oxidative weathering on land and in which Fe(II) accumulated in the water column. Neodymium isotopes reveal that these oxygenation pulses were followed by increased influxes to the basin of continental crust-derived detrital components of Paleoproterozoic (Nd TDM model ages = 2.1–2.2 Ga) provenance typical of the Rio de la Plata Craton. The association of positive δ53Cr–ferruginous (FeHR/Fetot > 0.38) stratigraphic intervals with low-diversity acritarch assemblages dominated by Bavlinella faveolata strongly support models postulating a stratified, eutrophic Neoproterozoic ocean. Thus, even within a few million years of the Precambrian–Cambrian boundary, paleoceanographic conditions resembled more those of Paleoproterozoic oceans than Phanerozoic and present oceans. This highlights the sheer magnitude of ecological changes at the Precambrian–Cambrian transition, changes which ultimately led to the demise of the Precambrian world and the birth of the metazoan-dominated Phanerozoic.  相似文献   

9.
An increase in the cosmogenic beryllium-10 content of the Orca basin sediments due to the flooding of the Gulf of Mexico (GM) by meltwaters during the late Wisconsin interglacial is reported. A strong negative correlation (γ =-0.99) betweenδ 18 O (in the range o f-1.5‰ to +0.5‰) and10Be/Al ratio is seen. During intense flooding reflected by a decrease in δ18O by ∼ 2‰, this correlation may not hold as some of the sediments with low10Be/Al ratio and deposited on the shelf and slope regions of the GM during the earlier glacial period would also be washed into the basin. The deposited sediment would then be a mixture with a10Be/Al ratio lower than expected from the correlation  相似文献   

10.
Yun-Ho Song  Man Sik Choi   《Chemical Geology》2009,266(3-4):337-351
To investigate the distribution pattern and controlling factors of rare earth elements (REEs) in riverine sediments, river mouth sediments were collected at five geographically different rivers around the Yellow Sea. Two- (1 M HCl leached and residual fractions) and five-step sequential extraction schemes (the SEDEX method) were applied to size-separated sediments < 20 µm. For the total REE composition, patterns normalized relative to the upper continental crust (UCC) showed light REE (LREE) and middle (MREE) enrichments in the Korean river sediments and MREE enrichment in the Chinese river sediments. LREE and MREE enrichments in 1 M HCl leached fractions played a major role in the distribution patterns of the total compositions in all the river sediments. About half of LREE enrichment in Korean river sediments was explained by the residual fraction. Comparison of the REE composition with major elements (Al, Fe, Ca, P) in each fraction of the SEDEX scheme revealed that MREE enrichment could be explained by reactive iron minerals, including goethite and hematite, although REE/Fe ratios showed different trends among the rivers due to different major REE-host iron minerals. After extracting reactive irons, authigenic phosphate, and carbonate, the sequential 1 M HCl fraction indicated that LREE enrichment in Korean river sediments may have originated from clay minerals, such as chlorite. These observations suggest that LREE enrichment may be a good tracer, while MREE enrichment should be used cautiously considering diagenetic modification, when using the REE composition to identify the sources of terrestrial materials.  相似文献   

11.
The Palaeo–Mesoproterozoic Tadapatri formation of the Cuddapah basin is comprised of clastic sedimentary rocks with minor carbonates and mafic–ultramafic sill bodies. Geochemistry of the shale is used to study the provenance, paleoweathering and paleoredox conditions of this Tadpatri formation in order to better understand the development of the Cuddapah basin during Palaeo–Mesoproterozoic time. The higher CIA (average 74.39), PIA (average 85.94) and CIW (average 87.59) values of the Tadpatri shales suggest intensely weathered sources. Higher Al2O3/TiO2 (average 30.78) and LREE/HREE ratio (average 8.80) with negative europium anomaly indicate derivation of the clastic sediments from a felsic source rock. The geochemical parameters like U, U/Th, Cu/Zn, Ni/Co, V/Cr ratios reveal that the Tadpatri shales are mainly deposited in an oxic condition.  相似文献   

12.
The key drivers controlling the redox state of seawater and sediment pore waters in low energy environments can be inferred from redox-sensitive trace elements (RSTE), molecular biomarkers and trace metal isotopes. Here, we apply a combination of these tools to the Upper Permian Kupferschiefer (T1) from the Thuringian Basin, deposited in the southern part of the semi-enclosed Kupferschiefer Sea. Enrichment patterns of the RSTEs molybdenum (Mo) and uranium (U) as well as biomarker data attest to the rapid development of euxinic conditions in basin settings during early T1 times, which became progressively less extreme during T1 deposition. The evolution of redox conditions in basinal settings, and the associated delay in the onset of euxinia at more shallow marginal sites, can be attributed to the interaction of sea-level change with basin paleogeography. Euxinia in the southern Kupferschiefer Sea did not lead to near-quantitative depletion of aqueous Mo, possibly due to short deepwater renewal times in the Thuringian Basin, low aqueous H2S concentrations, the continuous resupply of RSTE during transgression and declining burial rates of RSTEs throughout T1 times. Drawdown of RSTE is, however, indicated for euxinic lagoon environments. Moreover, admixture of freshwater supplied to these lagoons by rivers strongly impacted local seawater chemistry. The highest Mo-isotope compositions of ~ 1.70‰ in basin sediments allow a minimum Kupferschiefer Sea seawater composition of ~ 2.40‰ to be estimated. This composition is similar to the ~ 2.30‰ estimate for the Late Permian open ocean, and confirms a strong hydrographic connection between the epeiric Kupferschiefer Sea and the global ocean. The substantial variation in Mo-isotope signatures is paralleled by diagnostic shifts in biomarkers responding to oxygenation in different parts of the water column. Water column chemistry has been affected by variation in sea level, hydrodynamic restriction, riverine freshwater influx and evaporitic conditions in shallow lagoons. Elucidation of the relative role of each driving factor by a single geochemical proxy is not feasible but the complex scenario can be disentangled by a multiproxy approach.  相似文献   

13.
Syngenetic iron sulfides in sediments are formed from dissolved sulfide resulting from sulfate reduction and catabolism of organic matter by anaerobic bacteria. It has been shown that in recent marine sediments deposited below oxygenated waters there is a constant relationship between reduced sulfur and organic carbon which is generally independent of the environment of deposition. Reexamination of data from recent sediments from euxinic marine environments (e.g., the Black Sea) also shows a linear relationship between carbon and sulfur, but the slope is variable and the line intercepts the S axis at a value between 1 and 2 percent S. It is proposed that the positive S intercept is due to watercolumn microbial reduction of sulfate using metabolizable small organic molecules and the sulfide formed is precipitated and accumulates at the sediment-water interface. The variation in slope and intercept of the C to S plots for several cores and for different stratigraphic zones for the Black Sea can be interpreted in relation to thickness of the aqueous sulfide layer or thinness of the oxygen containing layer and to deposition rate, but also may be influenced by availability of iron, and perhaps the type of organic matter (Leventhal, 1979).  相似文献   

14.
Between 1990 and 2007, twenty-nine box cores were recovered within the Arctic Ocean spanning shelf, slope and basin locations, and analyzed for aluminum (Al), manganese (Mn), other inorganic components and organic carbon (COrg). Using these core data together with literature values, we have constructed budgets for Al and Mn in the Arctic Ocean. Most of the Al and Mn entering the Arctic comes from rivers or coastal erosion, and almost all of these two elements is trapped within the Arctic. Total Mn distributions in sediments reflect the recycling and loss of much of the Mn from shelf sediments with ultimate burial over the slopes and in basins. Mn enrichments observed as bands in long cores from the basins appear to co-occur with inter-glacial periods. Our Mn budget suggests that change in sea level associated with the accumulation and melting of glaciers is a likely cause for the banding. The Arctic Ocean, which presently contains as much as 50% shelf area, loses most of that when global sea level falls by?~120?m during glacial maxima. With lower sea level, Mn input from rivers and coastal erosion declines, and inputs become stored in permafrost on the sub-aerial shelves or at the shelf margin. Sea-level rise re-establishes coastal erosion and large riverine inputs at the margin and initiates the remobilization of Mn stored on shelves by turning on algal productivity, which provides the COrg required to reduce sedimentary Mn oxyhydroxides.  相似文献   

15.
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O3T suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C–S–Fe relationship owing to authigenic precipitation of Fe–Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.  相似文献   

16.
The Western Black Sea basin opened during Cretaceous times by back-arc rifting in association with a north dipping subduction at the rear of the Cretaceous–Early Tertiary Pontide volcanic arc. The sedimentary wedge developed on the shelf of the Romanian Black Sea sector reflects a complex interplay between large scale rifting, uplift of the orogenic flanks, large-scale post-rift subsidence and sea level changes. We examine the detailed structural configuration of this sector for a regional correlation with the adjacent offshore in Ukraine and Bulgaria. The evolution of the western Black Sea basin started in the Albian–Cenomanian times, when two extensional phases with significantly different directions (N–S and subsequently E–W) lead to the formation of a complex interplay between isolated blocks organised in horsts and grabens generally deepening eastwards. Superposition of normal faults footwall blocks from the two extensional episodes generated a deeply subsided area with enhanced accommodation space, i.e., the Histria Depression, and, consequently, recorded a larger thickness of Paleogene sediments in the post-rift stage. (Re)activation of faults and associated folding reflects repeated inversion during the Late Cretaceous–Oligocene times, associated with subsequent periods of non-deposition and/or erosion during moments of basin fill exposure. These periods of inversion recorded in the Black Sea are controlled by coeval orogenic deformations taking place in the Balkans, Pontides and the Crimean thrust belt. Sea level fluctuations during the Neogene and late Alpine tectonics in the neighbouring orogens caused massive sedimentation followed by sediment starvation and/or significant erosion. Large thicknesses of sediments accumulated during the Pontian, presumably associated with an extensional episode deepening the distal parts of the basin and with differential compaction structures. The interpretation of a high-quality seismic dataset combined with published data allowed the correlation of major structural units and lineaments defined onshore towards the Carpathians with the ones deeply buried below the western Black Sea basin sediments. Unit correlations are furthermore used to derive an integrated tectonic image of the western Black Sea area.  相似文献   

17.
《Chemical Geology》2004,203(1-2):153-168
The importance of the magnetic iron sulfide minerals, greigite (Fe3S4) and pyrrhotite (Fe7S8), is often underappreciated in geochemical studies because they are metastable with respect to pyrite (FeS2). Based on magnetic properties and X-ray diffraction analysis, previous studies have reported widespread occurrences of these magnetic minerals along with magnetite (Fe3O4) in two thick Plio-Pleistocene marine sedimentary sequences from southwestern Taiwan. Different stratigraphic zones were classified according to the dominant magnetic mineral assemblages (greigite-, pyrrhotite-, and magnetite-dominated zones). Greigite and pyrrhotite are intimately associated with fine-grained sediments, whereas magnetite is more abundant in coarse-grained sediments. We measured total organic carbon (TOC), total sulfur (TS), total iron (FeT), 1N HCl extractable iron (FeA), and bulk sediment grain size for different stratigraphic zones in order to understand the factors governing the formation and preservation of the two magnetic iron sulfide minerals. The studied sediments have low TS/FeA weight ratios (0.03–0.2), far below that of pyrite (1.15), which indicates that an excess of reactive iron was available for pyritization. Observed low TS (0.05–0.27%) is attributed to the low organic carbon contents (TOC=0.25–0.55%), which resulted from dilution by rapid terrigenous sedimentation. The fine-grained sediments also have the highest FeT and FeA values. We suggest that under conditions of low organic carbon provision, the high iron activity in the fine-grained sediments may have removed reduced sulfur so effectively that pyritization was arrested or retarded, which, in turn, favored preservation of the intermediate magnetic iron sulfides. The relative abundances of reactive iron and labile organic carbon appear to have controlled the transformation pathway of amorphous FeS into greigite or into pyrrhotite. Compared to pyrrhotite-dominated sediments, greigite-dominated sediments are finer-grained and have higher FeA but lower TS. We suggest that diagenetic environments with higher supply of reactive iron, lower supply of labile organic matter, and, consequently, lower sulfide concentration result in relatively high Eh conditions, which favor formation of greigite relative to pyrrhotite.  相似文献   

18.
The analysis of paleontological remains in many samples from the Lower Quaternary Chauda sediments drilled and cored on the Bulgarian shelf of the Black Sea revealed widespread mollusks of the genera Didacna and Dreissena (Didacna tschaudae guriana, D. tschaudae, D. pleistopleura, D. crassa guriensis, Dreissena rostriformis tschaudae, D. rostriformis abchasica) accompanied by reworked Neogene representatives of the genus Digressodacna. In numerous places of a continental slope and an adjacent deep-sea depressions near Crimea and Caucasus the similar mollusc assemblage is described in the redeposited state for the first time. The composition of palynological spectra and diatom assemblages in shelf sediments indicates climate changes during the Chaudan period. The Chaudan mollusk fauna from the Black Sea sediments, which is lacking Caspian Bakuan species characteristic of the Chauda stratotype, is compositionally close to the mollusk assemblage from basal layers of the Chauda Horizon in the Guriya area of Georgia (“Gurian” Chauda). These data imply repeated changes in the level of the Chaudan basin between present-day isobaths of −30...−50 to −140 m.  相似文献   

19.
The shelf area is the largest morphological unit of the Marmara Sea and is subjected to increasing population, urbanization, and industrial activities. Metal contents (Al, Fe, Mn, Cu, Pb, Zn, Ni, Cr, Co and Hg) of the surface sediments from the shelf areas of the Marmara Sea generally do not indicate shelf-wide pollution. The variability of the metal contents of the shelf sediments is mainly governed by the geochemical differences in the northern and southern hinterlands. Northern shelf sediments contain lower values compared to those of the southern shelf, where higher Ni, Cr, Pb, Cu and Zn are derived from the rock formations and mineralized zones. However, besides from the natural high background in the southern shelf, some anthropogenic influences are evident from EF values of Pb, Zn and Cu, and also from their high mobility in the semi-isolated bay sediments. Anthropogenic influences are found to be limited at the confluence of Istanbul Strait in the northern shelf. However, suspended sediments along the shallow parts of the northern shelf were found to be enriched in Pb and Hg and to a lesser degree in Zn, reflecting anthropogenic inputs from Istanbul Metropolitan and possibly from the Black Sea via the Istanbul Strait.  相似文献   

20.
A halocline developed in the GotlandDeep, Baltic Sea, at c. 8.0 14C ky BP, as theresult of a transition from fresh to brackish water.The sediment-water interface changed from oxic topredominantly anoxic, depositional conditions wereperiodically euxinic and pyrite formation wasextensive. This environmental change led topyritization of the upper part of earlier depositedsediments. This study discusses how the distributionof trace elements (As, Ba, Cd, Cu, Co, Mo, Mn, Ni, Pb,U, Zn and V) were affected by the changing redoxconditions, productivity and salinity. The reducingconditions led to pyritization of Cu, Co, Ni, Cd, Mo,Mn and As. Lead and Zn concentrations are very low inpyrite, in agreement with their coordination tosulfide being tetrahedral. Certain elements areenriched in those sediments deposited under euxinicconditions. This enrichment was caused by scavengingof elements dissolved in the water column and isrestricted to elements that have a comparably longresidence time in the Baltic Sea. Molybdenum appearsto be the most unambigious proxy for euxinicconditions, whereas enrichment of U also requiresbrackish water in the productive zone. In the brackishenvironment, enrichment of Ba and V are linked to thecycling of organic carbon. Manganese and As are theonly elements that have been significantly remobiliseddue to the downward moving pyritization front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号