首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Ammoniojarosite [(NH4,H3O)Fe3(OH)6(SO4)2], a poorly soluble basic ferric sulfate, was produced by microbiological oxidation of ferrous sulfate at pH 2.0-3.0 over a range of concentrations (5.4-805 mM) and temperatures (22-65 °C). Ammoniojarosites were also produced by chemical (abiotic) procedures in parallel thermal (36-95 °C) experiments. At 36 °C, schwertmannite [ideally Fe8O8(OH)6(SO4)] was the only solid product formed at <10 mM concentrations. Between 11.5 and 85.4 mM , a mixed product of ammoniojarosite and schwertmannite precipitated, as identified by X-ray diffraction. In excess of 165 mM , ammoniojarosite was the only solid phase produced. An increase in the incubation temperature using thermoacidophiles at 45 and 65 °C accelerated the formation of ammoniojarosite in culture solutions containing 165 mM . Both the biogenic and chemical ammoniojarosites were yellow (2Y-4Y in Munsell hue), low surface area (<1 m2/g), well crystalline materials with average co and ao unit cell parameters of 17.467 ± 0.048 Å and 7.330 ± 0.006 Å, respectively. Strong positive correlations were observed between unit cell axial ratios (co/ao) and increasing synthesis temperature in both biotic and abiotic systems. All samples were N deficient compared to stoichiometric ammoniojarosite, and both chemical and X-ray data indicated partial replacement of by H3O+ to form solid solutions with 0.14-0.24 mole H3O+ per formula unit. The morphology of the biogenic jarosites included aggregated discs, pseudo-cubic crystals and botryoidal particles, whereas the chemical specimens prepared at 36-95 °C were composed of irregular crystals with angular edges. Morphological information may thus be useful to evaluate environmental parameters and mode of formation. The data may also have application in predicting phase boundary conditions for Fe(III) precipitation in biogeochemical processes and treatment systems involving acid sulfate waters.  相似文献   

2.
We performed a series of experiments at high pressures and temperatures to determine the partitioning of a wide range of trace elements between ilmenite (Ilm), armalcolite (Arm) and anhydrous lunar silicate melt, to constrain geochemical models of the formation of titanium-rich melts in the Moon. Experiments were performed in graphite-lined platinum capsules at pressures and temperatures ranging from 1.1 to 2.3 GPa and 1300-1400 °C using a synthetic Ti-enriched Apollo ‘black glass’ composition in the CaO-FeO-MgO-Al2O3-TiO2-SiO2 system. Ilmenite-melt and armalcolite-melt partition coefficients (D) show highly incompatible values for the rare earth elements (REE) with the light REE more incompatible compared to the heavy REE ( 0.0020 ± 0.0010 to 0.069 ± 0.010 for ilmenite; 0.0048 ± 0.0023 to 0.041 ± 0.008 for armalcolite). D values for the high field strength elements vary from highly incompatible for Th, U and to a lesser extent W (for ilmenite: 0.0013 ± 0.0008, 0.0035 ± 0.0015 and 0.039 ± 0.005, and for armalcolite 0.008 ± 0.003, 0.0048 ± 0.0022 and 0.062 ± 0.03), to mildly incompatible for Nb, Ta, Zr, and Hf (e.g. 0.28 ± 0.05 and : 0.76 ± 0.07). Both minerals fractionate the high field strength elements with DTa/DNb and DHf/DZr between 1.3 and 1.6 for ilmenite and 1.3 and 1.4 for armalcolite. Armalcolite is slightly more efficient at fractionating Hf from W during lunar magma ocean crystallisation, with DHf/DW = 12-13 compared to 6.7-7.5 for ilmenite. The transition metals vary from mildly incompatible to compatible, with the highest compatibilities for Cr in ilmenite (D ∼ 7.5) and V in armalcolite (D ∼ 8.1). D values show no clear variation with pressure in the small range covered.Crystal lattice strain modelling of D values for di-, tri- and tetravalent trace elements shows that in ilmenite, divalent elements prefer to substitute for Fe while armalcolite data suggest REE replacing Mg. Tetravalent cations appear to preferentially substitute for Ti in both minerals, with the exception of Th and U that likely substitute for the larger Fe or Mg cations. Crystal lattice strain modelling is also used to identify and correct for very small (∼0.3 wt.%) melt contamination of trace element concentration determinations in crystals.Our results are used to model the Lu-Hf-Ti concentrations of lunar high-Ti mare basalts. The combination of their subchondritic Lu/Hf ratios and high TiO2 contents requires preferential dissolution of ilmenite or armalcolite from late-stage, lunar magma ocean cumulates into low-Ti partial melts of deeper pyroxene-rich cumulates.  相似文献   

3.
Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage   总被引:4,自引:0,他引:4  
The effect of sulfur on the partitioning of Cu in a melt-vapor-brine ± magnetite ± pyrrhotite assemblage has been quantified at 800 °C, 140 MPa, fO2 = nickel-nickel oxide (NNO), logfS2=-3.0 (i.e., on the magnetite-pyrrhotite curve at NNO), logfH2S=-1.3 and logfSO2=-1. All experiments were vapor + brine saturated. Vapor and brine fluid inclusions were trapped in silicate glass and self-healed quartz fractures. Vapor and brine are dominated by NaCl, KCl and HCl in the S-free runs and NaCl, KCl and FeCl2 in S-bearing runs. Pyrrhotite served as the source of sulfur in S-bearing experiments. The composition of fluid inclusions, glass and crystals were quantified by laser-ablation inductively coupled plasma mass spectrometry. Major element, chlorine and sulfur concentrations in glass were quantified by using electron probe microanalysis. Calculated Nernst-type partition coefficients (±2σ) for Cu between melt-vapor, melt-brine and vapor-brine are , , and , respectively, in the S-free system. The partition coefficients (±2σ) for Cu between melt-vapor, melt-brine and vapor-brine are , , and , respectively, in the S-bearing system. Apparent equilibrium constants (±1σ) describing Cu and Na exchange between vapor and melt and brine and melt were also calculated. The values of are 34 ± 21 and 128 ± 29 in the S-free and S-bearing runs, respectively. The values of are 33 ± 22 and60 ± 5 in the S-free and S-bearing runs, respectively. The data presented here indicate that the presence of sulfur increases the mass transfer of Cu into vapor from silicate melt. Further, the nearly threefold increase in suggests that Cu may be transported as both a chloride and sulfide complex in magmatic vapor, in agreement with hypotheses based on data from natural systems. Most significantly, the data demonstrate that the presence of sulfur enhances the partitioning of Cu from melt into magmatic volatile phases.  相似文献   

4.
Microorganisms and higher plants produce biogenic ligands, such as siderophores, to mobilize Fe that otherwise would be unavailable. In this paper, we study the stability of arsenopyrite (FeAsS), one of the most important natural sources of arsenic on Earth, in the presence of desferrioxamine (DFO-B), a common siderophore ligand, at pH 5. Arsenopyrite specimens from mines in Panasqueira, Portugal (100-149 μm) that contained incrustations of Pb, corresponding to elemental Pb as determined by scanning electron microscopy-electron diffraction spectroscopy (SEM-EDX), were used for this study. Batch dissolution experiments of arsenopyrite (1 g L−1) in the presence of 200 μM DFO-B at initial pH (pH0) 5 were conducted for 110 h. In the presence of DFO-B, release of Fe, As, and Pb showed positive trends with time; less dependency was observed for the release of Fe, As, and Pb in the presence of only water under similar experimental conditions. Detected concentrations of soluble Fe, As, and Pb in suspensions containing only water were found to be ca. 0.09 ± 0.004, 0.15 ± 0.003, and 0.01 ± 0.01 ppm, respectively. In contrast, concentrations of soluble Fe, As, and Pb in suspensions containing DFO-B were found to be 0.4 ± 0.006, 0.27 ± 0.009, and 0.14 ± 0.005 ppm, respectively. Notably, the effectiveness of DFO-B for releasing Pb was ca. 10 times higher than that for releasing Fe. These results cannot be accounted for by thermodynamic considerations, namely, by size-to-charge ratio considerations of metal complexation by DFO-B. As determined by SEM-EDX, elemental sample enrichment analysis supports the idea that the Fe-S subunit bond energy is limiting for Fe release. Likely, the mechanism(s) of dissolution for Pb incrustations is independent and occurs concurrently to that for Fe and As. Our results show that dissolution of arsenopyrite leads to precipitation of elemental sulfur, and is consistent with a non-enzymatic mineral dissolution pathway. Finally, speciation analyses for As indicate variability in the As(III)/As(V) ratio with time, regardless of the presence of DFO-B or water. At reaction times <30 h, As(V) concentrations were found to be 50-70%, regardless of the presence of DFO-B. These results are interpreted to indicate that transformations of As are not imposed by ligand-mediated mechanisms. Experiments were also conducted to study the dissolution behavior of galena (PbS) in the presence of 200 μM at pH0 5. Results show that, unlike arsenopyrite, the dissolution behavior of galena shows coupled increases in pH with decreases in metal solubility at t > 80 h. Oxidative dissolution mechanisms conveying sulfur oxidation bring about the production of {H+}. However, dissolution data trends for arsenopyrite and galena indicate {H+} consumption. It is plausible that the formation of Pb species is dependent on {H+} and {OH}, namely, stable surface hydroxyl complexes of the form (pH50 5.8) and for pH values 5.8 or above.  相似文献   

5.
Porphyry-type ore deposits sometimes contain fluid inclusion compositions consistent with the partitioning of copper and gold into vapor relative to coexisting brine at the depositional stage. However, this has not been reproduced experimentally at magmatic conditions. In an attempt to determine the conditions under which copper and gold may partition preferentially into vapor relative to brine at temperatures above the solidus of granitic magmas, we performed experiments at 800 °C, 100 MPa, oxygen fugacity () buffered by Ni-NiO, and fixed at either 3.5 × 10−2 by using intermediate solid solution-pyrrhotite, or 1.2 × 10−4 by using intermediate solid solution-pyrrhotite-bornite. The coexisting vapor (∼3 wt.% NaCl eq.) and brine (∼68 wt.% NaCl eq.) were composed initially of NaCl + KCl + HCl + H2O, with starting HCl set to <1000 μg/g in the aqueous mixture. Synthetic vapor and brine fluid inclusions were trapped at run conditions and subsequently analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Our experiments demonstrate that copper and gold partitioned strongly into the magmatic volatile phase(s) (MVP) (i.e., vapor or brine) relative to a silicate melt over the entire imposed range of . Nernst style partition coefficients between coexisting brine (b) and melt (m), Db/m (±1σ), range from 3.6(±2.2) × 101 to 4(±2) × 102 for copper and from 1.2(±0.6) × 102 to 2.4(±2.4) × 103 for gold. Partition coefficients between coexisting vapor (v) and melt, Dv/m range from 2.1 ± 0.7 to 18 ± 5 and 7(±3) × 101 to 1.6(±1.6) × 102 for copper and gold, respectively. Partition coefficients for all experiments between coexisting brine and vapor, Db/v (±1σ), range from 7(±2) to 1.0(±0.4) × 102 and 1.7(±0.2) to 15(±2) for copper and gold, respectively. Observed average Db/v at an of 1.2 × 10−4 were elevated, 95(±5) and 15 ± 1 for copper and gold, respectively, relative to those at the higher of 3.5 × 10−2 where Db/v were 10(±5) for copper and 7(±6) for gold. Thus, there is an inverse relationship between the and the Db/v for both copper and gold with increasing resulting in a decrease in the Db/v signifying increased importance of the vapor phase for copper and gold transport. This suggests that copper and gold may complex with volatile S-species as well as Cl-species at magmatic conditions, however, none of the experiments of our study at 800 °C and 100 MPa had a Db/v ? 1. We did not directly determine speciation, but infer the existence of some metal-sulfur complexes based on the reported data. We suggest that copper and gold partition preferentially into the brine in most instances at or above the wet solidus. However, in most systems, the mass of vapor is greater than the mass of brine, and vapor transport of copper and gold may become more important in the magmatic environment at higher , lower , or near the critical point in a salt-water system. A Db/v ? 1 at subsolidus hydrothermal conditions may also occur in response to changes in temperature, , , and/or acidity.Additionally, both copper and gold were observed to partition into intermediate solid solution and bornite much more strongly than into vapor, brine or silicate melt. This suggests that, although vapor and brine are both efficient at removing copper and gold from a silicate melt, the presence of Cu-Fe sulfides can sequester a substantial portion of the copper and gold contained within a silicate melt if the Cu-Fe sulfides are abundant.  相似文献   

6.
The heat capacities of the anhydrous international reference clay minerals, smectite MX-80, illite IMt-2 and mixed-layer illite-smectite ISCz-1, were measured by low temperature adiabatic calorimetry and differential scanning calorimetry, from 6 to 520 K (at 1 bar). The samples were chemically purified and Na-saturated. Dehydrated clay fractions <2 μm were studied. The structural formulae of the corresponding clay minerals, obtained after subtracting the remaining impurities, are K0.026Na0.435Ca0.010(Si3.612Al0.388) (Al1.593Mg0.228Ti0.011)O10(OH)2 for smectite MX-80, K0.762Na0.044(Si3.387Al0.613) (Al1.427Mg0.241O10(OH)2 for illite IMt-2 and K0.530Na0.135(Si3.565Al0.435)(Al1.709Mg0.218Ti0.005)O10(OH)2for mixed-layer ISCz-1. From the heat capacity values, we determined the molar entropies, standard entropies of formation and heat contents of these minerals. The following values were obtained at 298.15 K and 1 bar:
(J mol−1 K−1)S0 (J mol−1 K−1)
Smectite MX-80326.13 ± 0.10280.56 ± 0.16
Illite IMt-2328.21 ± 0.10295.05 ± 0.17
Mixed-layer ISCz-1320.79 ± 0.10281.62 ± 0.15
Full-size table
  相似文献   

7.
The application of stable Fe isotopes as a tracer of the biogeochemical Fe cycle necessitates a mechanistic knowledge of natural fractionation processes. We studied the equilibrium Fe isotope fractionation upon sorption of Fe(II) to aluminum oxide (γ-Al2O3), goethite (α-FeOOH), quartz (α-SiO2), and goethite-loaded quartz in batch experiments, and performed continuous-flow column experiments to study the extent of equilibrium and kinetic Fe isotope fractionation during reactive transport of Fe(II) through pure and goethite-loaded quartz sand. In addition, batch and column experiments were used to quantify the coupled electron transfer-atom exchange between dissolved Fe(II) (Fe(II)aq) and structural Fe(III) of goethite. All experiments were conducted under strictly anoxic conditions at pH 7.2 in 20 mM MOPS (3-(N-morpholino)-propanesulfonic acid) buffer and 23 °C. Iron isotope ratios were measured by high-resolution MC-ICP-MS. Isotope data were analyzed with isotope fractionation models. In batch systems, we observed significant Fe isotope fractionation upon equilibrium sorption of Fe(II) to all sorbents tested, except for aluminum oxide. The equilibrium enrichment factor, , of the Fe(II)sorb-Fe(II)aq couple was 0.85 ± 0.10‰ (±2σ) for quartz and 0.85 ± 0.08‰ (±2σ) for goethite-loaded quartz. In the goethite system, the sorption-induced isotope fractionation was superimposed by atom exchange, leading to a δ56/54Fe shift in solution towards the isotopic composition of the goethite. Without consideration of atom exchange, the equilibrium enrichment factor was 2.01 ± 0.08‰ (±2σ), but decreased to 0.73 ± 0.24‰ (±2σ) when atom exchange was taken into account. The amount of structural Fe in goethite that equilibrated isotopically with Fe(II)aq via atom exchange was equivalent to one atomic Fe layer of the mineral surface (∼3% of goethite-Fe). Column experiments showed significant Fe isotope fractionation with δ56/54Fe(II)aq spanning a range of 1.00‰ and 1.65‰ for pure and goethite-loaded quartz, respectively. Reactive transport of Fe(II) under non-steady state conditions led to complex, non-monotonous Fe isotope trends that could be explained by a combination of kinetic and equilibrium isotope enrichment factors. Our results demonstrate that in abiotic anoxic systems with near-neutral pH, sorption of Fe(II) to mineral surfaces, even to supposedly non-reactive minerals such as quartz, induces significant Fe isotope fractionation. Therefore we expect Fe isotope signatures in natural systems with changing concentration gradients of Fe(II)aq to be affected by sorption.  相似文献   

8.
9.
Synthesis, characterization and thermochemistry of a Pb-jarosite   总被引:1,自引:0,他引:1  
The enthalpy of formation from the elements of a well-characterized synthetic Pb-jarosite sample corresponding to the chemical formula (H3O)0.74Pb0.13Fe2.92(SO4)2(OH)5.76(H2O)0.24 was measured by high temperature oxide melt solution calorimetry. This value ( = −3695.9 ± 9.7 kJ/mol) is the first direct measurement of the heat of formation for a lead-containing jarosite. Comparison to the thermochemical properties of hydronium jarosite and plumbojarosite end-members strongly suggests the existence of a negative enthalpy of mixing possibly related to the nonrandom distribution of Pb2+ ions within the jarosite structure. Based on these considerations, the following thermodynamic data are proposed as the recommended values for the enthalpy of formation from the elements of the ideal stoichiometric plumbojarosite Pb0.5Fe3(SO4)2(OH)6:  = −3118.1 ± 4.6 kJ/mol,  = −3603.6 ± 4.6 kJ/mol and S° = 376.6 ± 4.5 J/(mol K). These data should prove helpful for the calculation of phase diagrams of the Pb-Fe-SO4-H2O system and for estimating the solubility product of pure plumbojarosite. For illustration, the evolution of the estimated solubility product of ideal plumbojarosite as a function of temperature in the range 5-45 °C was computed (Log(Ksp) ranging from −24.3 to −26.2). An Eh-pH diagram is also presented.  相似文献   

10.
The quantification of silicon isotopic fractionation by biotic and abiotic processes contributes to the understanding of the Si continental cycle. In soils, light Si isotopes are selectively taken up by plants, and concentrate in secondary clay-sized minerals. Si can readily be retrieved from soil solution through the specific adsorption of monosilicic acid () by iron oxides. Here, we report on the Si-isotopic fractionation during adsorption on synthesized ferrihydrite and goethite in batch experiment series designed as function of time (0-504 h) and initial concentration (ic) of Si in solution (0.21-1.80 mM), at 20 °C, constant pH (5.5) and ionic strength (1 mM). At various contact times, the δ29Si vs. NBS28 compositions were determined in selected solutions (ic = 0.64 and 1.06 mM Si) by MC-ICP-MS in dry plasma mode with external Mg doping with an average precision of ±0.08‰ (±2σSEM). Per oxide mass, ferrihydrite (74-86% of initial Si loading) adsorbed more Si than goethite (37-69%) after 504 h of contact over the range of initial Si concentration 0.42-1.80 mM. Measured against its initial composition (δ29Si = +0.01 ± 0.04‰ (±2σSD)), the remaining solution was systematically enriched in 29Si, reaching maximum δ29Si values of +0.70 ± 0.07‰ for ferrihydrite and +0.50 ± 0.08‰ for goethite for ic 1.06 mM. The progressive 29Si enrichment of the solution fitted better a Rayleigh distillation path than a steady state model. The fractionation factor 29ε (±1σSD) was estimated at −0.54 ± 0.03‰ for ferrihydrite and −0.81 ± 0.12‰ for goethite. Our data imply that the sorption of onto synthetic iron oxides produced a distinct Si-isotopic fractionation for the two types of oxide but in the same order than that generated by Si uptake by plants and diatoms. They further suggest that the concentration of light Si isotopes in the clay fraction of soils is partly due to sorption onto secondary clay-sized iron oxides.  相似文献   

11.
The partitioning of As and Au between rhyolite melt and low-salinity vapor (2 wt% NaCl eq.) in a melt-vapor-Au metal ± magnetite ± pyrrhotite assemblage has been quantified at 800 °C, 120 MPa and fO2=NNO. The S-bearing runs have calculated values for the fugacities of H2S, SO2 and S2 of logfH2S=1.1, logfSO2=-1.5, and logfS2=-3.0. The ratio of H2S to SO2 is on the order of 400. The experiments constrain the effect of S on the partitioning behavior of As and Au at magmatic conditions. Calculated average Nernst-type partition coefficients (±1σ) for As between vapor and melt, , are 1.0 ± 0.1 and 2.5 ± 0.3 in the S-free and S-bearing assemblages, respectively. These results suggest that sulfur has a small, but statistically meaningful, effect on the mass transfer of As between silicate melt and low-salinity vapor at the experimental conditions. Efficiencies of removal, calculated following Candela and Holland (1986), suggest that the S-free and S-bearing low-salinity vapor can scavenge approximately 41% and 63% As from water-saturated rhyolite melt, respectively, during devolatilization assuming that As is partitioned into magnetite and pyrrhotite during second boiling. The S-free data are consistent with the presence of arsenous acid, As(OH)3 in the vapor phase. However, the S-bearing data suggest the presence of both arsenous acid and a As-S complex in S-bearing magmatic vapor. Apparent equilibrium constants, , describing the partitioning of As between melt and vapor are −1.3 (0.1) and −1.1 (0.1) for the S-free and S-bearing runs, respectively. The increase in the value of with the addition of S suggests a role for S in complexing and scavenging As from the melt during degassing.The calculated vapor/melt partition coefficients (±1σ) for Au between vapor and melt, , in S-free and S-bearing assemblages are 15 ± 2.5 and 12 ± 0.3, respectively. Efficiencies of removal (Candela and Holland, 1986) for the S-free melt, calculated assuming that magnetite is the dominant Au-sequestering solid phase during crystallization (Simon et al., 2003), suggest that magmatic vapor may scavenge on the order of 72% Au from a water-saturated melt. Efficiencies of removal calculated for the S-bearing assemblage, assuming pyrrhotite and magnetite are the dominant Au-sequestering solid phases, indicate that vapor may scavenge on the order of 60% Au from the melt. These model calculations suggest that the loss of pyrrhotite and magnetite from a melt, owing to punctuated differentiation during ascent and emplacement, does not prohibit the ability of a rhyolite melt to generate a large-tonnage Au deposit. Apparent equilibrium constants describing the partitioning of Au between melt and vapor were calculated using the mean values for the S-free and S-bearing assemblages; only S-bearing data from runs longer than 400 h were used as shorter runs may not have reached equilibrium with respect only to vapor/melt partitioning of Au. The values for are −4.4 (0.1) and −4.2 (0.2) for the S-free and S-bearing runs, respectively. These data suggest that the presence of S does not affect the mass transfer of Au from degassing silicate melt to an exsolved, low-salinity vapor in a low-fS2 assemblage (i.e., pyrrhotite-magnetite at NNO) at the experimental conditions reported here. Efficiencies of removal are calculated and used to model the mass transfer of Au from a crystallizing silicate melt to an exsolved, low-salinity vapor phase. The calculations suggest that the model, absolute tonnage of Au scavenged and transported by S-free and S-bearing vapors, from a crystallizing melt, would be comparable and that the time-integrated flux of low-salinity vapor could be responsible for a significant quantity of the Au in magmatic-hydrothermal ore deposits.  相似文献   

12.
The partitioning of silver in a sulfur-free rhyolite melt-vapor-brine assemblage has been quantified at 800 °C, pressures of 100 and 140 MPa and fO2≈NNO (nickel-nickel oxide). Silver solubility (±2σ) in rhyolite increases 5-fold from 105 ± 21 to 675 ± 98 μg/g as pressure increases from 100 to 140 MPa. Nernst-type partition coefficients describing the mass transfer of silver at 100 MPa between vapor and melt, brine and melt and vapor and brine are 32 ± 30, 1151 ± 238 and 0.026 ± 0.004, respectively. At 140 MPa, values for for vapor and melt, brine and melt, and vapor and brine are 32 ± 10, 413 ± 172 and 0.06 ± 0.03, respectively. Apparent equilibrium constant values (±2σ) describing the exchange of silver and sodium between vapor and melt, , at 100 and 140 MPa are 105 ± 68 and 14 ± 6. The average values (±2σ) for silver and sodium exchange between brine and melt, , at 100 and 140 MPa are 313 ± 288 and 65 ± 12. These data indicate that the mass transfer of silver from rhyolite melt to an exsolved volatile phase(s) is enhanced at 100 MPa relative to 140 MPa, suggesting that decompression increases the silver ore-generative potential of an evolving silicate magma. Model calculations using the new data suggest that the evolution of low-density, aqueous fluid (i.e., vapor) may be responsible for the the silver tonnage of many porphyry-type and perhaps epithermal-type ore deposits. For example, Halter et al. (Halter W. E., Pettke T. and Heinrich C. A. (2002) The origin of Cu/Au ratios in porphyry-type ore deposits. Science296, 1842-1844) used detailed silicate and sulfide melt inclusion and vapor and brine fluid inclusions analyses to estimate a melt volume on the order of 15 km3 to satisfy the copper budget at the Bajo de la Alumbrera copper-, gold-, silver-ore deposit. Using their melt volume estimate with the data presented here, model calculations for a 15-km3 felsic melt, saturated with pyrrhotite and magnetite, suggest that a low-salinity magmatic vapor may scavenge on the order of 7 × 1012 g of silver from the melt. This quantity of silver exceeds the discovered 2 × 109 g of Ag at Alumbrera. Calculated tonnages for numerous other deposits yield similar results. The excess silver in the vapor, remaining after porphyry formation, is then available to precipitate at lower PTconditions in the stratigraphically higher epithermal environment. These data suggest that silver, and perhaps other ore metals, in the porphyry-epithermal continuum may be derived solely from the time-integrated flux of dominantly low-salinity vapor exsolved from a series of sequential magma batches.  相似文献   

13.
14.
The volatization of Rhenium (Re) from melts of natural basalt, dacite and a synthetic composition in the CaO-MgO-Al2O3-SiO2 system has been investigated at 0.1 MPa and 1250-1350 °C over a range of fO2 conditions from log fO2 = −10 to −0.68. Experiments were conducted using open top Pt crucibles doped with Re and Yb. Analysis of quenched glasses by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) normal to the melt/gas interface showed concentration profiles for Re, to which a semi-infinite one-dimensional diffusion model could be applied to extract diffusion coefficients (D). The results show Re diffusivity in basalt at 1300 °C in air is log DRe = −7.2 ± 0.3 cm2/s and increases to log DRe = −6.6 ± 0.3 cm2/s when trace amounts of Cl were added to the starting material. At fO2 conditions below the nickel-nickel oxide (NNO) buffer Re diffusivity decreases to and to in dacitic melt. In the CMAS composition, . The diffusivity of Re is comparable to Ar and CO2 in basalt at 500 MPa favoring its release as a volatile. Our results support the contention that subaerial degassing is the cause of lower Re concentrations in arc-type and ocean island basalts compared to mid-ocean ridge basalts.  相似文献   

15.
In order to quantify possible fractionation of U and Pb into a metallic core, we have performed piston cylinder and multi-anvil press experiments at high pressure (up to 20 GPa) and high temperature (up to 2400 °C) and obtained the distribution coefficient Dmetal-silicate and the exchange partition coefficient Kmetal-silicate for these elements between metal and silicates (mineral or liquid). and depend strongly on the S content of the metallic phase, and also on the oxygen fugacity, in agreement with an effective valence state of 4 for U in silicates and 2 for Pb in silicates. and show no discernable pressure and temperature trend. U remains lithophile even at high pressure and high temperature but its lithophile nature decreases at very low oxygen fugacity. From our experimental data, it was possible to calculate the U and Pb contents of the cores of Mars and Earth under core-mantle equilibrium conditions at high pressure and high temperature. From the Dmetal-silicate of the present study, we obtained that: 0.008 ppm < Pbin the core <4.4 ppm, and 0.0003 ppb < Uin the core < 0.63 ppb, depending on whether the metal is S-free or S-saturated respectively, and if the mantle was molten or solid during the segregation process of the Earth’s core around ΔIW-2. For Mars, based on a core segregation process around ΔIW-1, we obtained that: 0.005 ppm < Pbin the core < 3 ppm, and 0.00002 ppb < Uin the core < 0.05 ppb, depending on the metallic composition: S-free or S-saturated respectively.Our results suggest that the low concentration of Pb in the terrestrial mantle could not be explained by an early Pb sequestration in the Earth’s core even if S is the dominant light element of the core. If we assume a magma ocean scenario, U might produced a maximum value of 1.5% of the total heat budget of the core with a segregation occurring below ΔIW-3. The values found in the present study for U in the Martian core suggest that the magnetic field activity of Mars before ∼0.5 b.y. after its formation would be difficult to ascribe to the decay of U alone.  相似文献   

16.
The stability of yttrium-acetate (Y-Ac) complexes in aqueous solution was determined potentiometrically at temperatures 25-175 °C (at Ps) and pressures 1-1000 bar (at 25 and 75 °C). Measurements were performed using glass H+-selective electrodes in potentiometric cells with a liquid junction. The species YAc2+ and were found to dominate yttrium aqueous speciation in experimental solutions at 25-100 °C (log [Ac] < −1.5, pH < 5.2), whereas at 125, 150 and 175 °C introduction of into the Y-Ac speciation model was necessary. The overall stability constants βn were determined for the reaction
  相似文献   

17.
Os equilibrium solubilities were determined at 1350 °C over a wide range of oxygen fugacities (−12 < log fO2 < −7) applying the mechanically assisted equilibration technique (MAE) at 105 Pa (= 1 bar). Os concentrations in the glass samples were analysed using ID-NTIMS. Additional LA-ICP-MS and SEM analyses were performed to detect, visualize and analyse the nature and chemistry of “nanonuggets.” Os solubilities determined range at a constant temperature of 1350 °C from 0.63 ± 0.04 to 37.4 ± 1.16 ppb depending on oxygen fugacity. At the highest oxygen fugacities, Os3+ can be confirmed as the main oxidation state of Os. At low oxygen fugacities (below log fO2 = −8), samples are contaminated by nanonuggets which, despite the MAE technique, were still not removed entirely from the melt. However, the present results indicate that applying MAE technology does reduce the amount of nanonuggets present significantly, resulting in the lowest Os solubility results reported to date under these experimental conditions, and extending the experimentally accessible range of fO2 for these studies to lower values. Calculated metal/silicate melt partition coefficients are therefore higher compared to previous studies, making Os more siderophile. Neglecting the as yet unknown temperature dependence of the Os metal/silicate melt partition coefficient, extrapolation of the obtained Os solubilities to conditions for core-mantle equilibrium, results in a , while metallic alloy/silicate melt partition coefficients range from 1.4 × 106 to 8.6 × 107, in agreement with earlier findings. Therefore remains too high by 2-4 orders of magnitude to explain the Os abundance in the Earth’s mantle as result of core-mantle equilibrium during core formation.  相似文献   

18.
The solubility of ZnS(cr) was measured at 100 °C, 150 bars in sulfide solutions as a function of sulfur concentration (m(Stotal) = 0.02-0.15) and acidity (pHt = 2-11). The experiments were conducted using a Ti flow-through hydrothermal reactor enabling the sampling of large volumes of solutions at experimental conditions, with the subsequent concentration and determination of trace quantities of Zn. Prior to the experiments, a long-term in situ conditioning of the solid phase was performed in order to attain the reproducible Zn concentrations (i.e. solubilities). The ZnS(cr) solubility product was monitored in the course of the experiment. The following species were found to account for Zn speciation in solution: Zn2+ (pHt < 3), (pHt 3-4.5), (pHt 5-8), and ZnS(HS) (pHt > 8) (pHt predominance regions are given for m(Stotal) = 0.1). Solubility data collected in this study at pHt > 3 were combined with the ZnS(cr) solubility product determined at lower pH to yield the following equilibrium constants (t = 100 °C, P = 150 bars):
  相似文献   

19.
The solubility of carbon in Fe and Fe-5.2 wt.% Ni melts, saturated with graphite, determined by electron microprobe analysis of quenched metal melts was 5.8 ± 0.1 wt.% at 2000 °C, 6.7 ± 0.2 wt.% at 2200 °C, and 7.4 ± 0.2 wt.% at 2410 °C at 2 GPa, conditions relevant for core/mantle differentiation in a shallow magma ocean. These solubilities are slightly lower than low-pressure literature values and significantly beneath calculated values for even higher pressures [e.g., Wood B. J. (1993) Carbon in the core. Earth Planet. Sci. Lett.117, 593-607]. The trend of C solubility versus temperature for Fe-5.2 wt.% Ni melt, within analytical uncertainties, is similar to or slightly lower (∼0.2-0.4 wt.%) than that of pure Fe. Carbon content of core melts and residual mantle silicates derived from equilibrium batch or fractional segregation of core liquids and their comparison with our solubility data and carbon content estimate of the present day mantle, respectively, constrain the partition coefficient of carbon between silicate and metallic melts, in a magma ocean. For the entire range of possible bulk Earth carbon content from chondritic to subchondritic values, of 10−4 to 1 is derived. But for ∼1000 ppm bulk Earth carbon, is between 10−2 and 1. Using the complete range of possible for a magma ocean at ∼2200 °C, we predict maximum carbon content of the Earth’s core to be ∼6-7 wt.% and a preferred value of 0.25 ± 0.15 wt.% for a bulk Earth carbon concentration of ∼1000 ppm.  相似文献   

20.
Structures, stabilities and vibrational spectra have been calculated using molecular quantum mechanical methods for As(OH)3, AsO(OH)3, As(SH)3, AsS(SH)3 and their conjugate bases and for several species with partial substitution of S for O. Properties for the neutral gas-phase molecules are calculated with state-of-the-art methods which yield AsL distances within 0. 01 Å and AsL stretching frequencies within 10 cm−1 of experiment. Similar accuracy is obtained for neutral molecules in solution using a polarizable continuum model (PCM). For monoanions such as and frequencies can be calculated to within 20 cm−1 of experiment using the polarizable continuum model. Multiply charged anions remain a challenge for accurate frequency calculations, but we have obtained results within the PCM model which at least semiquantitatively reproduce the available data. This allows us to assign the controversial features D, E and F in the Raman data of (Wood S. A., Tait C. D. and Janecky D. R. (2002) A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25 °C. Geochem. Trans. 3, 31-39).To help in the assignment of the arsenic sulfide spectra we have also calculated energetics for the oxidation of As(III) to As(V) compounds by polysulfides, disproportionation of As(III) compounds and for the dissociation of the oxo- and thio-acids. We have determined that As(III) oxyacids can be transformed to thioacids which can in turn be oxidized to As(V) sulfides by polysulfides and that the pKa1s of the acids involved can be ordered as follows: AsS(SH)3 < As(SH)3 < AsO(OH)3 < As(OH)3 in order of increasing pKa1. We have also established from the calculated energies that the most stable form of the As(III) oxyacid in acidic aqueous solution is indeed As(OH)3, consistent with previous assignments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号