首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low temperature vent fluids (<91 °C) issuing from the ultramafic-hosted hydrothermal system at Lost City, 30°N Mid-Atlantic Ridge, are enriched in dissolved volatiles (H2,CH4) while attaining elevated pH values, indicative of the serpentization processes that govern water/rock interactions deep in the oceanic crust. Here, we present a series of theoretical models to evaluate the extent of hydrothermal alteration and assess the effect of cooling on the systematics of pH-controlled B aqueous species. Peridotite-seawater equilibria calculations indicate that the mineral assemblage composed of diopside, brucite and chrysotile likely dictates fluid pH at moderate temperature serpentinization processes (<300 °C), by imposing constraints on the aCa++/a2H+ ratios and the activity of dissolved SiO2. Based on Sr abundances and the 87Sr/86Sr isotope ratios of vent fluids reported from Lost City, estimated water/rock mass ratios (w/r = 2-4) are consistent with published models involving dissolved CO2 and alkane concentrations. Combining the reported δ18O values of vent fluids (0.7‰) with such w/r mass ratios, allows us to bracket subseafloor reaction temperatures in the vicinity of 250 °C. These estimates are in agreement with previous theoretical studies supporting extensive conductive heat loss within the upflow zones. Experimental studies on peridotite-seawater alteration suggest that fluid pH increases during cooling which then rapidly enhances boron removal from solution and incorporation into secondary phases, providing an explanation for the highly depleted dissolved boron concentrations measured in the low temperature but alkaline Lost City vent fluids. Finally, to account for the depleted 11B composition (δ11B ∼25-30‰) of vent fluids relative to seawater, isotopic fractionation between tetrahedrally coordinated aqueous boron species with BO3-bearing mineral sites (e.g. in calcite, brucite) is proposed.  相似文献   

2.
The Lost City Hydrothermal Field (LCHF) is a serpentinite-hosted vent field located 15 km west of the spreading axis of the Mid-Atlantic Ridge. In this study, uranium-thorium (U-Th) geochronological techniques have been used to examine the U-Th systematics of hydrothermal fluids and the 230Th ages of hydrothermally-precipitated carbonate chimneys at the LCHF. Fluid sample analyses indicate that endmember fluids likely contain only 0.0073 ng/g U or less compared to 3.28 ± 0.03 ng/g of U in ambient seawater. For fluid samples containing only 2-21% ambient seawater (1.1-11 mmol/kg Mg), Th concentration is 0.11-0.13 pg/g and surrounding seawater concentrations average 0.133 ± 0.016 pg/g. The 230Th/232Th atomic ratios of the vent fluids range from 1 (±10) × 10−6 to 11 (±5) × 10−6, are less than those of seawater, and indicate that the vent fluids may contribute a minor amount of non-radiogenic 230Th to the LCHF carbonate chimney deposits. Chimney 238U concentrations range from 1 to 10 μg/g and the average chimney corrected initial δ234U is 147.2 ± 0.8, which is not significantly different from the ambient seawater value of 146.5 ± 0.6. Carbonate 232Th concentrations range broadly from 0.0038 ± 0.0003 to 125 ± 16 ng/g and 230Th/232Th atomic ratios vary from near seawater values of 43 (±8) × 10−6 up to 530 (±25) × 10−3. Chimney ages, corrected for initial 230Th, range from 17 ± 6 yrs to 120 ± 13 kyrs. The youngest chimneys are at the intersection of two active, steeply-dipping normal faults that cut the Atlantis Massif; the oldest chimneys are located in the southwest portion of the field. Vent deposits on a steep, fault-bounded wall on the east side of the field are all <4 kyrs old, indicating that mass wasting in this region is relatively recent. Comparison of results to prior age-dating investigations of submarine hydrothermal systems shows that the LCHF is the most long-lived hydrothermal system known to date. It is likely that seismic activity and active faulting within the Atlantis Massif and the Atlantis Fracture Zone, coupled with volumetric expansion of the underlying serpentinized host rocks play major roles in sustaining hydrothermal activity at this site. The longevity of venting at the LCHF may have implications for ecological succession of microorganisms within serpentinite-hosted vent environments.  相似文献   

3.
The ultramafic-hosted Logatchev Hydrothermal Field (LHF) at 15°N on the Mid-Atlantic Ridge and the Arctic Gakkel Ridge (GR) feature carbonate precipitates (aragonite, calcite, and dolomite) in voids and fractures within different types of host rocks. We present chemical and Sr isotopic compositions of these different carbonates to examine the conditions that led to their formation. Our data reveal that different processes have led to the precipitation of carbonates in the various settings. Seawater-like 87Sr/86Sr ratios for aragonite in serpentinites (0.70909 to 0.70917) from the LHF are similar to those of aragonite from the GR (0.70912 to 0.70917) and indicate aragonite precipitation from seawater at ambient conditions at both sites. Aragonite veins in sulfide breccias from LHF also have seawater-like Sr isotope compositions (0.70909 to 0.70915), however, their rare earth element (REE) patterns show a clear positive europium (Eu) anomaly indicative of a small (< 1%) hydrothermal contribution. In contrast to aragonite, dolomite from the LHF has precipitated at much higher temperatures (~ 100 °C), and yet its 87Sr/86Sr ratios (0.70896 to 0.70907) are only slightly lower than those of aragonite. Even higher temperatures are calculated for the precipitation of deformed calcite veins in serpentine–talc fault schists form north of the LHF. These calcites show unradiogenic 87Sr/86Sr ratios (0.70460 to 0.70499) indicative of precipitation from evolved hydrothermal fluids. A simple mixing model based on Sr mass balance and enthalpy conservation indicates strongly variable conditions of fluid mixing and heat transfers involved in carbonate formation. Dolomite precipitated from a mixture of 97% seawater and 3% hydrothermal fluid that should have had a temperature of approximately 14 °C assuming that no heat was transferred. The much higher apparent precipitation temperatures based on oxygen isotopes (~ 100 °C) may be indicative of conductive heating, probably of seawater prior to mixing. The hydrothermal calcite in the fault schist has precipitated from a mixture of 67% hydrothermal fluid and 33% seawater, which should have had an isenthalpic mixing temperature of ~ 250 °C. The significantly lower temperatures calculated from oxygen isotopes are likely due to conductive cooling of hydrothermal fluid discharging along faults. Rare earth element patterns corroborate the results of the mixing model, since the hydrothermal calcite, which formed from waters with the greatest hydrothermal contribution, has REE patterns that closely resemble those of vent fluids from the LHF. Our results demonstrate, for the first time, that (1) precipitation from pure seawater, (2) conductive heating of seawater, and (3) conductive cooling of hydrothermal fluids in the sub-seafloor all can lead to carbonate precipitation within a single ultramafic-hosted hydrothermal system.  相似文献   

4.
The geochemistry of coral skeletons may reflect seawater conditions at the time of deposition and the analysis of fossil skeletons offers a method to reconstruct past climate. However the precipitation of cements in the primary coral skeleton during diagenesis may significantly affect bulk skeletal geochemistry. We used secondary ion mass spectrometry (SIMS) to measure Sr, Mg, B, U and Ba concentrations in primary coral aragonite and aragonite and calcite cements in fossil Porites corals from submerged reefs around the Hawaiian Islands. Cement and primary coral geochemistry were significantly different in all corals. We estimate the effects of cement inclusion on climate estimates from drilled coral samples, which combine cements and primary coral aragonite. Secondary 1% calcite or ∼2% aragonite cement contamination significantly affects Sr/Ca SST estimates by +1 °C and −0.4 to −0.9 °C, respectively. Cement inclusion also significantly affects Mg/Ca, B/Ca and U/Ca SST estimates in some corals. X-ray diffraction (XRD) will not detect secondary aragonite cements and significant calcite contamination may be below the limit of detection (∼1%) of the technique. Thorough petrographic examination of fossils is therefore essential to confirm that they are pristine before bulk drilled samples are analysed. To confirm that the geochemistry of the original coral structures is not affected by the precipitation of cements in adjacent pore spaces we analysed the primary coral aragonite in cemented and uncemented areas of the skeleton. Sr/Ca, B/Ca and U/Ca of primary coral aragonite is not affected by the presence of cements in adjacent interskeletal pore spaces i.e. the coral structures maintain their original composition and selective SIMS analysis of these structures offers a route to the reconstruction of accurate SSTs from altered coral skeletons. However, Mg/Ca and Ba/Ca of primary coral aragonite are significantly higher in parts of skeletons infilled with high Mg calcite cement. We hypothesise this reflects cement infilling of intraskeletal pore spaces in the primary coral structure.  相似文献   

5.
Variations in sulfur mineralogy and chemistry of serpentinized peridotites and gabbros beneath the Lost City Hydrothermal Field at the southern face of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were examined to better understand serpentinization and alteration processes and to study fluid fluxes, redox conditions, and the influence of microbial activity in this active, peridotite-hosted hydrothermal system. The serpentinized peridotites are characterized by low total sulfur contents and high bulk δ34S values close to seawater composition. Low concentrations of 34S-enriched sulfide phases and the predominance of sulfate with seawater-like δ34S values indicate oxidation, loss of sulfide minerals and incorporation of seawater sulfate into the serpentinites. The predominance of pyrite in both serpentinites and gabbros indicates relatively high fO2 conditions during progressive serpentinization and alteration, which likely result from high fluid fluxes during hydrothermal circulation and evolution of the Lost City system from temperatures of ∼250 to 150 °C. Sulfate and sulfide minerals in samples from near the base of hydrothermal carbonate towers at Lost City show δ34S values that reflect the influence of microbial activity. Our study highlights the variations in sulfur chemistry of serpentinized peridotites in different marine environments and the influence of long-lived, moderate temperature peridotite-hosted hydrothermal system and high seawater fluxes on the global sulfur cycle.  相似文献   

6.
The isotopic (δD, δ18O, δ13C, and 87Sr/86Sr) and geochemical characteristics of hydrothermal solutions from the Mid-Atlantic Ridge and the material of brucite-carbonate chimneys at the Lost City hydrothermal field at 30°N, MAR, were examined to assay the role of the major factors controlling the genesis of the fluid and hydrothermal chimneys of the Lost City field. The values of δD and δ18O in fluid samples indicates that solutions at the Lost City field were produced during the serpentinization of basement ultramafic rocks at temperatures higher than 200°C and at relatively low fluid/rock ratios (<1). The active role of serpentinization processes in the genesis of the Lost City fluid also follows from the results of the electron-microscopic studying of the material of hydrothermal chimneys at this field. The isotopic (δ18O, δ13C, and 87Sr/86Sr) and geochemical (Sr/Ca and REE) signatures indicate that, before its submarine discharging at the Lost City field, the fluid filtered through already cold altered outer zones of the Atlantis Massif and cooled via conductive heat loss. During this stage, the fluid could partly dissolve previously deposited carbonates in veins cutting serpentinite at the upper levels of the Atlantis Massif and the carbonate cement of sedimentary breccias underlying the hydrothermal chimneys. Because of this, the age of modern hydrothermal activity at the Lost City field can be much younger than 25 ka.  相似文献   

7.
The experimental replacement of aragonite by calcite was studied under hydrothermal conditions at temperatures between 160 and 200 °C using single inorganic aragonite crystals as a starting material. The initial saturation state and the total [Ca2+]:[CO32−] ratio of the experimental solutions was found to have a determining effect on the amount and abundance of calcite overgrowths as well as the extent of replacement observed within the crystals. The replacement process was accompanied by progressive formation of cracks and pores within the calcite, which led to extended fracturing of the initial aragonite. The overall shape and morphology of the parent aragonite crystal were preserved. The replaced regions were identified with scanning electron microscopy and Raman spectroscopy.Experiments using carbonate solutions prepared with water enriched in 18O (97%) were also performed in order to trace the course of this replacement process. The incorporation of the heavier oxygen isotope in the carbonate molecule within the calcite replacements was monitored with Raman spectroscopy. The heterogeneous distribution of 18O in the reaction products required a separate study of the kinetics of isotopic equilibration within the fluid to obtain a better understanding of the 18O distribution in the calcite replacement. An activation energy of 109 kJ/mol was calculated for the exchange of oxygen isotopes between [C16O32−]aq and [H218O] and the time for oxygen isotope exchange in the fluid at 200 °C was estimated at ∼0.9 s. Given the exchange rate, analyses of the run products imply that the oxygen isotope composition in the calcite product is partly inherited from the oxygen isotope composition of the aragonite parent during the replacement process and is dependent on access of the fluid to the reaction interface rather than equilibration time. The aragonite to calcite fluid-mediated transformation is described by a coupled dissolution-reprecipitation mechanism, where aragonite dissolution is coupled to the precipitation of calcite at an inwardly moving reaction interface.  相似文献   

8.
Skeletons of the scleractinian coral Porites are widely utilized as archives of geochemical proxies for, among other things, sea surface temperature in paleoclimate studies. Here, we document live-collected Porites lobata specimens wherein as much as 60% of the most recently deposited skeletal aragonite, i.e., the part of the skeleton that projects into the layer of living polyps and thus is still in direct contact with living coral tissue, has been bored and replaced by calcite cement. Calcite and aragonite were identified in situ using Raman microspectroscopy. The boring-filling calcite cement has significantly different trace element ratios (Sr/Ca(mmol/mol) = 6.3 ± 1.4; Mg/Ca(mmol/mol) = 12.0 ± 5.1) than the host coral skeletal aragonite (Sr/Ca(mmol/mol) = 9.9 ± 1.3; Mg/Ca(mmol/mol) = 4.5 ± 2.3). The borings appear to have been excavated by a coccoid cyanobacterium that dissolved aragonite at one end and induced calcite precipitation at the other end as it migrated through the coral skeleton. Boring activity and cement precipitation occurred concomitantly with coral skeleton growth, thus replacing skeletal aragonite that was only days to weeks old in some cases. Although the cement-filled borings were observed in only ∼20% of sampled corals, their occurrence in some of the most recently produced coral skeleton suggests that any corallum could contain such cements, irrespective of the coral’s subsequent diagenetic history. In other words, pristine skeletal aragonite was not preserved in parts of some corals for even a few weeks. Although not well documented in coral skeletons, microbes that concomitantly excavate carbonate while inducing cement precipitation in their borings may be common in the ubiquitous communities that carry out micritization of carbonate grains in shallow carbonate settings. Thus, such phenomena may be widespread, and failure to recognize even very small quantities of early cement-filled borings in corals used for paleoclimate studies could compromise high resolution paleotemperature reconstructions. The inability to predict the occurrence of cement-filled borings in coralla combined with the difficulty in recognizing them on polished blocks highlights the great care that must be taken in vetting samples both for bulk and microanalysis of geochemistry.  相似文献   

9.
The integrity of coral-based reconstructions of past climate variability depends on a comprehensive knowledge of the effects of post-depositional alteration on coral skeletal geochemistry. Here we combine millimeter-scale and micro-scale coral Sr/Ca data, scanning electron microscopy (SEM) images, and X-ray diffraction with previously published δ18O records to investigate the effects of submarine and subaerial diagenesis on paleoclimate reconstructions in modern and young sub-fossil corals from the central tropical Pacific. In a 40-year-old modern coral, we find secondary aragonite is associated with relatively high coral δ18O and Sr/Ca, equivalent to sea-surface temperature (SST) artifacts as large as −3 and −5 °C, respectively. Secondary aragonite observed in a 350-year-old fossil coral is associated with relatively high δ18O and Sr/Ca, resulting in apparent paleo-SST offsets of up to −2 and −4 °C, respectively. Secondary Ion Mass Spectrometry (SIMS) analyses of secondary aragonite yield Sr/Ca ratios ranging from 10.78 to 12.39 mmol/mol, significantly higher compared to 9.15 ± 0.37 mmol/mol measured in more pristine sections of the same fossil coral. Widespread dissolution and secondary calcite observed in a 750-year-old fossil coral is associated with relatively low δ18O and Sr/Ca. SIMS Sr/Ca measurements of the secondary calcite (1.96-9.74 mmol/mol) are significantly lower and more variable than Sr/Ca values from more pristine portions of the same fossil coral (8.22 ± 0.13 mmol/mol). Our results indicate that while diagenesis has a much larger impact on Sr/Ca-based paleoclimate reconstructions than δ18O-based reconstructions at our site, SIMS analyses of relatively pristine skeletal elements in an altered coral may provide robust estimates of Sr/Ca which can be used to derive paleo-SSTs.  相似文献   

10.
We present Os and Sr isotopes and Mg, Os, and Sr concentrations for ridge-crest high-temperature and diffuse hydrothermal fluids, plume fluids and ridge-flank warm spring fluids from the Juan de Fuca Ridge. The data are used to evaluate the extent to which (1) the high- and low-temperature hydrothermal alteration of mid-ocean ridge basalts (MORBs) provides Os to the deep oceans, and (2) hydrothermal contributions of non-radiogenic Os and Sr to the oceans are coupled. The Os and Sr isotopic ratios of the high-temperature fluids (265-353 °C) are dominated by basalts (187Os/188Os = 0.2; 87Sr/86Sr = 0.704) but the concentrations of these elements are buffered approximately at their seawater values. The 187Os/188Os of the hydrothermal plume fluids collected ∼1 m above the orifice of Hulk vent is close to the seawater value (=1.05). The low-temperature diffuse fluids (10-40 °C) associated with ridge-crest high-temperature hydrothermal systems on average have [Os] = 31 fmol kg−1, 187Os/188Os = 0.9 and [Sr] = 86 μmol kg−1, 87Sr/86Sr = 0.709. They appear to result from mixing of a high-temperature fluid and a seawater component. The ridge-flank warm spring fluids (10-62 °C) on average yield [Os] = 22 fmol kg−1, 187Os/188Os = 0.8 and [Sr] = 115 μmol kg−1, 87Sr/86Sr = 0.708. The data are consistent with isotopic exchange of Os and Sr between basalt and circulating seawater during low-temperature hydrothermal alteration. The average Sr concentration in these fluids appears to be similar to seawater and consistent with previous studies. In comparison, the average Os concentration is less than seawater by more than a factor of two. If these data are representative they indicate that low-temperature alteration of MORB does not provide adequate non-radiogenic Os and that another source of mantle Os to the oceans must be investigated. At present, the magnitude of non-radiogenic Sr contribution via low-temperature seawater alteration is not well constrained. If non-radiogenic Sr to the oceans is predominantly from the alteration of MORB, our data suggest that there must be a different source of non-radiogenic Os and that the Os and Sr isotope systems in the oceans are decoupled.  相似文献   

11.
12.
Magnesium/calcium, Sr/Ca, and Na/Ca atom ratios were determined in the calcite and aragonite regions of Mytilus edulis shells which were grown in semi-artificial ‘seawater’ solutions having varying Mg/Ca, Sr/Ca, and Na/Ca ratios. These ratios were measured by instrumental neutron activation, atomic absorption, and electron microprobe analytical techniques. Strontium/calcium ratios in both calcite and aragonite were linearly proportional to solution Sr/Ca ratios. Magnesium/calcium ratios in calcite increased exponentially when solution Mg/Ca ratios were raised above the normal seawater ratio; whereas in aragonite, Mg/Ca ratios increased linearly with increases in solution Mg/Ca ratios. Sodium/calcium and sulfur/calcium ratios in calcite covaried with Mg/Ga solution ratios. Conversely, in aragonite, Na/Ca ratios varied linearly with solution Na/Ca ratios.Magnesium is known to inhibit calcite precipitation at its normal seawater concentration. We infer from the results of the work reported here that Mytilus edulis controls the Mg activity of the outer extrapallial fluid, thus facilitating the precipitation of calcitic shell. Increases in sulfur content suggest that changes in shell organic matrix content occur as a result of environmental stress. Certain increases in Mg content may also be correlated to stress. Sodium/calcium variations, and their absolute amounts in calcite and aragonite, are best explained by assuming that a substantial amount of Na is adsorbed on the calcium carbonate crystal surface. Strontium/calcium ratios show more promise than either Mg/Ca or Na/Ca ratios as seawater paleochemistry indicators, because the Sr/Ca distribution coefficients for both aragonite and calcite are independent of seawater Ca and Sr concentrations.  相似文献   

13.
Coral proxy records of sea surface temperature (SST) and hydrological balance have become important tools in the field of tropical paleoclimatology. However, coral aragonite is subject to post-depositional diagenetic alteration in both the marine and vadose environments. To understand the impact of diagenesis on coral climate proxies, two mid-Holocene Porites corals from raised reefs on Muschu Island, Papua New Guinea, were analysed for Sr/Ca, δ18O, and δ13C along transects from 100% aragonite to 100% calcite. Thin-section analysis showed a characteristic vadose zone diagenetic sequence, beginning with leaching of primary aragonite and fine calcite overgrowths, transitional to calcite void filling and neomorphic, fabric selective replacement of the coral skeleton. Average calcite Sr/Ca and δ18O values were lower than those for coral aragonite, decreasing from 0.0088 to 0.0021 and −5.2 to −8.1‰, respectively. The relatively low Sr/Ca of the secondary calcite reflects the Sr/Ca of dissolving phases and the large difference between aragonite and calcite Sr/Ca partition coefficients. The decrease in δ18O of calcite relative to coral aragonite is a function of the δ18O of precipitation. Carbon-isotope ratios in secondary calcite are variable, though generally lower relative to aragonite, ranging from −2.5 to −10.4%. The variability of δ13C in secondary calcite reflects the amount of soil CO2 contributing 13C-depleted carbon to the precipitating fluids. Diagenesis has a greater impact on Sr/Ca than on δ18O; the calcite compositions reported here convert to SST anomalies of 115°C and 14°C, respectively. Based on calcite Sr/Ca compositions in this study and in the literature, the sensitivity of coral Sr/Ca-SST to vadose-zone calcite diagenesis is 1.1 to 1.5°C per percent calcite. In contrast, the rate of change in coral δ18O-SST is relatively small (−0.2 to 0.2°C per percent calcite). We show that large shifts in δ18O, reported for mid-Holocene and Last Interglacial corals with warmer than present Sr/Ca-SSTs, cannot be caused by calcite diagenesis. Low-level calcite diagenesis can be detected through X-ray diffraction techniques, thin section analysis, and high spatial resolution sampling of the coral skeleton and thus should not impede the production of accurate coral paleoclimate reconstructions.  相似文献   

14.
The mechanisms and the timescales of magmatic evolution were investigated for historical lavas from the Askja central volcano in the Dyngjufjöll volcanic massif, Iceland, using major and trace element and Sr, Nd, and Pb isotopic data, as well as 238U-230Th-226Ra systematics. Lavas from the volcano show marked compositional variation from magnesian basalt through ferrobasalt to rhyolite. In the magnesian basalt-ferrobasalt suite (5-10 wt% MgO), consisting of lavas older than 1875 A.D., 87Sr/86Sr increases systematically with increasing SiO2 content; this suite is suggested to have evolved in a magma chamber located at ∼600 MPa through assimilation and fractional crystallization. On the other hand, in the ferrobasalt-rhyolite suite (1-5 wt% MgO), including 1875 A.D. basalt and rhyolite and 20th century lavas, 87Sr/86Sr tends to decrease slightly with increasing SiO2 content. It is suggested that a relatively large magma chamber occupied by ferrobasalt magma was present at ∼100 MPa beneath the Öskjuvatn caldera, and that icelandite and rhyolite magmas were produced by extraction of the less and more evolved interstitial melt, respectively, from the mushy boundary layer along the margin of the ferrobasalt magma chamber, followed by accumulation of the melt to form separate magma bodies. Ferrobasalt and icelandite lavas in the ferrobasalt-rhyolite suite have a significant radioactive disequilibrium in terms of (226Ra/230Th), and its systematic decrease with magmatic evolution is considered to reflect aging, along with assimilation and fractional crystallization processes. Using a mass-balance model in which simultaneous fractional crystallization, crustal assimilation, and radioactive decay are taken into account, the timescale for the generation of icelandite magma from ferrobasalt was constrained to be <∼3 kyr which is largely dependent on Ra crystal-melt partition coefficients we used.  相似文献   

15.
We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45′N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca]SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca]HydEnd) and thereby adopts a δ44/40CaHydEnd of −0.95 ± 0.07‰ relative to seawater (SW) and a 87Sr/86Sr isotope ratio of 0.7034(4). We demonstrate that δ44/40CaHydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a δ44/40Ca of −1.17 ± 0.04‰ (SW) for the host-rocks in the reaction zone and −1.45 ± 0.05‰ (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed δ44/40Ca for Bulk Earth of −0.92 ± 0.18‰ (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about Δ44/40Ca = −0.5‰ relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average δ44/40Ca of −1.54 ± 0.08‰ (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration.  相似文献   

16.
Exhumation of the Himalayan-Tibetan orogen is implicated in the marked rise in seawater 87Sr/86Sr ratios since 40 Ma. However both silicate and carbonate rocks in the Himalaya have elevated 87Sr/86Sr ratios and there is disagreement as to how much of the 87Sr flux is derived from silicate weathering. Most previous studies have used element ratios from bedrock to constrain the proportions of silicate- and carbonate-derived Sr in river waters. Here we use arrays of water compositions sampled from the head waters of the Ganges in the Indian and Nepalese Himalaya to constrain the end-member element ratios. The compositions of tributaries draining catchments restricted to a limited range of geological units can be described by two-component mixing of silicate and carbonate-derived components and lie on a plane in multicomponent composition space. Key elemental ratios of the carbonate and silicate components are determined by the intersection of the tributary mixing plane with the planes Na = 0 for carbonate and constant Ca/Na for silicate. The fractions of Sr derived from silicate and carbonate sources are then calculated by mass-balance in Sr-Ca-Mg-Na composition space. Comparison of end-member compositions with bedrock implies that secondary calcite deposition may be important in some catchments and that dissolution of low-Mg trace calcite in silicate rocks may explain discrepancies in Sr-Ca-Na-Mg covariation. Alternatively, composition-dependent precipitation or incongruent dissolution reactions may rotate mixing trends on cation-ratio diagrams. However the calculations are not sensitive to transformations of the compositions by incongruent dissolution or precipitation processes provided that the transformed silicate and carbonate component vectors are constrained. Silicates are calculated to provide ∼50% of the dissolved Sr flux from the head waters of the Ganges assuming that discrepancies between Ca-Mg-Na covariation and the silicate rock compositions arise from addition of trace calcite. If the Ca-Mg-Na mixing plane is rotated by composition-dependent secondary calcite deposition, this estimate would be increased. Moreover, when 87Sr/86Sr ratios of the Sr inputs are considered, silicate Sr is responsible for 70 ± 16% (1σ) of the 87Sr flux forcing changes in seawater Sr-isotopic composition. Since earlier studies predict that silicate weathering generates as little as 20% of the total Sr flux in Himalayan river systems, this study demonstrates that the significance of silicate weathering can be greatly underestimated if the processes that decouple the water cation ratios from those of the source rocks are not properly evaluated.  相似文献   

17.
This paper revisits the utility of sodium (Na) content in aragonite and calcite mollusc shells as an indicator of palaeosalinity. The data come mainly from a related suite of Middle Pleistocene marine and freshwater fossils that have been subject to broadly similar diagenetic histories. Environmental salinity is re-affirmed as the primary factor in determining the sodium content of modern and ancient mollusc shells: values <2000 ppm Na are generally indicative of non-marine environments while values >2000 Na ppm are typically from marine shells. There is a positive relationship between Na (salinity) and Sr which is a helpful discriminator of palaeosalinity in the fossil data set. The Na and Sr data give confidence that the fossil shells have not suffered pervasive diagenetic alteration and that the marine fossils lived in fully marine conditions. Oxygen isotope values in the best-preserved, fully marine fossil shells, suggest Middle Pleistocene ‘eastern England’ seawater temperatures were broadly similar to those of the modern North Sea.  相似文献   

18.
Calcite Mg/Ca is usually assumed to vary linearly with solution Mg/Ca, that a constant partition coefficient describes the relationship between these two ratios. Numerous published empirical datasets suggests that this relationship is better described by a power function. We provide a compilation of these literature data for biotic and abiotic calcite in the form of Calcite Mg/Ca = F(Solution Mg/Ca)H, where F and H are empirically determined fitting parameters describing the slope and deviation from linearity, respectively, of the function. This is equivalent to Freundlich sorption behavior controlling Mg incorporation in calcite. Using a power function, instead of a partition coefficient, lowers Phanerozoic seawater Mg/Ca estimates based on echinoderm skeletal material by, on average, 0.5 mol/mol from previous estimates.These functions can also be used to model the primary skeletal calcite Mg/Ca of numerous calcite phases through geologic time. Such modeling suggests that the Mg/Ca of all calcite precipitated from seawater has varied through the Phanerozoic in response to changing seawater Mg/Ca and that the overall range in Mg/Ca measured among various calcite phases would be greatest when seawater Mg/Ca was also high (e.g., “aragonite seas”) and lowest when seawater Mg/Ca was low (e.g., “calcite seas”). It follows that, during times of “calcite seas” when the seawater Mg/Ca is presumed to have been lower, deposition of calcite with low Mg contents would have resulted in a depressed drive for diagenetic stabilization of shelfal carbonate and, in turn, lead to greater preservation of crystal and skeletal microfabrics and primary chemistries in biotic and abiotic calcites.  相似文献   

19.
In the low-grade, high-pressure (400°C, 10 kbar) metamorphic Phyllite-Quartzite Unit of Western Crete, widespread occurrences of aragonite marbles have been discovered recently. A sedimentary precursor is proved by relic structures (bedding, fossils). Partial or complete transformation of aragonite into calcite is ubiquitous. Compositional and microstructural features reflect the metamorphic history: (1) The high-pressure stage is documented by aragonite that is chemically characterized by incorporation of variable amounts of Sr and the lack of Mg. The most Sr-rich aragonite has about 9 wt% SrO (X Sr arag =0.09). A compositional zoning observed in some aragonite crystals may be due to the prograde divariant calcitearagonite transformation in the system CaCO3-SrCO3. Because the parent rocks probably were Sr-poor calcite limestones, one can speculate that strontium has been supplied from an external source under high-pressure conditions. (2) During uplift, calcite replacing aragonite did not equilibrate with unreplaced aragonite. Disequilibrium is indicated by highly variable compositions of calcite crystals that show topotactic relations to the host aragonite. The calcite compositions range from that of the host aragonite (Sr-rich and Mg-free) to Mg-bearing and Sr-poor. (3) Calcite that recrystallized during retrogression is generally Sr-poor (mean value ofX Sr<0.005), Mg-bearing (X Mg0.010), and chemically homogeneous. Because practically no Sr remains in the calcite, an interaction with a fluid phase is indicated. In fine-grained calcite marbles rich in solid organic matter, microstructural features indicative of former aragonite may be present. (4) The last stage of retrogression is documented by the appearance of radiating aragonite in veins and nodules. This aragonite, which shows neither deformation nor retrogression, was probably formed metastably in a near-surface environment.  相似文献   

20.
Each of two calcitic stalagmites from Grotte de Clamouse, Herault, southern France, displays a discrete aragonite layer dated at around 1100 yr BP. The layer of fanning aragonite ray crystals is immediately preceded by calcite with Mg and Sr compositions that are uniquely high for the past 3 kyr. Trace element compositions close to the boundary between original aragonite and calcite are consistent with quasi‐equilibrium partitioning of trace elements between the phases. Study of modern dripwaters demonstrates that pronounced covariation of Mg/Ca and Sr/Ca ratios in dripwater occurs owing to large amounts of calcite precipitation upflow of the drips that fed the stalagmites. Trace element to Ca ratios are enhanced during seasonally dry periods. Ion microprobe data demonstrate a pronounced covariation of trace elements, including Mg and Sr in calcite, and Sr, U and Ba in aragonite. The mean peak spacing is close to the long‐term mean of annual growth rates determined by differences in U‐series ages and so the trace element peaks are interpreted as annual. The trace element chemistry of the stalagmites on annual to inter‐annual scales thus directly reflects the amounts of prior calcite precipitation, interpreted as an index of aridity. The longer‐term context is a multi‐decadal period of aridity (1200–1100 yr BP) possibly correlated with an analogous episode in Central America. The arid period culminated in the nucleation of aragonite, but within a decade was followed by a return to precursor conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号