首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using recently gathered onland structural and 2D/3D offshore seismic data in south and central Palawan (Philippines), this paper presents a new perspective in unraveling the Cenozoic tectonic history of the southeastern margin of the South China Sea. South and central Palawan are dominated by Mesozoic ophiolites (Palawan Ophiolite), distinct from the primarily continental composition of the north. These ophiolites are emplaced over syn-rift Eocene turbidites (Panas Formation) along thrust structures best preserved in the ophiolite–turbidite contact as well as within the ophiolites. Thrusting is sealed by Early Miocene (∼20 Ma) sediments of the Pagasa Formation (Isugod Formation onland), constraining the younger limit of ophiolite emplacement at end Late Oligocene (∼23 Ma). The onset of ophiolite emplacement at end Eocene is constrained by thrust-related metamorphism of the Eocene turbidites, and post-emplacement underthrusting of Late Oligocene – Early Miocene Nido Limestone. This carbonate underthrusting at end Early Miocene (∼16 Ma) is marked by the deformation of a seismic unit corresponding to the earliest members of the Early – Middle Miocene Pagasa Formation. Within this formation, a tectonic wedge was built within Middle Miocene (from ∼16 Ma to ∼12 Ma), forming a thrust-fold belt called the Pagasa Wedge. Wedge deformation is truncated by the regionally-observed Middle Miocene Unconformity (MMU ∼12 Ma). A localized, post-kinematic extension affects thrust-fold structures, the MMU, and Late Miocene to Early Pliocene carbonates (e.g. Tabon Limestone). This structural set-up suggests a continuous convergent regime affecting the southeastern margin of the South China Sea between end Eocene to end Middle Miocene. The ensuing structures including juxtaposed carbonates, turbidites and shallow marine clastics within thrust-fold belts have become ideal environments for hydrocarbon generation and accumulation. Best developed in the Northwest Borneo Trough area, the intensity of thrust-fold deformation decreases towards the northeast into offshore southwest Palawan.  相似文献   

2.
The western South Korea Plateau in the East Sea (Sea of Japan) is occupied by rifted continental fragments formed in association with the early phase of back-arc opening. The present study focuses on the seismic stratigraphy of the sedimentary succession and the underlying acoustic basement in this region, based on closely spaced multichannel seismic reflection profiles. The sedimentary succession occurs mainly within a series of subparallel basement troughs (grabens or half grabens) bounded by faulted continental blocks (horsts) or volcanic ridges, and commonly floored by extrusive volcanic rocks showing hyperbolic reflectors. These features are strongly suggestive of continental rifting accompanied by normal faulting, volcanic activity and high rates of basin subsidence. The sedimentary succession can be subdivided into four seismic units. Unit 1 is characterized by short and irregular high-amplitude reflectors and interpreted as a syn-rift deposit consisting of a non-marine volcanics/sediment complex in topographic lows. Units 2 and 3 formed in an open marine environment during the Middle Miocene to Early Pliocene, characterized by an onlap-fill and later draping marine sedimentary succession dominantly composed of hemipelagic sediments and turbidites with frequent intercalation of mass-flow deposits. Along the western margin of the plateau, these units were deformed under a compressional regime in the Early Pliocene, associated with the back-arc closing phase. Unit 4 (deposited since the Early Pliocene) comprises hemipelagic sediments and turbidites with evidence of sporadic slides/slumps.  相似文献   

3.
Multichannel seismic data from the eastern parts of the Riiser-Larsen Sea have been analyzed with a sequence stratigraphic approach. The data set covers a wide bathymetric range from the lower continental slope to the abyssal plain. Four different sequences (termed RLS-A to RLS-D, from deepest to shallowest) are recognized within the sedimentary section. The RLS-A sequence encompasses the inferred pre-glacial part of the deposits. Initial phases of ice sheet arrival at the eastern Riiser-Larsen Sea margin resulted in the deposition of multiple debris flow units and/or slumps on the upper part of the continental rise (RLS-B). The nature and distribution of these deposits indicate sediment supply from a line or a multi-point source. The subsequent stage of downslope sediment transport activity was dominated by turbidity currents, depositing mainly as distal turbidite sheets on the lower rise/abyssal plain (RLS-C). We attribute this to margin progradation and/or a more focussed sediment delivery to the continental shelf edge. As the accommodation space on the lower rise/abyssal plain declined and the base level was raised, the turbidite channels started to backstep and develop large channel–levee complexes on the upper parts of the continental rise (RLS-D). The deposition of various drift deposits on the lower rise/abyssal plain and along the western margin of the Gunnerus Ridge indicates that the RLS-D sequence is also associated with increased activity of contour currents. The drift deposits overlie a distinct regional unconformity which is considered to reflect a major paleoceanographic event, probably related to a Middle Miocene intensification of the Antarctic Circumpolar Current.  相似文献   

4.
A synthesis of high-resolution (Chirp, 2–7 kHz) subbottom profiles in the Ulleung Basin reveals patchy distribution of shallow (<90 m subbottom depth) gassy sediments in the eastern basin plain below 1,800-m water depth. The shallow gases in the sediments are associated with acoustic turbidities, columnar acoustic blankings, enhanced reflectors, dome structures, and pockmarks. Analyses of gas samples collected from a piston core in an earlier study suggest that the shallow gases are thermogenic in origin. Also, published data showing high amounts of organic matter in thick sections of marine shale (middle Miocene to lower Pliocene sequence) and high heat flow in the basin plain sediments are consistent with the formation of deep, thermogenic gas. In multi-channel deep seismic profiles, numerous acoustic chimneys and faults reflect that the deep, thermogenic gas would have migrated upwards from the deeper subsurface to the near-seafloor. The upward-migrating gases may have accumulated in porous debrites and turbidites (upper Pliocene sequence) overlain by impermeable hemipelagites (Quaternary sequence), resulting in the patchy distribution of shallow gases on the eastern basin plain.  相似文献   

5.
Abstract

It is clear from morphology alone that distinctly different dynamic and sedimentary processes can be expected to be associated with the Greater Antilles Outer Ridge relative to those of the adjacent Nares Abyssal Plain. This difference is further substantiated by seismic reflection data which show the ridge to be a very large prism of acoustically transparent sediment in contrast to the stratified deposits of the abyssal plain. An examination of the geotechnical properties of the near‐surface (0 to 2.4m) deposits of the two areas also reveals distinct differences in their sedimentological characteristics. The outer ridge sediments, of more or less homogenous clay‐size material, display much higher water contents, porosities, sensitivities, plasticity, and organic carbon contents in contrast to the abyssal plain deposits which are much less homogenous owing to the presence of turbidite sequences. The turbidites themselves are uniquely contrasted to the other abyssal plain sediments by their higher silt content, wet bulk density, shear strength, and sensitivity.  相似文献   

6.
Seismic reflection profiles from the northern end of Juan de Fuca Ridge reveal three axial valleys having a basement relief of as much as 2 sec (two-way travel time). A thick sequence, presumably of turbidites, mainly less than 0.7 m.y. old, covers much of the area. The oldest turbidites form the upper part of the fill of a possible Tertiary trench between the ridge and North America. The second turbidite unit extends beyond the trench and once formed an abyssal plain over most of northern Juan de Fuca Ridge and the area west to Explorer Ridge. Following formation of the plain, vertical movements began that broadly uplifted the crest of Juan de Fuca Ridge, block-faulted its northern end, produced faulting along Sovanco Fracture Zone, and upwarped the basement north of the ridge. Younger turbidites have filled the lowlands created by the vertical movements. The present sea floor topography and seismic activity show evidence of continued movements.  相似文献   

7.
8.
The distribution of seismic units in deposits of the basins near the Antarctic–Scotia plate boundary is described based on the analysis of multichannel seismic reflection profiles. Five main seismic units are identified. The units are bounded by high-amplitude continuous reflectors, named a to d from top to bottom. The two older units are of different age and seismic facies in each basin and were generally deposited during active rifting and seafloor spreading. The three youngest units (3 to 1) exhibit, in contrast, rather similar seismic facies and can be correlated at a regional scale. The deposits are types of contourite drift that resulted from the interplay between the northeastward flow of Weddell Sea Bottom Water (WSBW) and the complex bathymetry in the northern Weddell Sea, and from the influence of the Antarctic Circumpolar Current and the WSBW in the Scotia Sea. A major paleoceanographic event was recorded by Reflector c, during the Middle Miocene, which represents the connection between the Scotia Sea and the Weddell Sea after the opening of Jane Basin. Unit 3 (tentatively dated ∼Middle to Late Miocene) shows the initial incursions of the WSBW into the Scotia Sea, which influenced a northward progradational pattern, in contrast to the underlying deposits. The age attributed to Reflector b is coincident with the end of spreading at the West Scotia Ridge (∼6.4 Ma). Unit 2 (dated ∼Late Miocene to Early Pliocene) includes abundant high-energy, sheeted deposits in the northern Weddell Sea, which may reflect a higher production of WSBW as a result of the advance of the West Antarctic ice-sheet onto the continental shelf. Reflector a represents the last major regional paleoceanographic change. The timing of this event (∼3.5–3.8 Ma) coincides with the end of spreading at the Phoenix–Antarctic Ridge, but may be also correlated with global events such as initiation of the permanent Northern Hemisphere ice-sheet and a major sea level drop. Unit 1 (dated ∼Late Pliocene to Recent) is characterized by abundant chaotic, high-energy sheeted deposits, in addition to a variety of contourites, which suggest intensified deep-water production. Units 1 and 2 show, in addition, a cyclic pattern, more abundant wavy deposits and the development of internal unconformities, all of which attest to alternating periods of increased bottom current energy.  相似文献   

9.
A regional study of the Veracruz Basin provided an excellent view of long-term deepwater sedimentation patterns from an evolving foreland-type basin. The regional seismic and well-log data set allows for an accurate reconstruction of slope and basin-floor depositional patterns, lithologic compositions, and paleogradients from a continuous succession of bathyal strata that span the Miocene to the lower Pliocene. Variations in Miocene and Pliocene deepwater reservoirs can be linked to prevailing slope characteristics. The Miocene basin had a high-gradient, tectonically generated slope, and the Pliocene basin had a low-gradient constructional slope. The Miocene basin owes its steep margin to the tectonic stacking of early Tertiary, Laramide-age thrust sheets. The Miocene margin shed a mixture of coarse elastic sediments (sands, gravels, and cobbles) and fines (silts and clays) that were transported into the deep basin via turbidity currents and debris flows. Channelized deposits dominate the Miocene slope, and reservoirs occur in long-lasting basement-confined canyons and shorter-lived shallower erosional gulleys. Thick and areally-extensive basin-floor fans exist outboard of the strongly channelized Miocene slope. Fan distribution is strongly controlled by synsedimentary contractional anticlines and synclines. In contrast, the latest Miocene to early Pliocene basin development was dominated by a strongly prograding wedge of shelf and slope deposits that was induced by volcanogenic uplift and increased sediment supply. During this phase, turbidite reservoirs are limited to narrow and sinuous deepwater channels that reside at the toe of the constructional clinoforms and areally limited, thinner basinal fans.  相似文献   

10.
The 853 m thick sediment sequence recovered at ODP Site 1148 provides an unprecedented record of tectonic and paleoceanographic evolution in the South China Sea over the past 33 Ma. Litho-, bio-, and chemo-stratigraphic studies helped identify six periods of changes marking the major steps of the South China Sea geohistory. Rapid deposition with sedimentation rates of 60 m/Ma or more characterized the early Oligocene rifting. Several unconformities from the slumped unit between 457 and 495 mcd together erased about 3 Ma late Oligocene record, providing solid evidence of tectonic transition from rifting/slow spreading to rapid spreading in the South China Sea. Slow sedimentation of 20–30 m/Ma signifies stable seafloor spreading in the early Miocene. Dissolution may have affected the completeness of Miocene–Pleistocene succession with short-term hiatuses beyond current biostratigraphical resolution. Five major dissolution events, D-1 to D-5, characterize the stepwise development of deep water masses in close association to post-Oligocene South China Sea basin transformation. The concurrence of local and global dissolution events in the Miocene and Pliocene suggests climatic forcing as the main mechanism causing deep water circulation changes concomitantly in world oceans and in marginal seas. A return of high sedimentation rate of 60 m/Ma to the late Pliocene and Pleistocene South China Sea was caused by intensified down-slope transport due to frequent sea level fluctuations and exposure of a large shelf area during sea level low-stands. The six paleoceanographic stages, respectively corresponding to rifting (33–28.5 Ma), changing spreading southward (28.5–23 Ma), stable spreading to end of spreading (23–15 Ma), post-spreading balance (15–9 Ma), further modification and monsoon influence (9–5 Ma), and glacial prevalence (5–0 Ma), had transformed the South China Sea from a series of deep grabens to a rapidly expanding open gulf and finally to a semi-enclosed marginal sea in the past 33 Ma.  相似文献   

11.
Eastward migration of the Caribbean plate relative to the South American plate has caused lithospheric loading along the northern margin of South America, which is recorded by an 1100-km-long foreland basin which is oldest in the west (Maracaibo basin, 65-55 Ma) and youngest in the east (Columbus basin, eastern offshore Trinidad, 15-0 Ma). The Orinoco River has been the primary source of sediment for the basin since early Miocene. We have integrated approximately 775 km of deep-penetration 2D seismic lines acquired in the area of eastern offshore Trinidad as part of the 2004 “Broadband Ocean-Land Investigations of Venezuela and the Antilles arc Region” (BOLIVAR) project, 8000 km2 of shallow industry 3D seismic data, and published industry well data from offshore eastern Trinidad. Active mud diapirism in the Columbus basin is widespread and is related to overthrusting and tectono-sedimentary loading of upper Miocene-lower Pliocene age mud. Analysis of the shallow 3D seismic data reveals the presence of extensive gravity-flow depositional elements on the Columbus basin slope and the deepwater area. These stacked gravity-flow deposits are characterized by mass-transport deposits at the base, turbidite frontal-splay deposits, leveed-channel deposits, and capped by fine-grained condensed-section deposits. Exploration targets in the deepwater area are located towards the center of the Columbus basin, where northeast-trending fault-propagation folds are important Plio-Pleistocene trap-forming elements. Deep basin wells drilled in recent years have proven that turbidites were transported into the deepwater Columbus basin during the Plio-Pleistocene. Analysis of these well results suggests that a deeper oil charge is present within the deepwater Columbus basin area. The primary uncertainty for this variable hydrocarbon system is whether fault or diapiric pathways connect or divert the petroleum charge at depth with shallower reservoir rocks.  相似文献   

12.
In recent years, exploration of the Lower Congo Basin in Angola has focused on the Neogene turbidite sand play of the Malembo Formation. Gravity tectonics has played an important role during deposition of the Malembo Formation and has imparted a well-documented structural style to the post-rift sediments. An oceanward transition from thin-skinned extension through mobile salt and eventually to thin-skinned compressional structures characterises the post-rift sediments. There has been little discussion, however, regarding the influence of these structures on the deposition of the Malembo Formation turbidite sands. Block 4 lies at the southern margin of the Lower Congo Basin and is dominated by the thin-skinned extensional structural style. Using a multidisciplinary approach we trace the post-rift structural and stratigraphic evolution of this block to study the structural controls on Neogene turbidite sand deposition.In the Lower Congo Basin the transition from terrestrial rift basin to fully marine passive margin is recorded by late Aptian evaporites of the Loeme Formation. Extension of the overlying post-rift sequences has occurred where the Loeme Formation has been utilised as a detachment surface for extensional faults. Since the late Cretaceous, the passive margin sediments have moved down-slope on the Loeme detachment. This history of gravity-driven extension is recorded in the post-rift sediments of Block 4. Extension commenced in the Albian in the east of the block and migrated westwards with time. In the west, the extension occurred mainly in the Miocene and generated allochthonous fault blocks or “rafts”, separated by deep grabens. The Miocene extension occurred in two main phases with contrasting slip vectors; in the early Miocene the extension vector was to the west, switching to southwest-directed extension in the late Miocene. Early Miocene faults and half-grabens trend north–south whereas late Miocene structures trend northwest–southeast. The contrast in slip vectors between these two phases emphasises the differences in driving mechanisms: the early Miocene faulting was driven by basinward tilting of the passive margin, but gravity loading due to sedimentary progradation is considered the main driver for the late Miocene extension. The geological evolution of the late Miocene grabens is consistent with southwest-directed extension due to southwest progradation of the Congo fan.High-resolution biostratigraphic data identifies the turbidite sands in Block 4 as early Miocene (17.5–15.5 Ma) and late Miocene (10.5–5.5 Ma) in age. Deposition of these sands occurred during the two main phases of gravity-driven extension. Conditions of low sedimentation rates relative to high fault displacement rates were prevalent in the early Miocene. Seafloor depressions were generated in the hangingwalls of the main extensional faults, ultimately leading to capture of the turbidity currents. Lower Miocene turbidite sand bodies therefore trend north–south, parallel to the active faults. Cross-faults and relay ramps created local topographic highs capable of deflecting turbidite flows within the half grabens. Flow-stripping of turbidity currents across these features caused preferential deposition of sands across, and adjacent to, the highs. Turbidite sands deposited in the early part of the late Miocene were influenced by both the old north–south fault trends and by the new northwest–southeast fault trends. By latest Miocene times turbidite channels crosscut the active northwest–southeast-trending faults. These latest Miocene faults had limited potential to capture turbidity currents because the associated hangingwall grabens were rapidly filled as pro-delta sediments of the Congo fan prograded across the area from the northeast.  相似文献   

13.
To study the time-varying influence of the Congo River and the Benguela Current on the deposition at the Angola Continental Margin, a high-resolution reflection seismic survey was carried out on the northern Congo Fan. Four seismostratigraphic units have been defined for the upper 800 m (1000 ms TWT) of the data. The units record different depositional environments, ranging from pre-establishment of the Congo River drainage system to the influence of the Benguela Current. An indication of a general change in the turbidite system is provided by a shift in channel distribution and a relocation of the depocentre of coarse material. The ascent of salt is recorded up to the Pliocene. Gas that has migrated out of Lower Cretaceous shales and that was produced from large quantities of organic matter in the younger sediments can be found on the flanks and on top of the salt domes. In a few places, this gas even ascends to the ocean floor along structural pathways through the topmost unit.  相似文献   

14.
The Adare Trough, located 100 km NE of Cape Adare, Antarctica, is the extinct third arm of a Tertiary spreading ridge that separated East from West Antarctica. We use seismic reflection data, tied to DSDP Site 274, to link our seismic stratigraphic interpretation to changes in ocean-bottom currents, Ross Sea ice cover, and regional tectonics through time. Two extended unconformities are observed in the seismic profiles. We suggest that the earliest hiatus (early Oligocene to Mid-Miocene) is related to low sediment supply from the adjacent Ross Shelf, comprised of small, isolated basins. The later hiatus (mid-Miocene to late Miocene) is likely caused by strong bottom currents sourced from the open-marine Ross Sea due to increased Antarctic glaciation induced by mid-Miocene cooling (from Mi-3). Further global cooling during the Pliocene, causing changes in global ocean circulation patterns, correlates with Adare Basin sediments and indicate the continuing but weakened influence of bottom currents. The contourite/turbidite pattern present in the Adare Trough seismic data is consistent with the 3-phase contourite growth system proposed for the Weddell Sea and Antarctic Peninsula. Multibeam bathymetry and seismic reflection profiles show ubiquitous volcanic cones and intrusions throughout the Adare Basin that we interpret to have formed from the Oligocene to the present. Seismic reflection profiles reveal trans-tensional/strike-slip faults that indicate oblique extension dominated Adare Trough tectonics at 32–15 Ma. Observed volcanism patterns and anomalously shallow basement depth in the Adare Trough area are most likely caused by mantle upwelling, an explanation supported by mantle density reconstructions, which show anomalously hot mantle beneath the Adare Trough area forming in the Late Tertiary.  相似文献   

15.
运用近年来采集的高分辨率地震资料和多波束测深数据,在珠江海谷及西北次海盆深海平原区发现大规模发育的第四纪重力流沉积体系,该沉积体系沿珠江海谷以北西-南南东方向贯穿整个北部陆坡,进入西北次海盆后呈扇形展开,形成珠江海谷-西北次海盆大型深水浊积扇系统。据沉积体系空间展布特征差异,将珠江海谷划分为北、中、南三段,北段为过路侵蚀和水道下切,中段以水道充填和天然堤沉积为主,南段以水道-天然堤和朵叶体沉积共存为特征,揭示出北部陆坡珠江海谷是珠江口外陆缘物质输送海盆深海平原的主要通道;海盆区总体以朵叶体发育为特色,呈扇形展布。深水扇系统可分为三期次沉积体,其区域结构记录了重力流沉积物从侵蚀、卸载到南海海盆作为限制性盆地接收陆源沉积物的全过程,为“源-渠-汇”的研究构建了一个完美的范例。本文以珠江海谷-西北次海盆第四纪深水浊积扇沉积体系为例,完整地揭示了水道-扇体的组构和特征,清晰呈现了陆坡-海盆砂体展布的规律,可为建立南海北部新近纪早期深水扇形成模式提供参考,有助于指导南海深水油气勘探工作。  相似文献   

16.
Continental slope terraces at the southern Argentine margin are part of a significant contourite depositional system composed of a variety of drifts, channels, and sediment waves. Here, a refined seismostratigraphic model for the sedimentary development of the Valentin Feilberg Terrace located in ~4.1?km water depth is presented. Analyzing multichannel seismic profiles across and along this terrace, significant changes in terrace morphology and seismic reflection character are identified and interpreted to reflect variations in deep water hydrography from Late Miocene to recent times, involving variable flow of Antarctic Bottom Water and Circumpolar Deep Water. A prominent basin-wide aggradational seismic unit is interpreted to represent the Mid-Miocene climatic optimum (~17?C14?Ma). A major current reorganization can be inferred for the time ~14?C12?Ma when the Valentin Feilberg Terrace started growing due to the deposition of sheeted and mounded drifts. After ~12?Ma, bottom water flow remained vigorous at both margins of the terrace. Another intensification of bottom flow occurred at ~5?C6?Ma when a mounded drift, moats, and sediment waves developed on the terrace. This may have been caused by a general change in deep water mass organization following the closure of the Panamanian gateway, and a subsequent stronger southward flow of North Atlantic Deep Water.  相似文献   

17.
This paper presents a new structural-stratigraphic approach to constrain the reservoir potential of the middle Miocene turbidite systems within the Monagas Fold-Thrust Belt (MFTB) and Maturín Sub-Basin (MSB) of eastern Venezuela. In the frontal anticline structures of the MFTB (Amarilis Area) light hydrocarbons have been produced from these turbidite systems which were deposited in a foreland basin with a complex tectonostratigraphic evolution.In order to predict the location of other analogous reservoirs we used the structural model presented in Part I (Parra et al., 2010) to developed a palaeo-topographic reconstruction at early-middle Miocene. We have then used this reconstruction to constrain the palaeogeography of the middle Miocene foredeep where the turbidites were deposited. The area considered has 5000 km2.By middle Miocene four regions are identified: 1) The southern basin margin dipped 1.5-2.5° north; 2) The foredeep axis had a southwest-northeast orientation. Within the foredeep the proto-structures of the MFTB created submerged highs that control the distribution of sediments; 3) The northern basin margin dipped 3-4° south; the coastline was controlled by the Pirital thrust sheet; 4) The main source of sediments was located towards the northwest on the Pirital thrust sheet and Serranía del Interior.Variations in shortening across the strike of the Pirital thrust were accommodated by a lateral ramp which controlled the location of a valley that acted as the main sediment pathway for the sediments that fed the turbidite system. This relationship between the thrust belt geomorphology and the location of turbidite sediment within the foredeep must be considered in order to assess the distribution of the Miocene turbidite reservoirs.  相似文献   

18.
The petrophysical properties of sediment drill core samples recovered from the Sardinian margin and the abyssal plain of the Southern Tyrrhenian Basin were used to estimate the downhole change in porosity and rates of deposition and mass accumulation. We calculated how the deposited material has changed its thickness as a function of depth, and corrected the thickness for the compaction. The corresponding porosity variation with depth for terrigenous and pelagic sediments and evaporites was modelled according to an exponential law. The mass accumulation rate for the Plio-Quaternary is on average 4.8×104 kg m−2 my−1 on the Sardinian margin and for the Pliocene in the abyssal plain. In the latter area, the Quaternary attains its greatest thickness and a mass accumulation rate of 11–40×104 kg m−2 my−1. The basement response to sediment loading was calculated with Airy-type backstripping. On the lower part of the Sardinian margin, the basement subsidence rate due to sediment loading has decreased from a value of 300 m my−1 in the Tortonian and during the Messinian salinity crisis (7.0–5.33 Ma) to about 5 m my−1 in the Plio-Quaternary. In contrast, on the abyssal plain this rate has changed from 8–50 m my−1 during the period 3.6–0.46 Ma, to 95–130 m my−1 since 0.46 Ma, with the largest values in the Marsili Basin. The correlation between age and the depth to the basement corrected for the loading of the sediment in the ocean domain of the Tyrrhenian Basin argues for a young age of basin formation.  相似文献   

19.
Co-genetic debrite–turbidite beds are most commonly found in distal basin-plain settings and basin margins. This study documents the geometry, architectural association and paleogeographic occurrence of co-genetic debrite–turbidite beds in the Carboniferous Ross Sandstone with the goal of reducing uncertainty in the interpretation of subsurface data in similarly shaped basins where oil and gas is produced.The Ross Sandstone of western Ireland was deposited in a structurally confined submarine basin. Two outcrops contain co-genetic debrite–turbidite beds: Ballybunnion and Inishcorker. Both of the exposures contain strata deposited on the margin of the basin. An integrated dataset was used to characterize the stratigraphy of the Ballybunnion exposure. The exposure is divided into lower, middle, and upper units. The lower unit contains laminated shale with phosphate nodules, structureless siltstone, convolute bedding/slumps, locally contorted shale, and siltstone turbidites. The middle unit contains co-genetic debrite–turbidite beds, siltstone turbidites, and structureless siltstone. Each co-genetic debrite–turbidite bed contains evidence that fluid turbulence and matrix strength operated alternately and possibly simultaneously during deposition by a single sediment-gravity-flow event. The upper unit contains thin-bedded sandy turbidites, amalgamated sandy turbidites, siltstone turbidites, structureless siltstone, and laminated shale. A similar vertical facies pattern is found at Inishcorker.Co-genetic debrite–turbidite beds are only found at the basin-margin. We interpret these distinct beds to have originated as sand-rich, fully turbulent flows that eroded muddy strata on the slope as well as interbedded sandstone and mudstone in axial positions of the basin floor forming channels and associated megaflute erosional surfaces. This erosion caused the axially dispersing flows to laterally evolve to silt- and clay-rich flows suspended by both fluid turbulence and matrix strength due to a relative increase in clay proportions and associated turbulence suppression. The flows were efficient enough to bypass the basin center/floor, physically disconnecting their deposits from coeval lobes, resulting in deposition of co-genetic debrite–turbidite beds on the basin margin. The record of these bypassing flows in axial positions of the basin is erosional surfaces draped by thin siltstone beds with organic debris.A detailed cross-section through the Ross Sandstone reveals a wedge of low net-to-gross, poor reservoir-quality strata that physically separates sandy, basin-floor strata from the basin margin. The wedge of strata is referred to as the transition zone. The transition zone is composed of co-genetic debrite–turbidite beds, structureless siltstone, slumps, locally contorted shale, and laminated shale. Using data from the Ross Sandstone, two equations are defined that predict the size and shape of the transition zone. The equations use three variables (thickness of basin-margin strata, thickness of coeval strata on the basin floor, and angle of the basin margin) to solve for width (w) and trajectory of the basinward side of the low net-to-gross wedge (β). Beta is not a time line, but a facies boundary that separates sandy basin floor strata from silty basin-margin strata. The transition zone is interpreted to exist on lateral and distal margins of the structurally confined basin.Seismic examples from Gulf of Mexico minibasins reveal a wedge of low continuity, low amplitude seismic facies adjacent to the basin margin. Strata in this wedge are interpreted as transition-zone sediments, similar to those in the Ross Sandstone. Besides defining the size and shape of the transition zone, the variables “w” and “β” define two important drilling parameters. The variable “w” corresponds to the minimum distance a well bore should be positioned from the lateral basin margin to intersect sandy strata, and “β” corresponds to the deviation (from horizontal) of the well bore to follow the interface between sandy and low net-to-gross strata. Calculations reveal that “w” and “β” are related to the relative amount of draping, condensed strata on the margin and the angle of the basin margin. Basins with shallowly dipping margins and relatively high proportions of draping, clay-rich strata have wider transition zones compared to basins with steeply dipping margins with little draping strata. These concepts can reduce uncertainty when interpreting subsurface data in other structurally confined basins including those in Gulf of Mexico, offshore West Africa, and Brunei.  相似文献   

20.
In 1982, a geophysical survey of the Antarctic margin, including multichannel seismic, gravity, magnetic and bathymetric surveying, was carried out off Adélie Coast-Wilkes Land and in the eastern Ross Sea. Of the 5000 km of lines recorded, 3000 km were in the Adélie Coast area. Lines ATC 101–102, approximately following meridian 138°E, show the first complete transect of the Adélie Coast margin from the Southeast Indian abyssal plain at DSDP Site 269 to the continental shelf. These lines reveal a thick sedimentary series divided into three main acoustic units by two major unconformities considered to be Upper Eocene (42 Ma) and late Oligocene (25 Ma). Oceanic or continental basement can be traced under the whole area, and the ocean-continent boundary clearly lies beneath the lower continental slope. A deep, high-amplitude, low-frequency horizon, extending under the oceanic basement for over 300 km of line, is considered to be the Moho. Our interpretation supports a recent revision be Cande and Mutter proposing an early Upper Cretaceous opening between Australia and East Antarctica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号