首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Methods for predicting unit plot soil loss for the ‘Sparacia’ Sicilian (Southern Italy) site were developed using 316 simultaneous measurements of runoff and soil loss from individual bare plots varying in length from 11 to 44 m. The event unit plot soil loss was directly proportional to an erosivity index equal to (QREI30)1·47, being QREI30 the runoff ratio (QR) times the single storm erosion index (EI30). The developed relationship represents a modified version of the USLE‐M, and therefore it was named USLE‐MM. By the USLE‐MM, a constant erodibility coefficient was deduced for plots of different lengths, suggesting that in this case the calculated erodibility factor is representative of an intrinsic soil property. Testing the USLE‐M and USLE‐MM schemes for other soils and developing simple procedures for estimating the plot runoff ratio has practical importance to develop a simple method to predict soil loss from bare plots at the erosive event temporal scale. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The effects of timber-cutting on sediment concentrations, soil loss and overland flow in an insigne pine (Pinus radiata) plantation were studied in a mountain watershed of the Cordillera de la Costa, central Chile. Soil formation rates for the lithological conditions of the watershed were estimated. Soil loss measurements on the plantation were taken in 100 m2 plots, equipped with Coshocton samplers, during the years 1991 and 1992. Treatments were: clear-cutting no residues/burned, clear-cutting with residues and undisturbed controls. First-year soil losses were greater from the no residues/burned (2128 kg ha?1) than from the residues (1219 kg ha?1) or undisturbed (48 kg ha?1) plots. During the second post-treatment year, soil loss was greater from the burned plots (1349 kg ha?1) than from the residues (243 kg ha?1) or the undisturbed (72 kg ha?1) plots. Sediment concentrations for the three treatments were 561, 340 and 59 mgl-1 during the first year, and 400, 150 and 83 mgl?1 in the second year. Runoff from the no residues/burned plots was greater than from residues or undisturbed plots during the two post-treatment years. Long-term soil losses were projected to average 240 kg ha?1 yr?1 from areas without residues/burned and 120 kg ha?1 yr?1 in areas with residues treatment, over a 25 year rotation period, whereas control areas were projected to average 60 kg ha?1 yr?1.  相似文献   

4.
Interpreting rainfall‐runoff erosivity by a process‐oriented scheme allows to conjugate the physical approach to soil loss estimate with the empirical one. Including the effect of runoff in the model permits to distinguish between detachment and transport in the soil erosion process. In this paper, at first, a general definition of the rainfall‐runoff erosivity factor REFe including the power of both event runoff coefficient QR and event rainfall erosivity index EI30 of the Universal Soil Loss Equation (USLE) is proposed. The REFe factor is applicable to all USLE‐based models (USLE, Modified USLE [USLE‐M] and Modified USLE‐M [USLE‐MM]) and it allows to distinguish between purely empirical models (e.g., Modified USLE‐M [USLE‐MM]) and those supported by applying theoretical dimensional analysis and self‐similarity to Wischmeier and Smith scheme. This last model category includes USLE, USLE‐M, and a new model, named USLE‐M based (USLE‐MB), that uses a rainfall‐runoff erosivity factor in which a power of runoff coefficient multiplies EI30. Using the database of Sparacia experimental site, the USLE‐MB is parameterized and a comparison with soil loss data is carried out. The developed analysis shows that USLE‐MB (characterized by a Nash–Sutcliffe Efficiency Index NSEI equal to 0.73 and a root mean square error RMSE = 11.7 Mg ha?1) has very similar soil loss estimate performances as compared with the USLE‐M (NSEI = 0.72 and RMSE = 12.0 Mg ha?1). However, the USLE‐MB yields a maximum discrepancy factor between predicted and measured soil loss values (176) that is much lower than that of USLE‐M (291). In conclusion, the USLE‐MB should be preferred in the context of theoretically supported USLE type models.  相似文献   

5.
Four techniques for soil erosion assessment were compared over two consecutive seasons for bare-fallow plots and a maize-cowpea sequence in 1985 at IITA, Ibadan, Nigeria. The techniques used were: tracer (aluminium paint), nails (16 and 25), the rill method, and the Universal Soil Loss Equation (USLE). Soil loss estimated by these techniques was compared with that determined using the runoff plot technique. There was significantly more soil loss (P < 0·01) in bare-fallow than in plots under maize (Zea mays) or cowpea (Vigna unguiculata). In the first season, soil loss from plots sown to maize was 40·2 Mg ha?1 compared with 153·3 Mg ha?1 from bare-fallow plots. In the second season, bare-fallow plots lost 87·5 Mg ha?1 against 39·4 Mg ha?1 lost from plots growing cowpea. The techniques used for assessing erosion had no influence on the magnitude of soil erosion and did not interfere with the processes of erosion. There was no significant difference (P < 0·05) between soil erosion determined by the nails and the runoff plot technique. Soil loss determined on six plots (three under maize, three bare-fallow) by the rill technique, at the end of the season, was significantly lower (P < 0·05) than that determined by the runoff plot technique. The soil loss estimated by the rill method was 143·2, 108·8 and 121·9 Mg ha?1 for 11, 11, and 8 per cent slopes respectively, in comparison with 201·5, 162·0, and 166·4 Mg ha?1 measured by the runoff plot method. Soil loss measured on three bare-fallow plots on 10 different dates by the rill technique was also significantly lower (P < 0·01) than that measured by the runoff plot. In the first season the USLE significantly underestimated soil loss. On 11, 11, and 8 per cent slopes, respectively, soil loss determined by the USLE was 77, 92, and 63 per cent of that measured by the runoff plot. However, in the second season there was no significant difference between soil loss determined by the USLE and that determined by the conventional runoff plot technique.  相似文献   

6.
Piping has been recognized as an important geomorphic, soil erosion and hydrologic process. It seems that it is far more widespread than it has often been supposed. However, our knowledge about piping dynamics and its quantification currently relies on a limited number of data for mainly loess‐derived areas and marl badlands. Therefore, this research aimed to recognize piping dynamics in mid‐altitude mountains under a temperate climate, where piping occurs in Cambisols, not previously considered as piping‐prone soils. It has been expressed by the estimation of erosion rates due to piping and elongation of pipes in the Bere?nica Wy?na catchment in the Bieszczady Mountains, eastern Carpathians (305 ha, 188 collapsed pipes). The research was based on the monitoring of selected piping systems (1971–1974, 2013–2016). Changes in soil loss vary significantly between different years (up to 27.36 t ha?1 yr?1), as well as between the mean short‐term erosion rate (up to 13.10 t ha?1 yr?1), and the long‐term (45 years) mean of 1.34 t ha?1 yr?1. The elongation of pipes also differs, from no changes to 36 m during one year. The mean total soil loss is 48.8 t ha?1 in plots, whereas in the whole studied catchment it is 2.0 t ha?1. Hence, piping is both spatially and temporally dependent. The magnitude of piping in the study area is at least three orders of magnitude higher than surface erosion rates (i.e. sheet and rill erosion) under similar land use (grasslands), and it is comparable to the magnitude of surface soil erosion on arable lands. It means that piping constitutes a significant environmental problem and, wherever it occurs, it is an important, or even the main, sediment source. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Runoff and erosion processes can increase after wildfire and post-fire salvage logging, but little is known about the specific effects of soil compaction and surface cover after post-fire salvage logging activities on these processes. We carried out rainfall simulations after a high-severity wildfire and post-fire salvage logging to assess the effect of compaction (uncompacted or compacted by skid traffic during post-fire salvage logging) and surface cover (bare or covered with logging slash). Runoff after 71 mm of rainfall across two 30-min simulations was similar for the bare plots regardless of the compaction status (mean 33 mm). In comparison, runoff in the slash-covered plots averaged only 22 mm. Rainsplash in the downslope direction averaged 30 g for the bare plots across compaction levels and decreased significantly by 70% on the slash-covered plots. Sediment yield totalled 460 and 818 g m−2 for the uncompacted and compacted bare plots, respectively, and slash significantly reduced these amounts by an average rate of 71%. Our results showed that soil erosion was still high two years after the high severity burning and the effect of soil compaction nearly doubled soil erosion via nonsignificant increases in runoff and sediment concentration. Antecedent soil moisture (dry or wet) was the dominant factor controlling runoff, while surface cover was the dominant factor for rainsplash and sediment yield. Saturated hydraulic conductivity and interrill erodibility calculated from these rainfall simulations confirmed previous laboratory research and will support hydrologic and erosion modelling efforts related to wildfire and post-fire salvage logging. Covering the soil with slash mitigated runoff and significantly reduced soil erosion, demonstrating the potential of this practise to reduce sediment yield and soil degradation from burned and logged areas.  相似文献   

8.
Soil erosion by water is one of the main environmental concerns in the drought‐prone Eastern Africa region. Understanding factors such as rainfall and erosivity is therefore of utmost importance for soil erosion risk assessment and soil and water conservation planning. In this study, we evaluated the spatial distribution and temporal trends of rainfall and erosivity for the Eastern Africa region during the period 1981–2016. The precipitation concentration index, seasonality index, and modified Fournier index have been analysed using 5 × 5‐km resolution multisource rainfall product (Climate Hazards Group InfraRed Precipitation with Stations). The mean annual rainfall of the region was 810 mm ranging from less than 300 mm in the lowland areas to over 1,200 mm in the highlands being influenced by orography of the Eastern Africa region. The precipitation concentration index and seasonality index revealed a spatial pattern of rainfall seasonality dependent on latitude, with a more pronounced seasonality as we go far from the equator. The modified Fournier index showed high spatial variability with about 55% of the region subject to high to very high rainfall erosivity. The mean annual R‐factor in the study region was calculated at 3,246 ± 1,895 MJ mm ha?1 h?1 yr?1, implying a potentially high water erosion risk in the region. Moreover, both increasing and decreasing trends of annual rainfall and erosivity were observed but spatial variability of these trends was high. This study offers useful information for better soil erosion prediction as well as can support policy development to achieve sustainable regional environmental planning and management of soil and water resources.  相似文献   

9.
Most studies on runoff and soil loss from olive orchards were performed on plots, despite the fact that measurements that examine a range of erosive processes on different scales are essential to evaluate the suitability of the use and soil management of this type of land. The main environmental limitations of much of the land used for olive orchards in the Mediterranean are the steep slopes and the shallow soil depth – and this was the case in the study area. Soil erosion and runoff over two hydrological years (2005–2006 and 2006–2007) were monitored in an olive orchard microcatchment of 6·1 ha under no‐tillage with spontaneous grass in order to evaluate its hydrological and erosive behaviour. Moreover, soil parameters such as organic matter (%OM), bulk density (BD) and hydraulic saturated conductivity (Ks) were also examined in the microcatchment to describe management effects on hydrological balance and on erosive processes. In the study period, the results showed runoff coefficients of 6·0% in the first year and 0·9% in the second. The differences respond to the impact of two or three yearly maximum events which were decisive in the annual balances. On the event scale, although maximum rainfall intensity values had a big influence on peak flows and runoff, its importance on mean sediment concentrations and sediment discharges was difficult to interpret due to the likely control of grass cover on volume runoff and on soil protection. In the case of annual soil erosion, they were measured as 1·0 Mg ha?1 yr?1 and 0·3 Mg ha?1 yr?1. Both are lower than the tolerance values evaluated in Andalusia (Spain). These results support the implementation of no‐tillage with spontaneous grass cover for sloping land, although the reduced infiltration conditions determined by Ks in the first horizon suggest grass should be allowed to grow not only in spring but also in autumn. In addition, specific measurements to control gullies, which have formed in the terraced area in the catchment, should be included since it is expected that they could be the main sources of sediments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Accelerated runoff and erosion commonly occur following forest fires due to combustion of protective forest floor material, which results in bare soil being exposed to overland flow and raindrop impact, as well as water repellent soil conditions. After the 2000 Valley Complex Fires in the Bitterroot National Forest of west‐central Montana, four sets of six hillslope plots were established to measure first‐year post‐wildfire erosion rates on steep slopes (greater than 50%) that had burned with high severity. Silt fences were installed at the base of each plot to trap eroded sediment from a contributing area of 100 m2. Rain gauges were installed to correlate rain event characteristics to the event sediment yield. After each sediment‐producing rain event, the collected sediment was removed from the silt fence and weighed on site, and a sub‐sample taken to determine dry weight, particle size distribution, organic matter content, and nutrient content of the eroded material. Rainfall intensity was the only significant factor in determining post‐fire erosion rates from individual storm events. Short duration, high intensity thunderstorms with a maximum 10‐min rainfall intensity of 75 mm h?1 caused the highest erosion rates (greater than 20 t ha?1). Long duration, low intensity rains produced little erosion (less than 0·01 t ha?1). Total C and N in the collected sediment varied directly with the organic matter; because the collected sediment was mostly mineral soil, the C and N content was small. Minimal amounts of Mg, Ca, and K were detected in the eroded sediments. The mean annual erosion rate predicted by Disturbed WEPP (Water Erosion Prediction Project) was 15% less than the mean annual erosion rate measured, which is within the accuracy range of the model. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

11.
The 3-D spatial distributions of vegetation are of great significance for water and soil conservation but are rarely concerned in literatures. The live vegetation volume (LVV) was used to relate to water/soil loss under 144 natural erosive rainfall events from 2007 to 2010 in a typical water-eroded area of southern China. Quadratic polynomial regression models were established for five pure tree (Pinus massoniana Lamb) plots between LVV and water (rtmoff)/soil conservation effects (RE/SE). RE/SE corresponds to the ratios of runoff depth/soil loss of the pure tree plots to that of the control plot under each rainfall event. Increasing LVV exhibits descending (DS), descending-ascending (DA), ascending-descending (AD), and ascending (AS) trends in the LVV-RE and LVV-SE curves. The effects of soil conservation on the plots were generally more noticeable than the effects of water conservation, and most of the RE and SE values reflected the positive effects of water and soil conservation. The effects were mainly positive under heavy rains (e.g., rainfall erosivity, R = 140 MJ mm ha-l h, maximum 30 min intensity, I30 = 16 mm h-l), whereas the effects were mainly negative under light rains (e.g., R = 45 MJ mm ha-1 h, I30 = 8 mm h-l). The trees' water/soil conservation effects notably transformed when rainfall erosivity and intensity were lower than the positive or negative effects to a certain threshold. About 50% rainfall events led to obvious transform effects when LVVs were near 0.5 or 0.6. These results are able to aid in the decision making on the forest reconstruction in water-eroded areas.  相似文献   

12.
Reliable assessment of the spatial distribution of soil erosion is important for making land management decisions, but it has not been thoroughly evaluated in karst geo‐environments. The objective of this study was to modify a physically based, spatially distributed erosion model, the revised Morgan, Morgan and Finney (RMMF) model, to estimate the superficial (as opposed to subsurface creep) soil erosion rates and their spatial patterns in a 1022 ha karst catchment in northwest Guangxi, China. Model parameters were calculated using local data in a raster geographic information system (GIS) framework. The cumulative runoff on each grid cell, as an input to the RMMF model for erosion computations, was computed using a combined flow algorithm that allowed for flow into multiple cells with a transfer grid considering infiltration and runoff seepage to the subsurface. The predicted spatial distributions of soil erosion rates were analyzed relative to land uses and slope zones. Results showed that the simulated effective runoff and annual soil erosion rates of hillslopes agreed well with the field observations and previous quantified redistribution rates with caesium‐137 (137Cs). The estimated average effective runoff and annual erosion rate on hillslopes of the study catchment were 18 mm and 0.27 Mg ha?1 yr?1 during 2006–2007. Human disturbances played an important role in accelerating soil erosion rates with the average values ranged from 0.1 to 3.02 Mg ha?1 yr?1 for different land uses. The study indicated that the modified model was effective to predict superficial soil erosion rates in karst regions and the spatial distribution results could provide useful information for developing local soil and water conservation plans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Soil loss rates due to piping erosion   总被引:1,自引:0,他引:1  
Compared with surface soil erosion by water, subsurface erosion (piping) is generally less studied and harder to quantify. However, wherever piping occurs, it is often a significant or even the main sediment source. In this study, the significance of soil loss due to piping is demonstrated through an estimation of soil volume lost from pipes and pipe collapses (n = 560) in 137 parcels under pasture on loess‐derived soils in a temperate humid climate (Belgium). Assuming a period of 5 to 10 years for pipe collapse to occur, mean soil loss rates of 2.3 and 4.6 t ha?1 yr?1 are obtained, which are at least one order of magnitude higher than surface erosion rates (0.01–0.29 t ha?1 yr?1) by sheet and rill erosion under a similar land use. The results obtained for the study area in the Flemish Ardennes correspond well to other measurements in temperate environments; they are, however, considerably smaller than soil loss rates due to subsurface erosion in semi‐arid environments. Although local slope gradient and drainage area largely control the location of collapsed pipes in the study area, these topographic parameters do not explain differences in eroded volumes by piping. Hence, incorporation of subsurface erosion in erosion models is not straightforward. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Studies of soil erosion on small plots present upscaling problems. The results in the literature on the effect of slope length (i.e. scale) on runoff and soil erosion are contradictory. Furthermore, most studies that examine scale effects measured through erosion plots have been conducted in Mediterranean environments. The objective of this study was to assess the effects of plot size on runoff and soil loss in a subtropical environment. Other measurements were taken to appraise the topsoil property changes inside the plots. The soil was ploughed twice, the surface was leveled with a hoe and it was kept bare during the experiment. Data were collected from 10 paired plots, five plots measuring 10 m × 1 m and five plots measuring 1 m × 1 m, installed in the same pedo‐geomorphologic unit. Measurements were carried out from November 2008 to November 2009. During this period, 97 natural storms were registered. The results indicate that the small plots tended to have higher runoff (30% higher) compared to larger plots, especially during periods of greater rainfall volume, duration and intensity. The soil loss was similar in both the 1 m2 plots (6·33 kg/m2) and the 10 m2 plots (6·26 kg/m2). Moreover, the dynamics of the soil loss during the experiment was relatively similar across both plot sizes. The large plots tended to have a greater internal complexity. In these plots, the steps retreat were higher, the overland flow scars were more frequent, and points of rill initiation and protochannels emerged in several parts of the plots. The results of the small plots were comparable to the results obtained on the large plots, especially in relation to soil loss. These plots were useful for short‐term assessments of soil erosion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
To date, most studies of the effectiveness of geotextiles on soil erosion rates and processes have been conducted in laboratory experiments for less than 1 h. Hence, at Hilton (52°33′ N, 2°19′ W), UK, the effectiveness of employing palm‐mat geotextiles for soil erosion control under field conditions on arable loamy sands was investigated. Geotextile‐mats constructed from Borassus aethiopum (Borassus palm of West Africa) and Mauritia flexuosa (Buriti palm of South America) leaves are termed Borassus mats and Buriti mats, respectively. Duplicate runoff plots (10 m × 1 m on a 15° slope) had five treatments (bare, permanent grass, Borassus total plot cover, Borassus buffer strip and Buriti buffer strip). Borassus covered plots had about 72% ground cover and to differentiate between this treatment and Borassus buffer strips, the former treatment is termed Borassus completely‐covered. Runoff and eroded soil were collected from each bounded plot in a concrete gutter, leading to a receptacle. Results from 08/01/2007–23/01/2009 (total precipitation = 1776·5 mm; n = 53 time intervals) show that using Borassus buffer strips (area coverage ~10%) on bare soil decreased runoff volume by about 71% (P > 0·05) and soil erosion by 92% (P < 0·001). Bare plots had nearly 29·1 L m?2 runoff and 2·36 kg m?2 soil erosion during that period. Borassus buffer strip, Buriti buffer strip and Borassus completely‐covered plots had similar effects in decreasing runoff volume and soil erosion. Runoff volumes largely explain the variability in soil erosion rates. Although buffer strips of Borassus mats were as effective as whole plot cover of the same mats, the longevity of Borassus mats was nearly twice that of Buriti mats. Thus, use of Borassus mats as buffer strips on bare plots is highly effective for soil erosion control. The mechanisms explaining the effectiveness of buffer strips require further studies under varied pedo‐climatic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Wildfire is a natural component of sagebrush (Artemisia spp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind- and water-driven erosion. Much of the fire-related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water-driven erosion under high-intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow-dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold-season hydrology. Current understanding is limited regarding fire effects on the interaction of wind- and cold-season hydrologic-driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow-dominated mountainous sagebrush site over a 2-year period post-fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2 to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n = 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop-box v-notch weir. Wildfire consumed nearly all above-ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post-fire period. Widespread wind-driven sediment loading of swales was observed over the first month post-fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north- and south-facing aspects averaged 0.99–8.62 t ha−1 at the short-hillslope scale (~0.004 ha), 0.02–1.65 t ha−1 at the long-hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1 at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short- to long-hillslope scales (0.02–0.04 t ha−1), but was similar to first-year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold-season hydrologic processes, including rain-on-snow, rain-on-frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post-fire period and subsequent flushing of these sediments by runoff from cold-season hydrologic processes. Our results suggest that the interaction of aeolian and cold-season hydrologic-driven erosion processes is an important component for consideration in post-fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
Although the impact of sheet erosion on the selective transportation of mineral soil particles has been widely investigated, little is yet known about the specific mechanisms of organic carbon (OC) erosion, which constitutes an important link in the global carbon cycle. The present study was conducted to quantify the impact of sheet erosion on OC losses from soils. Erosion plots with the lengths of 1‐ and 5‐m were installed at different topographic positions along a hillslope in a mountainous South African region. A total of 32 rainfall events from a three years period (November 2010 up to February 2013), were studied and evaluated for runoff (R), particulate and dissolved organic carbon (POCL and DOCL). In comparison to the 0–0·05 m bulk soil, the sediments from the 1‐m plots were enriched in OC by a factor 2·6 and those from the 5‐m long plots by a factor of 2·2, respectively. These findings suggest a preferential erosion of OC. In addition, total organic carbon losses (TOCL) were incurred mainly in particulate form (~94%) and the increase in TOCL from 14·09 ± 0·68 g C m?1 yr?1 on 1‐m plots to 50·03 ± 2·89 g C m?1 yr?1 on 5‐m plots illustrated an increase in sheet erosion efficiency with increasing slope length. Both TOCL and sediment enrichment in OC correspondingly increased with a decrease in soil basal grass cover. The characteristics of rainstorms had no significant impact on the selectivity of OC erosion. The results accrued in this study investigating the links between sheet erosion and OC losses, are expected to be of future value in the generation of carbon specific erosion models, which can further help to inform and improve climate change mitigation measures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
No-tillage and inter-crops have been progressively introduced into traditional Brazilian tobacco plantations. However, there is a lack of information about their impact on soil erosion rates and soil properties. We studied 10 experimental plots in Paraná (Brazil) that rotated from no-tillage tobacco to two different inter-crop types (black beans and oats) and conventionally tilled tobacco to quantify erosion rates from September 2014 to February 2016. The results show that soil loss (18 Mg ha?1) and runoff coefficient (8.3%) were higher under conventional tillage tobacco than under no-tillage tobacco (3.4 Mg ha?1 and 0.6%). Bulk density was higher at the end of the cropping cycle than at the beginning. We concluded that conventional crops increased soil erosion, and the use of inter-crops and no-tillage is highly recommended for soil and water conservation. The findings should be valid for other regions that have similar cropping systems and environmental conditions.  相似文献   

20.
An understanding of the sources of variation in the use of erosion plots and of their feasibility to meet the objectives of each specific research project is key to improving future field designs, selecting data for modelling purposes and furthering knowledge of soil erosion processes. Our own field experiences from ongoing research on soil erosion processes since 1989, have allowed us to detect several methodological problems that cause measurement variability. Here several examples are presented concerning: (i) differences in long‐term soil erosion data between open and closed plots; (ii) differences in soil loss derived from replica soil erosion plots; and (iii) differences in soil loss data derived from plots at a range of spatial scales. Closed plots are not the most suitable method for long‐term monitoring of soil erosion rates due to the risk of exhaustion of available material within the plot. The difference in time after which exhaustion occurs depends on the surface soil characteristics, the climatological conditions and the size of the plots. We detected four and seven years as ‘time to exhaustion’. Different results are frequently obtained between pairs of replica plots. Differences up to a factor of nine have been detected in total soil loss between replica plots due to different spatial patterns of surface components. Different constraints appear depending on the spatial scale of measurement of soil loss. We obtained lower runoff percentages at coarser scales; however, larger sediment concentrations are observed at coarser scales (1·32 g l?1, catchment; 0·30 g l?1, 30 m2; 0·17 g l?1, 1 m2 scales). The smaller the plot, the larger the hydrological disconnection within the system, the lower the energy flows due to short distances and the quicker the response to runoff due to an artificial decrease of concentration times for continuous flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号